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a b s t r a c t

A Real-Time Air Quality Forecast (RT-AQF) system that is based on a three-dimensional air quality model
provides a powerful tool to forecast air quality and advise the public with proper preventive actions. In
this work, a new RT-AQF system is developed based on the online-coupled Weather Research and
Forecasting model with Chemistry (WRF/Chem) with the Model of Aerosol Dynamics, Reaction, Ioniza-
tion, and Dissolution (MADRID) (referred to as WRF/Chem-MADRID) and deployed in the southeastern
U.S. during MayeSeptember, 2009. Max 1-h and 8-h average ozone (O3) and 24-h average fine particulate
matter (PM2.5) are evaluated against surface observations from the AIRNow database in terms of spatial
distribution, temporal variation, and domain-wide and region-specific discrete and categorical perfor-
mance statistics. WRF/Chem-MADRID demonstrates good forecasting skill that is consistent with current
RT-AQF models. The overpredictions of O3 and underprediction of PM2.5 are likely due to uncertainties in
emissions such as those of biogenic volatile organic compounds (BVOCs) and ammonia, inaccuracies in
simulated meteorological variables such as 2-m temperature, 10-m wind speed, and precipitation, and
uncertainties in the boundary conditions. Sensitivity simulations show that the use of the online BVOC
emissions can improve PM2.5 forecast in areas with high BVOC emissions and adjusting lateral bound-
aries can improve domain-wide O3 and PM2.5 predictions. Several limitations and uncertainties are
identified to further improve the model’s forecasting skill.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Air quality is related to human health, crops growth, and
ecological system (e.g., Utell, 2006; Krupa et al., 2006). Approxi-
mately 127 million people in the U.S. were exposed to unhealthy
levels of certain air pollutants in 2008 (http://www.epa.gov/
airtrends/aqtrends.html). It is important to forecast air quality
and provide this information to the public in advance. This infor-
mation can be valuable to susceptible subpopulations (e.g., chil-
dren, the elderly, and the asthmatics). Additionally, it can help
government agencies to take preventive steps such as temporarily
shutting off major emission sources to alleviate air pollution. Real-
time air quality forecasting (RT-AQF) has become a common prac-
tice in recent years for many local and state air quality management
agencies (McHenry et al., 2004; Otte et al., 2005). At present, daily
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RT-AQF is issued in more than 300 cities in 50 states by local, state,
and federal agencies in the U.S. and many other cities in more than
37 countries around the world (http://www.airnow.gov).

Existing AQF tools include simple rules of thumb in which
thresholds of forecasted meteorological variables can indicate
future high pollutant concentrations based on their correlation
derived from observed and forecasted meteorological and air
quality data, statistical methods in which different functions (e.g.,
regression or trained neural network systems) are used to forecast
pollutant concentrations, and chemical transport models (CTMs) in
which major atmospheric processes that affect air pollutants are
simulated. Among these tools, statistical methods have beenwidely
used due to their computational efficiency and some forecasting
skill (e.g., Cobourn, 2007). CTMs for RT-AQF, despite their compu-
tational expenses, provide direct linkages between ambient
precursor emissions and resultant pollution and the interrelation-
ships among multiple pollutants (e.g., Cai et al., 2008; Mathur et al.,
2008; Yu et al., 2008). Neither of them can be treated based on first
principal using other types of AQF tools. The use of CTMs for AQF
represents a significant advancement in routine operational RT-
AQF and would greatly enhance understanding of the underlying
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complex interplay of meteorology, emissions, and chemistry.
Recent AQF evaluation demonstrates that CTMs have skill consis-
tent with or in some cases better than current statistical forecast
tools (McHenry et al., 2004; Otte et al., 2005; Eder et al., 2006; Cai
et al., 2008; Chen et al., 2008; Yu et al., 2008; Mathur et al., 2008).

