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ABSTRACT 

Global WRF (GWRF) is an extension of the mesoscale Weather Research and Forecasting (WRF) model that was de-
veloped for global weather research and forecasting applications. GWRF is being expanded to simulate atmospheric 
chemistry and its interactions with meteorology on a global scale. In this work, the ability of GWRF to reproduce major 
boundary layer meteorological variables that affect the fate and transport of air pollutants is assessed using observations 
from surface networks and satellites. The model evaluation shows an overall good performance in simulating global 
shortwave and longwave radiation, temperature, and specific humidity, despite large biases at high latitudes and over- 
Arctic and Antarctic areas. Larger biases exist in wind speed and precipitation predictions. These results are generally 
consistent with the performance of most current general circulation models where accuracies are often limited by a 
coarse grid resolution and inadequacies in sub-filter-scale parameterizations and errors in the specification of external 
forcings. The sensitivity simulations show that a coarse grid resolution leads to worse predictions of surface temperature 
and precipitation. The combinations of schemes that include the Dudhia shortwave radiation scheme or the Purdue Lin 
microphysics module, or the Grell-Devenyi cumulus parameterization lead to a worse performance for predictions of 
downward shortwave radiation flux, temperature, and specific humidity, as compared with those with respective alter- 
native schemes. The physical option with the Purdue Lin microphysics module leads to a worse performance for pre- 
cipitation predictions. The projected climate in 2050 indicates a warmer and drier climate, which may have important 
impacts on the fate and lifetime of air pollutants. 
 
Keywords: Global Weather Simulation; Physical Options; Horizontal Grid Resolution 

1. Introduction 

The Weather Research and Forecasting (WRF) model 
has been developed by the National Center for Atmos-
pheric Research (NCAR) to improve weaknesses of the 
Mesoscale Meteorological Model, Version 5 (MM5) and 
provide a flexible and portable open-source community 
model for both atmospheric research and operational 
forecasting [1,2]. The WRF system allows users to in-
terchange various cores and physics packages, which is 
useful for inter-model evaluations and module sensitivity 
studies [3]. WRF has been utilized by thousands of users 
around the world in many different areas of atmospheric 
research including large-eddy simulations (e.g. [4]), real- 
time numerical weather predictions (NWP) (e.g. [5]), 
data assimilation [6,7], regional climate simulations (e.g. 
[3,8-12], air quality modeling [e.g. 13-18], air quality  

forecasting (e.g. [19-22]), and atmosphere-ocean coupl-
ing (e.g. [23,24]). 

A global version of WRF (GWRF) released in 2008 is 
an extension of mesoscale WRF and a variant of planet 
WRF, which was initially designed to study the atmos- 
pheres and climate systems of other planets such as Mars, 
Titan, and Venus [25,26]. Four major modifications to 
the mesoscale WRF were made for application to the 
planetary atmosphere as the planet WRF: modification of 
the projection from an isotropic to a non-isotropic grid 
(i.e. to accommodate a latitude-longitude mesh), the ad- 
dition of polar Fourier filters to remove model instabili- 
ties near the poles, adaptation of planetary constants and 
timing parameters, and parameterizations of sub-grid 
scale physical processes associated with specific planets 
[25]. To adapt the planetary model to the Earth, as op-
posed to other planets, certain Earth-specific planetary 
constants (e.g. acceleration due to gravity, reference  *Corresponding author. 



Y. ZHANG  ET  AL. 

Copyright © 2012 SciRes.                                                                                  ACS 

232

pressure, and ideal gas constants) and necessary timing 
conventions (e.g. orbital parameters) have been incorpo- 
rated into GWRF. GWRF enables modeling of global 
atmospheric circulation and the coupling between weather 
systems on global and regional scales with the same basic 
dynamics and physics [25,26]. Its initial evaluation 
showed an overall good performance in terms of the 
global zonal mean climatology for Earth, Mars, Titan, 
and Venus [26,27]. Compared to traditional general cir-
culation models (GCMs) that have been developed since 
1950s, GWRF enables a unified framework for the mod- 
eling of atmospheric processes and their interactions 
across scales spanning from global to local scales 
through 1-way or 2-way nesting. For example, GWRF 
can be used to provide initial conditions (ICs) and BCs 
for mesoscale WRF in nested simulations, which reduces 
inaccuracies arising from the use of different models 
with inconsistent model dynamics and physics. 

While the mesoscale WRF model has been extensively 
evaluated using observations, there has been little eva- 
luation of GWRF. In this work, GWRF version 3.0 is 
evaluated using available observations and reanalysis 
data. A number of sensitivity simulations are conducted 
to identify the most appropriate physical parameterize- 
tions in GWRF that produce the highest accuracy for 
global atmosphere. The main objectives of this study are 
to evaluate the capability of GWRF in reproducing glob-
al boundary layer meteorological variables that are most 
influential to air pollutants and to examine the sen- sitiv-
ity of the model predictions to various physical para- 
meterizations. Such an evaluation is a critical step toward 
the extension of GWRF to include emissions and chem.- 
istry needed to simulate/forecast the global transport and 
fate of air pollutants, the impact of emissions on global 
air quality and radiative forcing, as well as forecasting 
the future climate change and its impact on air quality 
and vice versa. 

2. Model Description and Simulation Design 

GWRF provides a number of options for physical sch- 
emes or parameterizations [2]. The model radiation and 
physical schemes/parameterizations selected for the 
baseline and sensitivity simulations as well as a future 
year simulation are summarized in Table 1. The set of 
physics configurations in these simulations is selected 
with consideration of their suitability for long-term simu- 
lation over a global domain. For longwave radiation re- 
ceived at the surface (LW), the Community Atmosphere 
Model version 3 (CAM3.0) LW radiation scheme of Col-
lins et al. [28] is used in the baseline simulation and the 
rapid radiative transfer model (RRTM) [29] is used in the 
sensitivity simulation. CAM3 LW is a spectral-band 
scheme with 2 bands used for climate simulations adapt- 
ed from the NCAR CAM 3.0. It can handle water vapor, 
O3, and CO2, and interacts with model-resolved clouds 
and cloud fractions. RRTM LW is a spectral-band 
scheme with 16 bands using the correlated-k method, 
which calculates radiative transfer with k referring to the 
absorption coefficient. RRTM LW accounts for cloud 
optical depth and uses lookup tables to represent out-
going LW radiations caused by water vapor, O3, CO2, 
and trace gases. For shortwave radiation received at the 
surface (SW), the Goddard shortwave radiation scheme 
of Chou and Suarez [30] and Chou et al. [31] is used in 
the baseline simulation and the CAM3 shortwave radia-
tion of Collins et al. [28] and the Dudhia scheme [32] are 
used in the sensitivity simulations. The Goddard SW 
scheme is a spectral band scheme with 11 bands. This 
scheme accounts for diffuse and direct solar radiation 
components in a two-stream approach, including the ef-
fects of water vapor, O3, and CO2 on radiation. The 
CAM3 SW is a spectral band that can handle several 
aerosol types and trace gases and their interactions with 
clouds. The CAM3 SW scheme is especially suited for  

 
Table 1. Model configurations in the baseline and sensitivity simulations. 

Atmospheric process 
Parameterizations/schemes used  
in the baseline simulation 

Parameterizations/schemes used  
in the sensitivity simulation 

Longwave radiation CAM [28] The rapid radiative transfer model (RRTM) [29] 

Shortwave radiation Goddard scheme [30,31] 
Dudhia [32] 
CAM [28] 

Cloud microphysics WSM3 [65,66] 
Purdue Lin [33,34] 
WSM6 [65,66] 

Land Surface Model NOAH [36-38] The simple thermal diffusion (Slab) scheme [39] 

Cumulus parameterization KF II [40-42] GD ensemble [43] 

PBL scheme YSU scheme [44-46] Same as baseline scheme 

Surface-layer scheme Monin-Obukhov scheme [47-51] Same as baseline scheme 

CAM—Community atmospheric model; GD—Grell-devenyi, RRTM—The rapid radiative transfer model; YSU—Yonsei University; WSM3—WRF single 
moment 3-class; NOAH—The National Center for Environmental Prediction (NNR), Oregon State University, Air Force, and Hydrologic Research Lab; and 
KF II—Kain-Fritsch version 2.  
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regional climate simulations [2]. The Dudhia SW scheme 
has a simple downward integration of solar flux and ac-
counts for clear-air scattering, water vapor absorption, 
and cloud albedo and absorption. 

For cloud microphysics parameterization, the WRF 
Single Moment 3-Class (WSM3) scheme is used in the 
baseline simulation and WSM 6-Class (WSM6) and Pur- 
due Lin (PL) scheme [33,34] are used in the sensitivity 
simulations. WSM3 is a simple-ice scheme with three 
categories of hydrometers (i.e. water vapor, cloud water/ 
ice, and rain/snow). It is computationally efficient, but 
does not treat super cooled water and gradual melting 
rates. WSM6 extends WSM3 to explicitly include water 
vapor, rain, snow, cloud ice, cloud water, and graupel. 
Among all WSM options in WRF, WSM6 is the most 
comprehensive option. It has been recently extended to a 
double moment warm rain microphysics (i.e. WDM6) 
[35]. The PL scheme treats six classes of hydrometeors: 
water vapor, cloud water, rain, cloud ice, snow, and 
graupel. For land-surface model (LSM), the National 
Center for Environmental Prediction (NCEP), Oregon 
State University, Air Force, and Hydrologic Research 
Lab (NOAH) model of Chen and Dudhia [36,37] and Ek 
et al. [38] is used in the baseline simulation and the sim-
ple thermal diffusion (Slab) scheme [39] is used in the 
sensitivity simulation. NOAH is a 4-layer soil tempera-
ture and moisture model with canopy moisture and snow 
cover prediction. The 4-layer thicknesses are 10, 30, 60 
and 100 cm from the surface down. The NOAH scheme 
includes root zone, evapotranspiration, soil drainage, and 
runoff and accounts for vegetation categories, monthly 
vegetation fraction, soil texture, soil ice, fractional snow 
cover effects, surface emissivity properties, and im-
proved urban treatment. The scheme provides sensible 
and latent heat fluxes to the boundary-layer scheme. It is 
used for both research and operational applications. The 
Slab LSM is based on the MM5 soil temperature model 
with 5 layers of 1, 2, 4, 8, and 16 cm thickness. The Slab 
LSM includes energy budget calculations accounting for 
radiation, sensible, latent heat flux, and a crude snow 
treatment with a constant snow cover. The soil moisture 
is fixed with a land-use and season-dependent constant 
value and vegetation effects are not explicitly considered. 
For the cumulus parameterization, the Kain-Fritsch II 
(KFII) [40-42] is used in the baseline simulation and the 
Grell-Devenyi (GD) ensemble [43] is used in the sensi-
tivity simulation. The KF II scheme is a simple cloud 
model with moist updrafts and downdrafts and includes 
the effects of detrainment, entrainment, and simple mi-
crophysics. The GD scheme is an ensemble cumulus 
scheme which averages the results from multiple cumulus 
schemes with an equal weight. These cumulus schemes 
are all mass-flux type schemes, but with different updraft 
and downdraft entrainment and detrainment parameters, 

and different precipitation efficiencies. In both baseline 
and sensitivity simulations, the Yonsei University (YSU) 
PBL scheme of Hong and Dudhia [44] and Hong et al. 
[45,46] and the Monin-Obukhov scheme adapted from 
MM5 [47] are used. The YSU scheme is a non-local 
scheme that includes an explicit treatment of the entrain- 
ment layer at the PBL top and provides a well-mixed 
boundary-layer profile. It also includes an enhanced sta- 
ble boundary-layer diffusion algorithm that allows deep- 
er mixing in windier conditions. The surface-layer sche- 
me is based on the Monin-Obukhov similarity theory 
with Carslon-Boland viscous sub-layer and standard si- 
milarity functions from look-up tables. It includes four 
stability regimes as described in Zhang and Anthes [48] 
and uses stability functions from Paulson [49], Dyer and 
Hicks [50], and Webb [51] to compute surface exchange 
coefficients for heat, moisture, and momentum.  

Table 2 summarizes the configurations used in all si-
mulations. GWRF is initialized using the WRF Prepro-
cessing System version 3.0 (WPS3). The data used as 
input into WPS3 is from the NCEP Final Global Data 
Assimilation System (FNL), which has a horizontal grid 
resolution of 1˚ latitude × 1˚ longitude and is available 
every six hours since July 1999. NCEP FNL is used to 
initialize the Global Forecasting System (GFS) model. 
To evaluate the performance of GWRF, simulations of 
the year 2001 are performed and analyzed. The simula- 
tions are initialized using the NCEP FNL analysis. The 
simulations are constrained by a monthly reinitialization 
of the WRF prognostic variables, including the soil tem- 
perature and skin temperature. Sea surface temperature 
(SST) and sea-ice fraction are reinitialized from weekly 
analyses, as recommended for simulations longer than 
one week [2]. A GWRF baseline simulation is conducted 
for the entire year of 2001 at a horizontal grid resolution 
of 1˚ × 1˚, with 27 eta layers from 0 to 50 h Pain the ver- 
tical domain. A number of sensitivity simulations are 
carried out to evaluate the impacts of physics parame- 
terizations and grid resolutions on model performance. 
These sensitivity simulations include seven sets of simu- 
lations at 1˚ × 1˚ (i.e. three for different combinations of 
longwave and shortwave radiation schemes (RAD1 for 
Dudhia SW and CAM3 LW, RAD2 for CAM3 SW and 
RRTM LW, and RAD3 for CAM3 SW and CAM3 LW), 
two for different cloud microphysics (CMP1 for WSM6 
and CMP2 for PL), one for LSM (i.e. Slab), and one for 
cumulus parameterization (CCP) (i.e. GD)) and one with 
the same radiation and physics configurations as the 
baseline simulation but at a coarser horizontal grid reso- 
lution of 4˚ latitude × 5˚ longitude. 

To evaluate the capability of GWRF in simulating 
climate changes in future years, a simulation is complet- 
ed for the year 2050 with the baseline physics configura-
tions at a horizontal grid resolution of 4˚ latitude × 5˚    
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Table 2. Model configurations for GWRF baseline, sensitivity, and future year simulations. 

Run Set Run Name Resolution 
Time  
Period 

Micro-Physics
Land-Surface 

Model 
Cumulus  

Parameterization 
Short-Wave Long-Wave

Baseline BASE 1˚ × 1˚ 2001 WSM3 NOAH Kain-Fritsch Goddard CAM 

Sensitivity 

CMP1 1˚ × 1˚ JJA WSM6 NOAH Kain-Fritsch Goddard CAM 

CMP2 1˚ × 1˚ JJA Purdue Lin NOAH Kain-Fritsch Goddard CAM 

LSM 1˚ × 1˚ JJA WSM3 SLAB Kain-Fritsch Goddard CAM 

RAD1 1˚ × 1˚ JJA WSM3 NOAH Kain-Fritsch Dudhia CAM 

RAD2 1˚ × 1˚ JJA WSM3 NOAH Kain-Fritsch CAM RRTM 

RAD3 1˚ × 1˚ JJA WSM3 NOAH Kain-Fritsch CAM CAM 

CCP 1˚ × 1˚ JJA WSM3 NOAH Grell-Devenyi Goddard CAM 

OPT 1˚ × 1˚ 2001 WSM6 SLAB Grell-Devenyi CAM RRTM 

Low_Res 1˚ × 1˚ 2001 WSM3 NOAH Kain-Fritsch Goddard CAM 

Future-Year Future 1˚ × 1˚ 2050 WSM3 NOAH Kain-Fritsch Goddard CAM 

 
longitude. GWRF model outputs for 2050 are compared 
with results from the 2001 baseline simulation to analyze 
the variation trends of major meteorological variables. 
Since GWRF is not yet a climate model, it is initialized 
using atmospheric, land, and ocean/sea-ice output from 
the NCAR Community Climate System Model 3.0 
(CCSM3) simulation for 2050 as part of the IPCC Spe- 
cial Report on Emission Scenario (SRES) B1 experiment. 
CCSM3 is a coupled atmosphere-ocean model at a spa- 
tial resolution of 257 × 129 grid points (1.4˚ latitude × 
1.4˚ longitude). The SRES B1 represents a low green- 
house gas concentration scenario with a CO2 level of 550 
ppm. Each month of the 2050 GWRF simulations were 
initialized using the corresponding monthly mean CCSM 
outputs. The 3-D variables used to initialize GWRF from 
the atmospheric component model of CCSM (i.e. Com- 
munity Atmospheric Model) include vertical profiles of 
temperature (T), relative humidity (RH), geopotential 
height (Z3), the zonal (U) and meridional (V) compo- 
nents of wind speed, and surface pressure (PS). CAM 
outputs are vertically interpolated to map with the verti- 
cal structure of GWRF. Additional initialization data in- 
clude 3-Dsoil temperature (TSOI) and moisture (H2OSOI) 
predictions from the CCSM Community Land Model 
(CLM) and 2-D sea-ice fraction (ICEFRAC) from the 
CCSM Community Sea Ice Model (CSIM). 