The majority of RT-AQF with CTMs uses offline-coupled mete-
orology and air quality models (e.g., Cai et al., 2008; Chen et al.,
2008; Yu et al., 2008; Gualtieri, 2010). These models do not
permit the simulation of meteorology-chemistry feedbacks such as
aerosol feedbacks to radiation, photolysis, and meteorology, which
affect the next hour’s air quality and meteorological predictions
(Zhang, 2008; Zhang et al., 2010a,b). Fewer studies have used
online-coupled meteorology-chemistry models (e.g., Grell et al.,
2005; McKeen et al., 2005, 2007; Flemming et al., 2009). The use
of offline-coupled systems may introduce biases in AQF. For
example, Otte et al. (2005) and Eder et al. (2006) reported a poor
performance of the Eta/Community Multiscale Air Quality model
system (CMAQ) modeling system during cloudy periods due to the
neglect of aerosol feedbacks to radiation and cloud formation
processes. Furthermore, atmospheric information at a time scale
smaller than the output time interval of the meteorological model
(e.g., 1 h) is lost in offline-coupledmodel systems (Grell et al., 2004;
Zhang, 2008). Therefore, an RT-AQF system based on an online-
coupled meteorology-chemistry model has a potential to better
represent the real atmosphere and thus provides more accurate
AQF.

In this study the online-coupled Weather Research and Fore-
casting model with Chemistry (WRF/Chem, Grell et al., 2005; Fast
et al., 2006) version 3.0 with the Model of Aerosol Dynamics,
Reaction, Ionization, and Dissolution (MADRID) (Zhang et al., 2004,
2010b,c) (referred to as WRF/Chem-MADRID) is applied for RT-AQF
in the southeastern U.S. Compared with the default aerosol model
Modal Aerosol Dynamics Model for Europe with the secondary
organic aerosol model (MADE/SORGAM) (Ackermann et al., 1998;
Schell et al., 2001) used in WRF/Chem for RT-AQF that is based on
the modal approach, MADRID uses a sectional representation for
particle size distribution and more advanced model treatments.
For example, MADE/SORGAM does not simulate thermodynamic
equilibrium involving sea-salt and gives very low concentrations of
secondary organic aerosol (SOA), whereas MADRID can simulate all
major inorganic aerosols and SOA formation with a more advanced
module; it therefore gives better agreement with observations (Zhu
and Zhang, 2011). Its forecasting skill is evaluated using available
observations during MayeSeptember, 2009 (i.e., O3 season). The
objectives of this study are to evaluate the forecasting skill of WRF/
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Fig. 1. Flowchart of the RT-AQF system based on WRF/Chem-MADRID (VISTAS den
Chem-MADRID in RT-AQF applications and to identify likely causes
of model biases as well as the areas of the improvement.

2. Model description and evaluation protocols

2.1. The RT-AQF systems based on WRF/Chem-MADRID

WRF/Chem-MADRID consists of various options for gas-phase
chemistry and aerosol chemistry and microphysics. It treats the
major aerosol processes such as the thermodynamic equilibrium
for both inorganic and organic species, new particle formation,
condensation/evaporation, coagulation, gas/particle mass transfer,
dry and wet deposition. It also simulates aerosol direct and semi-
direct feedbacks to radiation and planetary boundary layer (PBL)
meteorology, as well as its indirect effects on cloud and precipita-
tion formation via aerosolecloud interaction processes such as
aerosol activation by cloud droplets and autoconversion of cloud
drops to rain drops. A more detailed description can be found for
WRF/Chem in Grell et al. (2005) and Fast et al. (2006), and for WRF/
Chem-MADRID in Zhang et al. (2010b). Table S1 in the supple-
mentarymaterial summarizes major physics and chemistry options
selected in WRF/Chem-MADRID in this study. The gas-phase
chemistry is based on the 2005 Carbon Bond gas-phase mecha-
nism (CB05) (Yarwood et al., 2005). The aqueous-phase chemistry
is based on the Carnegie-Mellon University (CMU) bulk aqueous-
phase chemical mechanism (Fahey and Pandis, 2001). The aerosol
module is based on MADRID 1 (Zhang et al., 2004, 2010b,c). Eight
size sections over the PM aerodynamic diameter range of
0.025e11.630 mm are used in MADRID 1. The aerosol activation
module is based on Abdul-Razzak and Ghan (2002). Fig. 1 shows
a flowchart of the RT-AQF system based on WRF/Chem-MADRID. It
was deployed at a horizontal grid resolution of 12 km for an
experimental AQF during August 3e10, 2008 (Chuang et al., 2009)
and an RT-AQF during MayeSeptember, 2009 in this work. The
simulated domain (Fig. 2) is divided into nine regions for region-
specific statistical evaluation, with region 9 covering essentially
ocean and the remaining eight regions covering land areas. The
National Center for Environmental Prediction’s (NCEP) meteoro-
logical forecast is downloaded at 7 PM (Local Standard Time) to
initialize a 60-h forecasting cycle. The forecasts during the first 12 h
of each 60-h cycle are for spin-up and not used for real-time
forecasts. The forecasts during the remaining 48-h are used to
provide a two-day forecast. This process of data-downloading and
60-h forecasting is repeated every two days. Daily updates of the
AQFs are provided at http://www.meas.ncsu.edu/aqforecasting/
ing System 
ical IC & BC

ADRID  

ssing &  
valuation  

AirNow Observations; 
National Climate Data 

Center Database  

Chemical IC: Previous 
       days’ forecast 
Chemical BC: VISTAS 
       36km simulation

t of RT-AQF 
ite 

otes the Visibility Improvement State and Tribal Association of the Southeast).

http://www.meas.ncsu.edu/aqforecasting/Real_Time.html


Fig. 2. Simulated domain for RT-AQF. Numbers of 1e9 indicate geographical regions
(separated by dash lines) to be evaluated; letters indicate the locations of the selected
six urban sites for detailed analyses: A-Atlanta city in Georgia; B-Birmingham city in
Alabama; C-Charlotte city in North Carolina; J-Jacksonville city in Florida; L: Louisville
city in Kentucky, and R: Raleigh city in North Carolina.

Table 1
Summary of discrete evaluation for meteorological and chemical variables in
MayeSeptember of 2009.

Mean
Obs

Mean
Sim

MB RMSE NMB
(%)

NME
(%)

hourly T2 (�C) May 19.8 20.1 0.3 2.7 1.8 7.6
June 23.9 24.2 0.3 2.5 1.5 5.9
July 24.1 24.4 0.3 2.4 1.4 5.9
August 24.4 25.0 0.6 2.4 2.6 6.5
September 21.5 21.6 0.1 2.3 0.3 6.7
MayeSeptember 22.7 23.1 0.4 2.5 1.5 6.8

hourly WS10 (m s�1) May 5.6 4.3 �1.3 3.4 �23.9 35.6
June 4.7 3.6 �1.1 3.1 �22.6 38.9
July 4.5 3.5 �1.0 2.9 �21.8 42.1
August 4.1 3.3 �0.8 2.9 �20.4 41.6
September 4.5 3.5 �1.0 3.3 �22.5 42.8
MayeSeptember 4.7 3.7 �1.0 3.2 �22.3 40.9

Total daily Precip
(mm day�1)

May 3.5 4.5 1.0 16.1 29.4 175.0
June 2.4 2.3 �0.1 11.7 �5.7 161.9
July 2.8 3.8 1.0 15.5 35.7 197.7
August 2.5 2.9 0.4 14.3 15.5 184.5
September 3.1 3.3 0.2 16.2 7.9 166.2
MayeSeptember 2.9 3.4 0.5 14.9 18.7 178.0

Max 1-h O3

(ppb)
May 45.9 49.7 3.8 17.4 8.4 28.3
June 52.8 53.7 0.9 17.5 1.6 25.2
July 48.5 54.3 5.8 16.9 12.0 25.9
August 46.3 54.2 7.9 16.4 17.1 26.7
September 43.2 47.3 4.0 15.6 9.2 27.5
MayeSeptember 47.3 51.8 4.4 16.8 9.4 26.6