3. Evaluation Datasets and Methodology for 
2001 

3.1. Datasets for Model Evaluation 

GWRF predictions are evaluated against surface obser- 
vational networks and gridded reanalysis data which 
combine data from surface and satellite observations with 
other model outputs. A summary of the datasets is shown  

in Table 3. The baseline surface radiation network 
(BSRN) is a global surface-based observational network 
established by the World Radiation Monitoring Center 
since 1992 for surface radiation fluxes at the Earth’s sur-
face for climate research [52]. It consists of 59 sites 
worldwide as of 2011, but only 28 sites have observa- 
tions in 2001. The SW downward radiation flux meas- 
ured by pyranometers and LW downward radiation flux 
measured by pyrgeometers every minute are used to 
compute hourly averaged observations for model evalua- 
tion. Meteorological parameters from the National Cli-
mactic Data Center (NCDC) are from the Global Climate 
Observing System (GSN) Surface Network, Monthly 
(GSNMON), with over 900 sites worldwide. The ob- 
served mean monthly temperature (˚C) and total monthly 
precipitation (mm) for ~200 sites in 2001 are used for 
model evaluation. The Global Precipitation Climatology 
Project (GPCP) is a part of the Global Energy and Water 
Cycle Experiment (GEWEX) of the World Climate Re- 
search program (WCRP). The monthly mean precipita- 
tion data are produced from an analysis designed by the 
Global Precipitation Climatology Centre by merging 
precipitation estimates from microwave, infrared, and 
sounder data from international precipitation-related sat- 
ellites, as well as from precipitation gauges over 6000 
stations on a 2.5˚ × 2.5˚ latitude-longitude grid from 
1979 to present [53]. The version of GPCP used in this 
study is the 2.5-degree version 2. The NCEP and the Na-
tional Center for Atmospheric Research (NCAR) Reana-
lysis (NNR) dataset is widely used to validate global si-
mulations in the atmospheric modeling community. Kal-
nay et al. [54] published a 40-year record (1957-1996) of 
global atmospheric parameters from reanalysis. The rea-
nalysis uses a combination of assimilated observations 
(remotely-sensed and surface based) at a horizontal grid    
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Table 3. Summary of datasets used to evaluate GWRF. 

Databasea Variablesb Data frequency Number of sites as of 2001 

BSRN SW, LW Minutely ~28 

NCDC T2, Precip Monthly ~200 

GPCP Precipitation Monthly Global domain, Gridded (2.5˚ × 2.5˚) 

NNR Reanalysis (NNR) T2, Q2, U10, V10, SW, LW 4-times daily Global domain, Gridded (2.5˚ × 2.5˚) 

aBSRN—Baseline Surface Radiation network, http://www.gewex.org/bsrn.html; NCDC—National Climactic Data Center,  
http://www.ncdc.noaa.gov/oa/ncdc.html; GPCP—Global Precipitation Climatology Project, http://precip.gsfc.nasa.gov and Xie and Arkin, 1997; NNR Reana-
lysis (NNR), http://www.NNR.noaa.gov; bSW—Downward shortwave flux; LW—Downward longwave flux; T2—Temperature at 2-meter; Precip 
—Precipitation; Q2—Water vapor mixing ratio at 2-meter; U10—Zonal mean wind speed at 10-m; V10—Meridional mean wind speed at 10-m. 

 
resolution of 2.5˚ × 2.5˚ latitude/longitude for each year 
and model regression to produce global analyses of at- 
mospheric fields. 

3.2. Evaluation Protocol 

The model evaluation focuses on major boundary layer 
meteorological variables including a combination of non- 
convective and convective weekly accumulated precipi- 
tation (RAINC + RAINNC), 2-meter temperature (T2) and 
specific humidity (Q2), and 10-meter wind velocities and 
their zonal (U10) and meridional (V10) components, as 
well as radiation variables such as SW and LW radiation. 
The overall performance of GWRF is evaluated in terms 
of spatial distribution, seasonal and temporal variations, 
and statistics over the global domain, the Northern and 
Southern Hemispheres, and the six populated continents. 
The six circulations cells are also used as subdomains for 
model evaluation, they include: the Polar (60˚N - 90˚N 
and 60˚S - 90˚S), Ferrel (30˚N - 60˚N and 30˚S - 60˚S), 
and Hadley (0˚N - 30˚N and 0˚S - 30˚S) Cells in the 
Northern and Southern hemispheres. The statistical mea- 
sures include normalized mean bias (NMB), normalized 
mean error (NME), mean bias (MB), root mean square 
error (RMSE), and correlation coefficient (Corr) over the 
entire domain, sub-domains, and continental domains. 
The formulas used to calculate these statistical metrics 
are taken from Zhang et al. [55]. 

4. Evaluation of Baseline Results  

Table 4 summarizes the overall performance statistics 
for all meteorological variables. Figures 1 and 2 show 
simulated downward SW and LW radiation fluxes over-
laid with observations from BSRN during winter and 
summer. GWRF reproduces the radiation observations 
reasonably well in both seasons with moderate overpre-
dictions (MBs of 38.5 - 51.5 W·m–2 and NMBs of 24% - 
27%) for SW radiation and underproductions (MBs of 
–32.1 to –30.0 W·m–2 and NMBs of –10.3% to –9.2%) 
for LW radiation. As shown in Table 4 and Figure 3, 
similar overpredictions of SW and underpredictions of  

LW radiation fluxes against the NNR data also occur on 
a global scale but to a lesser extent than against the 
BSRN data. Such overpredictions of SW fluxes and un- 
derpredictions of LW radiation occur mainly between 
30˚N and 30˚S and dominate the trends of the annual 
predictions with MBs of 16.6 W·m−2 for SW and –16.6 
W·m−2 for LW radiation against the NNR data. These 
results are overall consistent with other GCMs. Wild et 
al. [56] reported that a tendency common to all GCMs 
which overestimate SW by an average of 10 - 15 W·m−2, 
due likely to an underestimation of atmospheric absorp- 
tion. The performance of ECHAM3 in terms of SW ra- 
diation also showed a latitudinal dependence, with over- 
predictions by up to 40 W·m−2 over the low latitudes and 
underestimations by up to 20 W·m−2 over the high lati- 
tudes due to an underestimation of cloud cover in the 
annual mean. Annual performance statistics for GWRF 
compares well with these trends, exhibiting the largest 
overpredictions for SW radiation fluxes over the North-
ern (MB of 41.1 W·m−2 and NMB of 16.8%) and South-
ern (42.9 W·m−2 and NMB of 17.9%) Hadley Cells, and 
the largest underpredictions over the North Pole and 
North Ferrel cells which have MBs of –9.0 W·m−2 and 
–3.3 W·m−2 and NMBs of –6.8% and –1.7 W·m−2, re- 
spectively (see Figure 3 for NMBs). Consistently, 
GWRF also shows large overpredictions of SW in major 
populated continents over the low latitudes such as South 
America, Australia, and Africa and underpredictions for 
the continent over the high latitude such as Europe in 
terms of winter, summer, and annual mean values (see 
Figure 3). Wild et al. [56] indicated a tendency of GCMs 
to underestimate LW by an average of 10 - 15 W·m−2 
(corresponding to the global mean observed and simu-
lated values of 293 W·m−2 and 278 W·m−2, respectively), 
due to an underestimation of low-level clouds. For com-
parison, GWRF underestimates LW radiation with a 
global annual MB value of –16.6 W·m−2 (corresponding 
to mean observed and simulated values of 295 W·m−2 
and 278 W·m−2, respectively). It also shows large under-
predictions of LW fluxes in all six major populated       
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Table 4. Performance statistics of GWRF at a horizontal grid resolution of 1˚ × 1˚ on a global scale. 