Max 8-h average O3

(ppb)
May 41.5 43.9 2.4 13.9 5.7 26.1
June 47.4 47.6 0.2 13.9 0.4 23.2
July 43.5 47.9 4.4 13.3 10.2 23.6
August 41.2 48.2 7.0 13.6 17.0 25.7
September 38.7 42.7 4.0 13.5 10.3 27.3
MayeSeptember 42.5 46.0 3.5 13.6 8.5 25.0

24-h average PM2.5

(mg m�3)
May 9.2 8.2 �1.0 4.5 �10.7 36.0
June 13.5 11.3 �2.2 6.3 �16.2 34.8
July 12.5 11.4 �1.1 6.0 �8.8 35.9
August 12.4 12.0 �0.4 6.4 �3.2 36.9
September 10.2 11.8 1.7 5.9 16.5 42.0
MayeSeptember 11.5 10.0 �0.6 5.9 �5.2 37.0

Note: T2: Temperature at 2 m; WS: Wind Speed; Precip: Precipitation; MB: Mean
Bias; RMSE: Root Mean Square Error; NMB: Normalized Mean Bias; NME:
Normalized Mean Error.
Mean Bias ðMBÞ ¼ 1=N

PN
1 ðSim� ObsÞ,

Root Mean Square Error ðRMSEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N

PN
1 ðSim� ObsÞ2

q
,

Normalized Mean Bias ðNMBÞ ¼ PN
1 ðSim� ObsÞ=PN

1 ðObsÞ � 100%,
Normalized Mean Error ðNMEÞ ¼ PN

1 jSim� Obsj=PN
1 ðObsÞ � 100% where Sim,

Obs, and N are simulated values, observated values, and the number of observations,
respectively.

M.-T. Chuang et al. / Atmospheric Environment 45 (2011) 6241e6250 6243
Real_Time.html. The 2009 emissions are projected based on the
Visibility Improvement State and Tribal Association of the South-
east’s (VISTAS, http://www.vistas-sesarm.org/)’s 2002 emission
inventories according to historical growth factors and assumed
control strategies (Barnard and Sabo, 2008). The NCEP’s meteoro-
logical forecasts are used as the initial and boundary conditions for
meteorology. VISTAS 2009 36-km CMAQ simulation results and
those from the previous day’s simulation are used to provide daily
chemical boundary and initial conditions (BCONs and ICONs),
respectively. For the very first day of the first 60-h forecasting cycle,
the model is spin-up for 1-week ahead of the first forecast day
using ICONs that represent clean conditions over the U.S. Starting
from the second day of this 1-week spin-up, the instantaneous
outputs at the last hour on the previous day are used to initialize
next day’s forecasting simulation. The 4-day averaged BCONs from
VISTAS 2009 CMAQ simulations are used for each 60-h forecasting
cycle. The first day of the 4-day periods corresponds to the first
forecasted day during the 60-h cycle.

2.2. Observational datasets and evaluation protocols

The model performance for major forecasting products such as
max 1-h and 8-h average O3 and 24-h average PM2.5 is evaluated
against surface observations from the U.S. EPA’s AIRNow database
(http://www.airnow.gov/). Hourly concentrations of O3 and PM2.5
observed at 380e396 sites and 170e182 sites, respectively, are
used. In order to understand the influence of meteorology on AQF,
hourly temperature at 2-m (T2), wind speed at 10-m (WS10), and
daily total precipitation from the U.S. National Climatic Data Center
(NCDC) dataset (http://www.ncdc.noaa.gov/oa/ncdc.html) are also
utilized for evaluation.

The model evaluation includes both discrete (Kang et al., 2005;
Eder et al., 2006) and categorical measures (Jolliffe and Stephenson,
2003; Kang et al., 2005). In the discrete evaluation, mean bias (MB),
normalized mean bias (NMB), root mean square error (RMSE), and
normalized mean error (NME) (see their definitions in Table 1) are
calculated. In the categorical evaluation, several indices including
accuracy (A), critical success index (CSI), probability of detection
(POD), bias (B), and false alarm ratio (FAR) are used to evaluate the
model’s ability to predict exceedances and nonexceedances (Kang
et al., 2005):
Accuracy ðAÞ ¼
�

bþ c
aþ bþ cþ d

�
� 100% (1)

Critical Success Index ðCSIÞ ¼
�

b
aþ bþ d

�
� 100% (2)

Probability Of Detection ðPODÞ ¼
�

b
bþ d

�
� 100% (3)

Bias ðBÞ ¼
�
aþ b
bþ d

�
(4)

False Alarm Ratio ðFARÞ ¼
� a
aþ b

�
� 100% (5)

where a, b, c, and d, are the numbers of simulated and observed
data pairs at one site at a specific time in the four regions (see
Fig. S1 in the supplementary material). They represent forecast
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exceedances that did not occur, forecast exceedances that did
occur, forecast nonexceedances that did occur, and forecast
nonexceedances that did not occur, respectively. A indicates
the percentage of forecasts that correctly predict both non-
exceedances and exceedances. CSI indicates how well both
forecast and actual exceedances are predicted. POD indicates the
percentage of actual exceedances that are correctly forecasted. B
indicates that the forecast is overpredicted (>1.0) or under-
predicted (<1.0). FAR is the percentage of forecast exceedances
that did not occur.

The number of exceedances depends on the choice of threshold
values (e.g., Hogrefe et al., 2007; Eder et al., 2009; Djalalova et al.,
2010). The latest National Ambient Air Quality Standards (NAAQS)
of 120 ppb (revoked for all areas in April 2009 but retain for
purposes of the anti backsliding provisions for some areas), 75 ppb
(effective on May 27, 2008), and 35 mg m�3 (effective in December
2006) provide the threshold values for max 1-h O3, max 8-h
average O3, and 24-h average PM2.5, respectively (http://www.
epa.gov/air/criteria.html). For an accurate AQF, it is desirable to
have the sum b and c as close as possible to the total number of
forecasts. The frequency of exceedances based on NAAQS is,
however, gradually decreasing in most part of the U.S., leading to
zero values or not-available (NA) values for CSI, POD, or FAR. The
reduced thresholds for categorical evaluation were therefore used
in some studies to demonstrate model’s capability in forecasting
exceedance of those reduced threshold values (e.g., Hogrefe et al.,
2007), although higher thresholds were used in some earlier air
quality forecasts several years ago (e.g., Kang et al., 2005; Lee et al.,
2008; Eder et al., 2009). For example, Hogrefe et al. (2007) used two
sets of thresholds, 85 and 65 ppb for max 8-h average O3 and 45.5
and 15.5 mg m�3 for 24-h average PM2.5, which are equivalent to air
quality indices of 100 and 50, respectively. In addition, lower
threshold values of 60 ppb and 80 ppb were used for forecasted
max 1-h O3 in regions with lower O3 mixing ratios such as Australia
and the Iberian Peninsula (e.g., Cope et al., 2004; Cope and Hess,
2005; Jiménez et al., 2006). In this work, the thresholds of
80 ppb, 60 ppb, and 15 mg m�3 are used for max 1-h O3, max 8-h
average O3, and 24-h average PM2.5, respectively, based on the
same or similar lower threshold values used in literature (e.g.,
Hogrefe et al., 2007; Djalalova et al., 2010). These choices reflect the
effectiveness of the emission reductions since earlier applications
of other AQF models.
Fig. 3. Five-month (MayeSeptember 2009) mean spatial distribution of concentrations of m
from AIRNow, http://www.epa.gov/airnow).
3. Evaluation of WRF/Chem-MADRID