Variable Dataset Season Mean Obs Mean Mod Number Corr MB RMSE NMB (%) NME (%)

SW (W·m–2) 

NNR Annual 186.41 203.02 64,080 0.93 16.62 32.40 8.91 12.91 

NNR Summer 191.34 198.94 61,560 0.93 7.59 41.34 3.97 15.08 

BSRN Summer 218.83 270.32 29 0.98 51.50 57.07 23.53 23.53 

NNR Winter 205.55 229.08 61547 0.96 23.53 41.55 11.45 14.04 

BSRN Winter 143.08 181.61 28 0.98 38.53 46.42 26.92 27.08 

           

LW (W·m–2) 

NNR Annual 295.03 278.43 64,080 0.99 –16.60 23.54 –5.63 6.75 

NNR Summer 306.45 293.76 64,080 0.98 –12.68 24.30 –4.14 6.65 

BSRN Summer 350.01 317.91 29 0.93 –32.10 39.63 –9.17 9.17 

NNR Winter 287.84 267.24 64,080 0.98 –20.59 26.92 –7.15 8.09 

BSRN Winter 291.18 261.34 28 0.93 –30.04 39.59 –10.32 10.79 

           

T2 (˚C) 

NNR Annual 5.38 5.36 64,080 1.00 –0.02 1.83 –0.38 21.34 

NNR Summer 7.48 7.68 64,079 0.99 0.20 2.33 2.70 18.75 

NCDC Summer 20.77 20.27 199 0.88 –0.51 4.18 –2.43 12.24 

NNR Winter 4.15 3.55 64,080 0.99 –0.60 2.55 –14.52 37.52 

NCDC Winter 11.62 9.62 243 0.55 –2.00 24.75 –17.21 36.23 

           

Q2 (g·kg–1) 

NNR Annual 8.17 7.98 64,080 0.99 –0.19 0.86 –2.29 6.39 

NNR Summer 8.85 8.64 64,080 0.99 –0.21 1.03 –2.39 7.12 

NNR Winter 7.72 7.55 64,080 0.99 –0.17 0.83 –2.22 6.42 

           

U10 (m·s–1) 

NNR Annual –0.01 –0.06 64,080 0.96 –0.05 0.97 –452.13 6471.81 

NNR Summer 0.04 –0.12 64,080 0.93 –0.16 1.41 –387.21 2554.53 

NNR Winter –0.06 –0.10 64,080 0.94 –0.04 1.34 –68.47 1642.83 

           

V10 (m·s–1) 

NNR Annual 0.15 0.11 64,080 0.90 –0.04 0.85 –26.16 423.01 

NNR Summer 0.49 0.47 64080 0.87 –0.02 1.24 –3.95 189.73 

NNR Winter –0.17 –0.22 64,078 0.86 –0.05 1.13 –31.31 509.57 

           

Precip (mm·d–1) 

GPCP Annual 2.15 2.82 10,368 0.9 0.67 1.47 31.03 40.06 

GPCP Summer 2.22 3.08 10,363 0.83 0.86 1.96 38.64 54.4 

NCDC Summer 93.20 116.77 172 0.67 23.57 88.50 25.29 58.48 

GPCP Winter 2.09 2.39 10355 0.83 0.3 1.7 14.39 44.33 

NCDC Winter 82.83 78.56 223 0.71 –4.27 80.97 –5.15 55.36 

SW—Downward shortwave radiative flux at surface; LW—Downward longwave flux at surface; T2—Temperature at 2-m; Q2—Water vapor mixing ratio at 
2-m; U10—Zonal mean wind speed at 10-m; V10—Meridional mean wind speed at 10-m; Precip—Daily mean precipitation rate. 
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Figure 1. 2001 winter (top) and summer (bottom) downward shortwave fluxes at the surface simulated at the horizontal grid 
resolution of 1˚ × 1˚ overlaid with observations from BSRN (denoted by circles). 

 

 
 

 

Figure 2. 2001 winter (top) and summer (bottom) downward longwave fluxes at the surface simulated at the horizontal grid 
resolution of 1˚ × 1˚ overlaid with observations from BSRN (denoted by circles). 
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Figure 3. 2001 winter (top), summer (middle), and annual (bottom) mean normalized mean bias (NMB) (%) of T2, Q2, SW, 
and LW against the NNR data and Precip against the GPCP data at a horizontal grid resolution of 1˚ × 1˚ for the six conti-
nental domains (left column) and the six circulation cell domains (right column). 
 
continents and circulation cells in seasonal and annual 
mean values (see Figure 3). 

Figure 4 shows simulated T2 overlaid with observa- 
tions from NCDC during winter and summer. GWRF 
generally reproduces well the spatial distribution of ob- 
served T2 in both seasons with mean cold bias of –2.0˚C 
in winter and –0.5˚C in summer (NMBs of –17.2% and 
–2.4%, respectively). The largest cold biases occur in the 
North Pole in winter and in the South Ferrell cell in 
summer. A similar trend for T2 is found against the NNR 
data (see Figure 3). Over the North Ferrell cell, the mean 
NRR and simulated values are –0.59˚C and 0.13˚C dur-
ing summer, respectively, resulting in an MB of 0.72˚C 
and NMB of 121.8%, as shown in Figure 3. Such an 
overprediction is caused by overestimations in SW radia- 
tion fluxes over the Northern mid-latitudes. For major con- 

tinents, an overprediction of SW radiation fluxes corre- 
lates well with an overprediction of T2 (except for Eu-
rope). The anti-correlation exists between T2 and SW 
over Europe in the summer, winter, and annual means 
and over the North Ferrel cell in the annual means. Al-
though SW is underpredicted over Europe during winter, 
the simulated T2 of –1.0˚C is warmer than the NNR val-
ue of –2.7˚C, leading to a high NMB of 62.6% in winter 
and an annual NMB of 8.2%. Similarly, during winter 
the simulated T2 of 0.13˚C is much warmer than the ob-
served T2 of –0.59˚C, leading to a very high winter 
NMB of 121.8% and an annual NMB of 7.3% over the 
Northern Ferrel cell. Large errors associated with surface 
temperature exist over the high latitudes and areas of 
sharp terrain gradients, which are consistent with most 
GCMs. 
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Figure 4. 2001 winter (top) and summer (bottom) temperatures at 2-meter (T2) simulated at the horizontal grid resolution of 
1˚ × 1˚ overlaid with observations from NCDC (denoted by circles). 
 

For example, Christensen et al. [57] reported similar 
areas of the globe where models are known to perform 
poorly for surface temperature such as the Tibetan Pla- 
teau, Arctic, and Antarctic. According to the 4th As- 
sessment Report (AR4) of the Intergovernmental Panel 
on Climate Change (IPCC), over most of the globe, the 
simulated annual mean surface temperature by most cur-
rent GCMs differs from observations by less than 2˚C 
[58,59]. Individual models typically have larger errors 
(but in most cases still less than 3˚C, except at high lati-
tudes) in regions of sharp elevation changes as a result of 
inconsistencies between simulated and actual topography 
[59,60]. 