3.1. Discrete evaluation

Fig. 3 shows the overlay plots of 5-month mean daily max 8-h
average O3 and 24-h average PM2.5 with AIRNow observations. O3
overpredictions are most apparent in most areas of Kentucky and
Tennessee, southern areas of Indiana, Illinois, and Ohio, and the
Appalachian Mountains region. Table 1 summarizes discrete eval-
uation. The monthly NMBs are 1.6e17.1% for max 1-h O3 and
0.4e17% for max 8-h average O3, with the best performance in June
and the worst in August. The O3 overpredictions are likely due to
underpredicted WS10 with MBs of �1.3 to �0.8 m s�1, over-
predicted T2 with MBs of 0.1e0.6 �C, inaccuracies in other meteo-
rological variables such as PBL height, and uncertainties in
precursor emissions. The 5-month average PM2.5 concentrations
agree well with the observations in the northwest and central
portions of the domain and around the Appalachian Mountains but
they are underpredicted in some south and east regions of the
domain. In addition to uncertainties in emissions, such under-
predictions may be caused by overpredictions in T2 and Precipi-
tation. The monthly NMBs are �16.2 to 16.5% for 24-h PM2.5
concentrations, with the best performance in August and the worst
in September.

The monthly-mean MBs of T2, WS10, Precip, max 8-h average
O3, and 24-h average PM2.5 in regions 1e8 (see Fig. 2) are shown in
Fig. 4. The monthly-mean O3 mixing ratios are overpredicted in the
entire domain during the 5-month period with the exception of
region 1 in May and regions 1, 2, and 4 in June and region 3 in
September where underpredictions occur. Domain-wide under-
predictions also occur primarily near the north boundary during 26
days out of the 5-month period (i.e., May 17e23, May 30eJune 2,
June 21eJuly 1, and September 2e5). In addition to uncertainties in
precursor emissions, the O3 overprediction in most regions in most
months is likely caused by positive biases in T2 in most regions and
the negative biases in WS10 in most regions. The O3 under-
predictions in regions 1, 2, and 4 in May and June could be due
partly to the uncertainties in lateral boundary conditions (LBCs).
The observed prevailing wind during the two months was
accompanied with anticyclones moving from the north and
northwest boundaries of the domain (http://www.hpc.ncep.noaa.
gov/dailywxmap/index.html). The impact of such an incoming
ax 8-h average O3 (left), and 24-h average PM2.5 (right) (circles indicate observations
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Fig. 4. Monthly-mean MBs of temperature at 2-m, wind speed at 10-m, daily total
precipitation, and concentrations of max 8-h average O3 and 24-h average PM2.5 in
different regions (see definition of regions 1e8 in Fig. 2) for MayeSeptember 2009.
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flow on O3 forecast is not well captured over the 12-km domain. As
indicated by Otte et al. (2005), uncertainties exist for LBCs because
of the lack of real-time chemical observations. This problem could
be improved by using either a larger simulation domain or two
nested domains for RT-AQF but at the expense of increased
computational costs (Lee et al., 2008; Eder et al., 2009).

As shown in Fig. 4, monthly-mean PM2.5 concentrations are
slightly overpredicted in regions 1 and 3 in May and June, regions 1,
2 and 3 in July, regions 4 and 7 in August, and all regions in
September, and underpredictions occur in other regions during
other months. While these over- or under-predictions may be
partly caused by inaccurate emissions of PM precursors and
primary PM, biases in meteorological predictions can propagate
into PM predictions. High simulated PM2.5 concentrations usually
occurred in regions 1, 2, and 4 at times when anticyclones and cold
fronts moved from the north or west (e.g., May 8e9, 14, 16e17, July
13e14, 17e18, 21e23, 26e27, August 13, September 22e24) or
a stationary front appeared near the north boundary (e.g., June
13e14). For regions 3 and 7, overpredicted PM2.5 concentrations
occurred in Washington D.C. and New Orleans areas when WS10
was underpredicted. The daily bias of simulated PM2.5 concentra-
tions in regions 2e4 and 7 is larger than 2 mg m�3 during most days
in September The simulated monthly-mean PBL heights in
September are lower by 112e146 m (by 10e40%) than those in
other months, possibly due to unique urban structures unrepre-
sented in WRF (Chen et al., 2007). The effect of a shallow PBL on
PM2.5 dominates over that of overpredicted Precipitation, causing
overpredicted PM2.5 concentrations in September. PM2.5 concen-
trations are underpredicted inmost regions inMayeAugust (Fig. 4),
due likely to overpredictions in T2 and Precipitation and uncer-
tainties in emissions. Regions 5, 6, and 8 have higher negative MBs
than other regions. When anticyclones and fronts move from the
north, the model tends to significantly overpredict precipitation
near the Appalachian Mountains. This, coupled with over-
predictions in T2, leads to underpredicted PM2.5 in regions 5 and 6.
Overpredicted precipitation around the southern Georgia and
Florida also causes the underprediction of PM2.5 in region 8.