The expected performance for GCMs for specific hu-
midity is to have a bias of <1 g·kg–1 suggested by Lam-
bert and Boer, (2001) or error of <10% suggested by 
Randall et al. [60]. As shown in Table 4, GWRF gives a 
good agreement of Q2 against the NNR data, with do-
main wide annual MB of –0.2 g·kg–1 and NMB of –2.3%. 
The largest underpredictions occur in the North and 
South Poles among the six circulation cells and South 
America and Africa among the six populated continents. 
The largest underestimations occur over humid regions 
(e.g. areas of India and sub-Saharan Africa), and the  

largest overestimations occur over shallow areas of water 
that are exposed to a large amount of insolation year 
round (e.g. Gulf of California, Persian Gulf, and Red 
Sea). As shown in Figure 3, an underprediction of Q2 
correlates with an underprediction of LW radiation over 
all regions annually, which is physically consistent be-
cause LW is a function of the vertical distribution of at-
mospheric absorbers, of which a major constituent is 
water vapor. As shown in Table 4, GWRF gives a rela- 
tively good agreement for V10 but a much worse one for 
U10 against the NNR data, with domain wide annual MB 
of –0.04 m·s–1 and NMB of –26.2% for V10 and MB of 
–0.05 m·s–1 and NMB of –452.1% for U10. The very 
high NMB for U10 is caused by a very low U10 value of 
–0.01 m·s–1 from the NNR data. 

Figures 5 and 6 show simulated precipitation overlaid 
with monthly-mean precipitation from NCDC and the 
mean bias against the daily-mean precipitation GPCP, 
respectively, during winter and summer. Compared to the 
NCDC observations, GWRF moderately overpredicts 
precipitation in summer and slightly underpredicts it in 
winter, with NMBs of 25.3% and –5.2%, respectively. 
GWRF generally reproduces the spatial distributions of 
observed precipitation in both seasons and some regional   
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Figure 5. 2001 winter (top) and summer (bottom) monthly mean accumulated precipitation simulated at a horizontal grid 
resolution of 1˚ × 1˚ overlaid with observations from NCDC (denoted by circles). 
 
variations (e.g. the high precipitation areas in the south- 
eastern U.S.) during summer. However, it significantly 
underpredicts at a few sites (e.g. in southern U.S., Middle 
East, Northern Australia, and over the oceans during 
winter and in western Canada, northern India, and over 
the oceans during summer). Compared to the GPCP daily 
precipitation data of Xie and Arkin [53], moderate over-
predictions occur over the global domain in terms of 
winter, summer, and annual mean values, with MBs of 
0.3 to 0.9 mm·day–1 and NMBs of 14.4% to 38.6%. As 
shown in Figure 6, the largest overpredictions occur over 
mid-latitudes during winter and mid-latitudes and the 
South Ferrel Cell during summer. Randall et al. [60] in-
dicated that the rain-bearing systems used in establishing 
mean precipitation climatology are the largest source of 
inaccuracy for precipitation in GCMs, which predict too 
frequent rain but with reduced intensity. Compared to 
GPCP data of Xie and Arkin [53] and the observations of 
Randall et al. [60], GWRF overpredicts rainfall over 
mid-latitudes of both the Northern and Southern Hemis-
pheres and underestimates precipitation in the tropical 
convergence zones. Similar to most GCMs, GWRF per-
forms poorly for both temperature and precipitation in 

several areas including the Tibetan Plateau, Arctic, and 
Antarctic, due possibly to difficulties simulating the ef-
fects of topography and albedo feedbacks under a heavy 
snow cover, biased atmospheric storm tracks and sea ice 
cover, the use of a coarse resolution for topography and 
simplified parameterizations, and the differences among 
the models in their sub-grid scale parameterization 
schemes [57,61]. 

5. Sensitivity Study 

5.1. Sensitivity to Horizontal Grid Resolution 

Figure 6 shows that the precipitation predictions at a 
horizontal grid resolution of 4˚ × 5˚ are much worse than 
those at a finer scale, particularly in the Tropics (North-
ern and Southern Hadley Cells) in both seasons and an-
nually. The performance statics against GPCP precipita-
tion data in Tables 4 and 5 shows much larger overpre-
dictions with NMBs of 42.8%, 52.7%, and 49.4% at 4˚ × 
5˚ versus NMBs of 14.4%, 38.6%, and 31.0% at 1˚ × 1˚ 
for winter, summer, and annual mean values, respectively. 
Figure 7 shows NMBs of major meteorological variables 
including T2, Q2, SW, and LW against the NNR data  
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Figure 6. 2001 winter (top), summer (middle), and annual (bottom) mean bias plot of daily mean precipitation rate against 
GPCP data at a horizontal grid resolution of 1˚ × 1˚ (left column) and 4˚ × 5˚ (right column). 
 
and Precip against the NCDC data at a horizontal grid 
resolution of 4˚ × 5˚ over major continents and circula- 
tion cells. The corresponding performance statistics for 
these variables and additional variables such as U10 and 
V10 are summarized in Table 5. The spatial distributions 
of summer mean biases for SW, T2, and Precip at both 1˚ 
× 1˚ and 4˚ × 5˚ (simulations BASE and Low_Res, re- 
spectively) are also compared in Figures 8-10. Com- 
pared with those at 1˚ × 1˚ (see Figure 3 and Table 4), 
the model predictions of SW and LW radiation fluxes are 
similar, with a slightly better performance at 4˚ × 5˚. As 
shown in Figure 8, the model at 4˚ × 5˚ shows smaller 
overpredictions of SW radiation flux over tropics but 
larger underpredictions at higher latitudes in the North- 
ern Hemisphere. As shown in Figure 9, the model at 4˚ × 
5˚ shows smaller underpredictions of LW radiation flux 
over tropics. As shown in Figures 3, 7, and 10, the mod-
el performs similarly for T2 in summer and on an annual 
basis at both grid resolutions, except that T2 val- ues 
over North America and North Pole change from over-
predictions to underpredictions in summer. However, the 
model shows a larger sensitivity during winter, with a 
much worse overprediction over North America  

and a much less overprediction over North Ferrel cell. 
Q2 is relatively insensitive to horizontal grid resolution. 
The model at 4˚ × 5˚ gives a larger underprediction for 
U10 in the winter and annual mean but better predictions 
for V10 in winter and annual mean. A large sensitivity to 
the horizontal grid resolution is found for Precip. A 
coarser resolution causes worse agreement with the 
NCDC data for Precip over all major continents and most 
circulation cells during winter and most continents (e.g., 
Europe, North America, Africa, Asia) and circulation 
cells (e.g. North Pole, North Ferrel, North Hadley, and 
South Hadley) during summer, as shown in Figures 7 
and 11. On an annual basis, a coarser resolution causes 
worse agreement with the NCDC’s data for Precip over 
most continents (e.g. Europe, North America, Africa, 
Asia) and all circulation cells. These results are consis- 
tent with performance statistics of Precip against the 
NCDC data in Table 5 and its spatial distribution of 
mean biases against the GPCP data in Figure 6. 

5.2. Sensitivity to Physical Parameterizations 

In addition to model results at different grid resolutions, 
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Table 5. Performance statistics of GWRF at a horizontal grid resolution of 4˚ × 5˚ on a Global scale. 

Variable Dataset Season Mean Obs Mean Mod Number Corr MB RMSE NMB (%) NME (%)

SW (W·m–2) 

NNR Annual 185.88 194.29 3240 0.93 8.41 25.40 4.52 10.75 

NNR Summer 191.94 191.55 3096 0.94 –0.39 38.20 –0.20 13.53 

BSRN Summer 218.83 264.83 29 0.97 46.00 54.10 21.03 21.02 

NNR Winter 206.68 220.93 3096 0.96 14.26 35.87 6.90 12.04 

BSRN Winter 143.08 173.31 28 0.98 30.23 39.25 21.13 22.75 

           

LW (W·m–2) 

NNR Annual 293.27 280.66 3240 0.99 –12.61 21.59 –4.30 6.12 

NNR Summer 304.77 293.98 3240 0.98 –10.79 23.48 –3.54 6.52 

BSRN Summer 350.01 316.06 29 0.89 –33.95 44.34 –9.70 10.50 

NNR Winter 286.15 271.41 3240 0.98 –14.74 24.93 –5.15 7.35 

BSRN Winter 291.18 267.82 28 0.91 –23.37 36.63 –8.02 9.51 

           

T2 (˚C) 

NNR Annual 4.96 4.96 3240 0.99 0.00 2.33 0.07 26.76 

NNR Summer 7.07 6.87 3240 0.99 –0.19 2.90 –2.73 23.84 

NCDC Summer 20.77 19.12 199 0.84 –1.66 5.12 –7.99 17.02 

NNR Winter 3.80 3.46 3239 0.99 –0.34 2.84 –8.87 46.51 

NCDC Winter 11.62 9.32 243 0.54 –2.30 80.97 –19.77 42.29 

           

Q2 (g·kg–1) 

NNR Annual 8.09 7.87 3240 0.99 –0.22 1.04 –2.67 6.83 

NNR Summer 8.78 8.45 3240 0.98 –0.32 1.29 –3.67 8.03 

NNR Winter 7.65 7.49 3240 0.99 –0.16 1.08 –2.08 7.31 

           

U10 (m·s–1) 

NNR Annual –0.02 –0.17 3240 0.93 –0.15 1.37 –826.26 5851.79 

NNR Summer 0.04 –0.10 3240 0.91 –0.14 1.68 –377.97 3460.50 

NNR Winter –0.07 –0.30 3240 0.88 –0.23 1.82 –332.73 1985.28 

           

V10 (m·s–1) 

NNR Annual 0.15 0.13 3240 0.85 –0.02 1.06 –13.28 507.30 

NNR Summer 0.49 0.45 3240 0.84 –0.04 1.38 –7.94 202.45 

NNR Winter –0.16 –0.13 3239 0.78 0.03 1.35 18.66 641.77 

           

Precip (mm·d–1) 

GPCP Annual 2.15 3.22 3240 0.82 1.06 2.29 49.37 59.32 

GPCP Summer 2.22 3.39 3240 0.74 1.17 2.72 52.66 72.09 

NCDC Summer 93.20 125.88 172 0.64 32.68 101.87 35.07 70.98 

GPCP Winter 2.08 2.98 3240 0.78 0.89 2.45 42.83 63.59 

NCDC Winter 82.83 88.99 223 0.74 6.16 79.05 7.45 57.31 

SW—Downward shortwave radiative flux at surface; LW—Downward longwave flux at surface; T2—Temperature at 2-m; Q2—Water vapor mixing ratio at 
2-m; U10—Zonal mean wind speed at 10-m; V10—Meridional mean wind speed at 10-m; Precip—Daily mean precipitation rate. 
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Figure 7. 2001 winter, summer, and annual mean normalized mean bias (NMB) (%) of T2, Q2, SW, and LW against the NNR 
data and Precip against the GPCP data at a horizontal grid resolution of 4˚ × 5˚ for the six continental domains (left column) 
and the six circulation cell domains (right column). 
 
Figures 8-11 also compare the spatial distributions of 
summer mean biases of SW, T2, and Precip at the sur-
face against the NNR data at a horizontal grid resolution 
of 1˚ × 1˚ from baseline simulations and sensitivity si-
mulations including RAD1, RAD2, RAD4, CMP1, 
CMP2, LSM, and CCP. Table 6 summarizes model per- 
formance statistics against available observations for SW, 
LW, T2, Q2, and Precip with various physical options 
for summer 2001. 

As shown in Figure 8, SW is overestimated in the 
tropics and subtropics (30˚N - 30˚S) by all simulations 
except for CCP, with relatively smaller biases in the si-
mulations CMP2 and RAD1. Large underpredictions  

occur at high latitudes in the Northern Hemisphere for all 
simulations (except for RAD2), particularly in RAD1, 
indicating a model deficiency in radiation involving ice. 
Underpredictions also occur over areas off the west 
coasts of Africa and South America in the South Hadley 
Cell in all runs except for RAD2 and in the South Ferrel 
Cell for RAD1 and CCP. In addition, CCP gives a large 
underestimation over all ocean surfaces outside of the 
Polar Regions. Among all sensitivity simulations, LSM 
gives the best performance in terms of statics, with an 
MB of 2.1 W·m–2 and an NMB value of 1.1%, and RAD1 
gives the worst performance, with an MB of –31.7 W·m–2 
and an NMB value of –16.6%. The NMB values are 
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BASE Low_Res RAD1 

RAD2 RAD3 CMP1 

CMP2 LSM CCP 

 

Figure 8. 2001 summer mean bias plot of downward shortwave fluxes at the surface against NNR data at a horizontal grid 
resolution of 1˚ × 1˚ from the baseline, RAD1, RAD2, RAD4, CMP1, CMP2, LSM, and CCP simulations and at a horizontal 
grid resolution of 4˚ × 5˚ from the Low_Res simulation. 
 

BASE Low_Res RAD1 

RAD2 RAD3 CMP1 

CMP2 LSM CCP 

Figure 9. 2001 summer mean bias plot of downward longwave fluxes at the surface against NNR data at a horizontal grid 
resolution of 1˚ × 1˚ from the baseline, RAD1, RAD2, RAD4, CMP1, CMP2, LSM, and CCP simulations and at a horizontal 
grid resolution of 4˚ × 5˚ from the Low_Res simulation. 
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Baseline Low_Res RAD1 

 

RAD2 RAD3 CMP1 

 

CMP2 LSM CCP 

 

Figure 10. 2001 summer mean bias plot of temperatures at 2-m against NNR data at a horizontal grid resolution of 1˚ × 1˚ 
from the baseline, RAD1, RAD2, RAD4, CMP1, CMP2, LSM, and CCP simulations and at a horizontal grid resolution of 4˚ × 
5˚ from the Low_Res simulation. 
 

Baseline Low_Res RAD1 

RAD2 RAD3 CMP1 

CMP2 LSM CCP 

Figure 11. 2001 summer mean bias plot of daily mean precipitation rate against NNR data at a horizontal grid resolution of 
1˚ × 1˚ from the baseline, RAD1, RAD2, RAD4, CMP1, CMP2, LSM, and CCP simulations and at a horizontal grid resolution 
of 4˚ × 5˚ from the Low_Res simulation. 
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Table 6. Performance statistics of GWRF baseline and sensitivity simulations for summer at 1˚ × 1˚ on a global scale. 

Variable  Dataset Run Mean Obs Mean Mod Number Corr MB RMSE NMB (%) NME (%) 

SW (W·m–2) 

NNR Base 191.34 198.94 61,560 0.93 7.59 41.34 3.97 15.08 

 RAD1 191.34 159.61 61,560 0.88 –31.74 60.51 –16.59 23.42 

 RAD2 191.34 200.68 61,560 0.95 9.34 34.74 4.88 12.53 

 RAD3 191.34 194.71 61,560 0.95 3.37 35.66 1.76 12.85 

 CMP1 191.34 186.97 61560 0.91 –4.37 45.79 –2.28 17.26 

 CMP2 191.34 161.60 61,560 0.92 –29.75 50.79 –15.55 19.60 

 LSM 191.34 193.49 61,560 0.91 2.14 46.03 1.12 17.30 

 CCP 191.34 164.26 61,560 0.91 –27.09 52.73 –14.16 20.09 

 Opt 191.34 152.94 61,560 0.91 –38.40 58.52 –20.07 22.65 

BSRN Base 218.83 270.32 29 0.98 51.50 57.07 23.53 23.53 

 RAD1 218.83 226.99 29 0.98 8.16 21.08 3.73 8.19 

 RAD2 218.83 268.67 29 0.97 49.85 54.95 22.78 22.78 

 RAD3 218.83 261.92 29 0.98 43.09 48.51 19.69 19.69 

 CMP1 218.83 259.31 29 0.98 40.48 46.18 18.50 18.70 

 CMP2 218.83 210.63 29 0.96 –8.20 24.55 –3.75 8.85 

 LSM 218.83 272.21 29 0.97 53.38 60.70 24.40 24.40 

 CCP 218.83 244.39 29 0.93 25.57 47.45 11.68 18.82 

           

LW (W·m–2) 

NNR Base 306.45 293.76 64,080 0.98 –12.68 24.30 –4.14 6.65 

 RAD1 306.45 284.53 64,080 0.98 –21.92 29.67 –7.15 8.49 

 RAD2 306.45 314.42 64,080 0.99 7.98 16.65 2.60 4.12 

 RAD3 306.45 293.36 64,080 0.98 –13.08 23.61 –4.27 6.47 

 CMP1 306.45 304.02 64,080 0.98 –2.42 23.38 –0.79 6.34 

 CMP2 306.45 336.00 64,080 0.97 29.55 51.81 9.64 11.66 

 LSM 306.45 295.86 64,080 0.98 –10.59 23.88 –3.45 6.64 

 CCP 306.45 306.73 64,080 0.98 0.28 21.18 0.09 5.80 

 Opt 306.45 335.14 64,080 0.98 28.69 33.55 9.36 9.57 

BSRN Base 350.01 317.91 29 0.93 –32.10 39.63 –9.17 9.17 

 RAD1 350.01 306.27 29 0.93 –43.74 49.36 –12.50 12.50 

 RAD2 350.01 342.29 29 0.93 –7.72 25.11 –2.21 4.64 

 RAD3 350.01 317.48 29 0.92 –32.53 40.56 –9.29 9.33 

 CMP1 350.01 325.69 29 0.93 –24.32 32.81 –6.95 7.28 

 CMP2 350.01 358.23 29 0.92 8.22 28.07 2.35 5.74 

 LSM 350.01 316.50 29 0.92 –33.51 40.97 –9.57 9.73 

 CCP 350.01 323.15 29 0.92 –26.86 38.18 –7.67 8.76 
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Continued 

T2 (˚C) 

NNR Base 7.48 7.68 64,079 0.99 0.20 2.33 2.70 18.75 

 RAD1 7.48 6.31 64,079 0.99 –1.17 3.02 –15.64 27.34 

 RAD2 7.48 8.08 64,079 0.99 0.60 2.47 8.01 20.61 

 RAD3 7.48 7.49 64,079 0.99 0.01 2.28 0.14 18.84 

 CMP1 7.48 7.45 64,079 0.99 –0.03 2.38 –0.38 20.58 

 CMP2 7.48 11.77 64,078 0.96 4.29 10.59 57.30 62.08 

 LSM 7.48 7.48 64,079 0.99 0.01 2.61 0.07 20.72 

 CCP 7.48 6.74 64,079 0.99 –0.74 2.34 –9.92 20.65 

 OPT 7.48 7.90 64,078 0.99 0.42 2.85 5.60 23.22 

NCDC Base 20.77 20.27 199 0.88 –0.51 4.18 –2.43 12.24 

 RAD1 20.78 17.78 199 0.86 –3.00 5.33 –14.43 20.15 

 RAD2 20.78 21.60 199 0.87 0.82 4.36 3.95 12.01 

 RAD3 20.78 20.21 199 0.88 –0.57 4.18 –2.73 12.26 

 CMP1 20.78 19.96 199 0.88 –0.81 4.21 –3.91 12.63 

 CMP2 20.78 20.74 199 0.86 –0.03 4.24 –0.17 11.49 

 LSM 20.78 19.84 199 0.89 –0.94 4.04 –4.50 11.77 

 CCP 20.78 19.41 199 0.88 –1.37 4.42 –6.58 14.05 

           

Q2 (g·kg–1) 

NNR Base 8.85 8.64 64,080 0.99 –0.21 1.03 –2.39 7.12 

 RAD1 8.85 8.19 64,080 0.98 –0.66 1.46 –7.45 10.29 

 RAD2 8.85 8.63 64,080 0.99 –0.22 0.85 –2.52 5.78 

 RAD3 8.85 8.64 64,080 0.99 –0.21 1.04 –2.39 7.41 

 CMP1 8.85 8.70 64,080 0.99 –0.15 1.00 –1.74 7.09 

 CMP2 8.85 9.91 64,080 0.98 1.06 1.69 11.96 13.04 

 LSM 8.85 9.17 64,080 0.98 0.31 1.27 3.52 7.86 

 CCP 8.85 8.37 64,080 0.99 –0.49 1.07 –5.49 7.39 

 Opt 8.85 9.16 64,080 0.97 0.30 1.46 3.42 8.29 
           

Precip (mm·d–1) 

GPCP Base 2.22 3.08 10,363 0.83 0.86 1.96 38.64 54.4 

 RAD1 2.22 3.05 10,363 0.79 0.83 2.13 37.15 55.11 

 RAD2 2.22 3.22 10,362 0.74 0.99 2.59 44.62 63.86 

 RAD3 2.22 2.87 10,361 0.79 0.65 1.94 29.12 50.79 

 CMP1 2.22 3.00 10,363 0.80 0.77 1.91 34.77 53.57 

 CMP2 2.22 9.66 10,363 0.60 7.44 8.18 334.31 335.37 

 LSM 2.22 3.00 10,362 0.73 0.78 2.33 35.08 57.12 

 CCP 2.22 2.72 10,363 0.73 0.49 1.78 22.10 50.87 

 Opt 2.22 2.65 10,363 0.70 0.42 1.83 19.08 51.53 

NCDC Base 93.20 116.77 172 0.67 23.57 88.50 25.29 58.48 

 RAD1 93.20 98.90 172 0.70 5.70 77.26 6.12 49.58 

 RAD2 93.20 125.36 172 0.60 32.16 110.75 34.51 70.19 

 RAD3 93.20 104.72 172 0.72 11.52 78.91 12.36 49.61 

 CMP1 93.20 111.67 172 0.66 18.48 89.37 19.83 56.85 

 CMP2 91.20 284.69 172 0.60 191.50 219.92 205.48 213.91 

 LSM 93.20 99.74 172 0.67 6.54 81.80 7.02 49.14 

 CCP 93.20 93.86 172 0.54 0.66 96.05 0.71 54.95 

SW—Downward shortwave radiative flux at surface; LW—Downward longwave flux at surface; T2—Temperature at 2-m; Q2—Water vapor mixing ratio at 
2-m; Precip—Daily mean precipitation rate.    
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within ±5% for BASE, RAD2, RAD3, and CMP1, indi- 
cating a similar performance by the simulations with the 
Goddard and CAM shortwave radiation schemes, or the 
RRTM and CAM longwave radiation schemes, or the 
WSM3 and WSM6 cloud microphysics schemes. Larger 
biases in SW by RAD1, CMP2, and CCP indicate a poor 
performance of the combination of the schemes that in- 
clude the Dudhia shortwave scheme or the Purdue Lin 
cloud microphysics scheme, or the Grell-Devenyi cumu- 
lus parameterization, as compared with their respective 
schemes used in BASE. Compared with the BSRN data, 
RAD1 performs the best among all simulations and much 
better than BASE (with MB values of 8.2 vs.51.5 W·m-2, 
and NMBs of 3.7% vs. 23.5%). CMP2 also performs 
well, with an NMB of –3.8%. 

For LW, NMBs are within ±10% against the NNR da-
ta for all simulations. CCP, CMP1, and RAD2 show a 
better performance against the NNR data than other si-
mulations, with NMBs of 0.1%, –0.8%, and 2.6%, re-
spectively. Among all simulations, CMP2 gives the worst 
performance with an NMB of 9.6% and the largest biases 
occurring over Antarctic and Greenland as shown in 
Figure 9, indicating a high sensitivity of LW to the cloud 
microphysics over these areas. As shown in Figure 9, 
LW over most tropics and mid-latitude areas is under- 
predicted from all simulations except for RAD2 and 
CMP2. LW radiation flux over high latitudes is overpre-
dicted except for Arctic from RAD1. RAD2 and CMP2 
overpredict LW radiation flux over most of the domain. 
NMBs are also within ±10% against BSRN data for all 
simulations except for RAD1. RAD2 and CMP2 show 
better performance against BSRN than other simulations, 
with NMBs of 2.2% and 2.4%, respectively. BASE and 
RAD2 give MB values of –12.7 and 8.0 W·m–2 against 
NNR and –32.10 and –7.72 W·m–2 against BSRN, re-
spectively, indicating that the combination of schemes 
that include the RRTM longwave module is more accu- 
rate in simulating longwave radiation than that includes 
the CAM longwave module under summer conditions. 

For T2, three simulations, LSM, RAD3, and CMP1 
show better performance and CMP2 shows the worst 
performance against the NNR data. CMP2, BASE, and 
RAD3 show better performance and RAD1 shows the 
worst performance against the NCDC data. As shown in 
Figures 9 and 10, the large overpredictions of T2 by 
CMP2 and RAD2 are clearly related to overpredictions 
of LW from both simulations. Compared with results 
from BASE, LSM shows smaller overpredictions over 
land areas except for a few areas including the Greenland, 
Saudi Arabia, and Iran where LSM shows a larger under 
prediction than BASE. This indicates that the Slab LSM 
performs well under summer conditions, as compared 
with the NOAH LSM used in BASE. RAD3 and CMP1 
show smaller overpredictions over several regions in 

cluding North America and Russia, indicating a good 
performance by the CAM shortwave radiation scheme 
and by the WSM6 microphysics module. In contrast to 
all other simulations, RAD1 underpredicts T2 over most 
land areas (except for South Asia), particularly over Rus- 
sia and northeastern China, which is likely caused by 
large underpredictions of SW radiation flux over high 
latitudes in Northern Hemisphere as shown in Figure 8 
and underpredictions of LW radiation flux over most of 
the domain except for South Pole and South Ferrel as 
shown in Figure 9. The worst performance in T2 predic-
tions by CMP2 against the NNR data is caused by large 
overpredictions of LW radiation fluxes over the South 
Ferrel cell, South Pole, and Greenland. The errors over 
the poles are not reflected in the statistics of CMP2 
against NCDC because there is no station in Greenland 
and only 3 out of the 199 stations are in Antarctica. 
These results indicate a poor performance in T2 predic-
tions by the combination of the schemes that includes 
Dudhia shortwave radiation scheme (i.e. RAD1) or the 
Purdue Lin microphysics module (i.e. CMP2) under 
summer conditions.  

Compared with BASE, For Q2, all NMBs are within 
5% against NNR data except for CMP2 and RAD1. For 
Precip, all simulations overpredict against the GPCP data, 
with the least overpredictions by CCP and RAD3 (NMBs 
of 22.1% and 29%, respectively) and the worst overpre- 
dictions by CMP2 (NMB of 334.3%). Compared with the 
NCDC data, Precip is also overpredicted, with a small 
overprediction by CCP, RAD1, and LSM (NMBs of 
0.7%, 6.1%, and 7%, respectively) and the largest over- 
prediction by CMP2 (NMB of 205.5%). As shown in 
Figure 11, overpredictions occur over nearly the entire 
domain by CMP2 and over most areas except for the 
South Ferrel cell and South Pole by other simulations. 
The poor performance of CMP2 indicates that the defi-
ciency of the combination of schemes that include the 
Purdue-Lin microphysics parameterization in simulating 
precipitation under the summer conditions.  

Given high sensitivity of the model predictions to 
various physical options, in particular, SW radiation 
scheme, cloud microphysics, and cumulus parameteri-
zation, an additional sensitivity simulation is performed 
using the best schemes or parameterizations identified 
through the above sensitivity simulations. The overall 
best schemes identified include the CAM shortwave 
scheme in terms of SW, T2, Q2, Precip (by comparing 
BASE, RAD1, and RAD3), the RRTM longwave scheme 
in terms of LW (by comparing RAD2 and RAD3), the 
WSM6 microphysics module in terms of SW, LW, T2, 
Q2, and Precip (by comparing BASE, CMP1, and 
CMP2), the Slab LSM (by comparing BASE and LSM), 
and the Grell-Devenyi cumulus parameterization in terms 
of Precip (comparing BASE and CCP). A sensitivity  
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simulation using these schemes is performed (referred to 
as OPT in Table 6). OPT shows the best performance in 
Precip among all simulations, with an NMB of 19.1 
against GPCP (comparing to 22.1% - 334.3% by other 
simulations). However, given a non-linearity of the inte-
ractions among various schemes, OPT does not show the 
best performance for other meteorological variables. For 
example, it gives an NMB of –20.1% for SW, 9.4% for 
LW, 5.6% for T2, and 3.4% for Q2 against the NNR da-
ta. 

6. Future Year Simulations 

A simulation for the year of 2050 are performed at a ho-
rizontal grid resolution of 4˚ × 5˚ and compared with the 
2001 results from Low_Res. Under the SRES B1 climate 
scenario, global mean values of LW, T2, and Q2 increase 
and those of SW, wind speed at 10-m, PBL height, and 
Precip decrease. Figure 12 shows the annual mean ab-
solute changes in T2 and Precip between 2050 and 2001. 
In response to ~51% increases in CO2 mixing ratios, T2 
increases by up to 5.2˚C over most areas in the global 
domain except for a few areas including the South Pole, 
South Ferrel cell, and Atlantic ocean where T2 may de-

crease by as much as 6.2˚C, with a net increase of ~0.2˚C 
on a global mean. The largest increases in T2 occur over 
southern South Africa, East Asia, southern Nouth Amer-
cia, nothern South Amercia, and some areas in the North 
Ferrel cell. Precip in 2050 decreases over most areas, 
with the largest decrease of 8.2 mm·day–1 occuring over 
the tropics between 60˚E - 160˚E. Precip increases over 
the southern China, central Africa, Australia, a large area 
over the Pacific ocean and some areas over the Atlantic 
ocean in the southern hemisphere. The net change is a 
decrease in global mean precipitation amount by ~0.5 
mm·day–1. The projected changes are generally consis-
tent with other GCM predictions in terms of both magni-
tudes and spatial distributions (e.g. [62]). 

7. Conclusions 

The ability of GWRF in reproducing observations of 
major boundary layer meteorological variables is eva-
luated by comparing the 2001 model predictions with 
data from observational networks (e.g. NCDC and BSRN) 
and gridded Reanalysis data (e.g. NNR and GPCP). 
GWRF at a horizontal grid resolution of 1˚ × 1˚ shows 
small biases against the NNR data and moderate over-  

 
T2 

 
Precip 

 

Figure 12. Projected absolute changes in tempreatue and precipitation in 2050 relative to 2001 at a horizontal grid resolution 
of 4˚ × 5˚. 
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predictions against the BSRN data in the SW predictions. 
LW is slightly underpredicted against both the NNR and 
BSRN. T2 is underpredicted against the NNR and NCDC 
data in both summer and winter, with larger cold biases 
against the NCDC data (MBs as large as –2.3˚C). Q2 is 
slightly underpredicted against the NNR data. Larger 
biases exist in wind speed and pre- cipitation predictions, 
with large underpredictions in U10 against the NNR data 
and large overpredictions in Precip against the GPCP and 
NCDC data. The performance of GWRF in predicting 
major meteorological variables is overall consistent with 
that of most current GCMs. 

Among all major variables examined, GWRF shows a 
large sensitivity to horizontal grid resolution for T2 pre- 
dictions in winter and for Precip predictions in winter 
and summer. The model simulation at a coarser resolu- 
tion leads to a much worse overprediction of T2 over the 
North America and a much less overprediction over the 
North Ferrel cell in winter. It also gives a worse agree- 
ment with observations for Precip over the most conti- 
nents and most circulation cells during winter and sum-
mer. The sensitivity simulations using various physical 
options show a poor performance in SW, T2, and Q2 
predictions by the combination of schemes that includes 
the Dudhia shortwave radiation scheme, or the Purdue 
Lin microphysics module, or the Grell-Devenyi cumulus 
parameterization, and in Precip predictions by the com- 
bination of schemes that includes the Purdue Lin micro- 
physics module. These simulations identify that CAM, 
RRTM, WSM6, Slab, and Grell-Devenyi represent the 
best shortwave, longwave, cloud microphysics, land- 
surface, and cumulus treatments. While the simulation 
with these best schemes/parameterizations gives the best 
performance in Precip predictions by reducing the NMB 
of Precip from 38.6% to 19.1%, it does not give the best 
performance for all other major meteorological variables, 
because of a complex interaction of various atmospheric 
processes. A one-year simulation of GWRF for 2050 
indicates a projected warmer and drier future climate. 
The projected future climate change may have important 
implications on the fate and lifetime of air pollutants. For 
example, decreased precipitation will reduce the scav- 
enging rate of air pollutants, and decreased wind speeds 
and PBL height will increase the concentrations of air 
pollutant via reduced ventilation. The impact of future 
climate change on future air quality is being studied us- 
ing a coupled GWRF and chemistry model and the re- 
sults will be reported in a separate paper [63,64]. 
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