Fig. 5 shows simulated and observed daily max 8-h average O3
mixing ratios at the six urban sites. Themodel captures a significant
fraction of 8-h O3 episodes higher than 50 ppb but overpredicts
those below 50 ppb, leading to positive biases at urban sites. The O3
overpredictions at Birmingham and Atlanta may be caused by
inaccurate precursor emissions, overpredicted T2, and under-
predicted WS10. The U.S. EPA is considering to tighten the existing
NAAQS for max 8-h average O3 from 75 ppb to 60e70 ppb (U.S. EPA,
2010). The observations at these sites during the 5-month period
are>60 ppb on some days at all sites, indicating a potential increase
in the non-attainment areas if the proposed new standard is
adopted in 2011.

Fig. 6 shows simulated and observed 24-h average PM2.5
concentrations at urban sites. PM2.5 predictions generally agree
well with observations except at Birmingham in region 5 where
overpredictions occur duringmost of time. The underpredictions in
WS10 may lead to higher PM2.5 concentrations, although such an
effect may be partially compensated by overpredictions in precip-
itation near Birmingham in region 5 (Fig. 4). In addition to mete-
orological factors, overestimated emissions may explain PM2.5
overpredicions at this site. Gupta and Christopher (2008) reported
that the observed PM2.5 concentrations at Birmingham have been
declining since 2000, which may not be well represented in the
VISTAS emission inventory. Unlike other cities, PM2.5 levels in
Louisville in region 2 are sometimes underpredicted, which may be
caused by lower LBCs used and the dominant effect of over-
predicted precipitation. As shown in Table S2, the model performs
better for O3 in rural/suburban areas than urban/coastal areas and
for PM2.5 in urban/suburban areas than rural/coastal areas, due to
larger impacts of inaccurate emissions of O3 precursors in urban
areas, larger underestimates in NH3 emissions in rural areas, and
the model limitations in capturing sea breezes in coastal areas at
a horizontal grid resolution of 12-km.

Compared with performance of current RT-AQF models (e.g.,
McHenry et al., 2004; Kang et al., 2005; McKeen et al., 2005, 2007;
Hogrefe et al., 2007; Chen et al., 2008; Yu et al., 2008; Eder et al.,
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2009), that of WRF/Chem-MADRID for max 1-h/8-h O3 and 24-h/
hourly average PM2.5 is either comparable or better. For example,
Yu et al. (2007, 2008) reported NMBs of 11.9e22.6% and �21%
for forecasted max 8-h average O3 and 24-h average PM2.5,
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average O3 and 24-h average PM2.5, respectively, using the Air
Indicator Report for Public Access and Community Tracking (AIR-
PACT) that is based on MM5/CMAQ during AugusteSeptember
2004 over the Pacific Northwest.

3.2. Categorical evaluation

Table 2 summarizes categorical evaluation results. For max 1-h
and 8-h average O3, the monthly-mean A values are high,
92.2e97.9% and 80.0e91.8%, respectively, with the highest in
September, indicating an overall good accuracy for forecast non-
exceedances. The values of CSI and POD are low, ranging from 0.4 to
7.7% and 5.6e43.0% for max 1-h average O3, and 2.5e17.5%, and
7.2e56.8% for max 8-h average O3, respectively. The values of a are
much higher than the values of b for max 1-h and 8-h average O3 in
all months, indicating a dominance of overpredictions. CSI and POD
in September are the lowest among all months. POD in August is
the highest. The monthly-mean B values are 2.6e11.9 and 1.0e2.8,
and monthly-mean FAR values are 90.0e99.5% and 73.5e96.2%, for
max 1-h and 8-h average O3, respectively. B values are the highest
in September for max 1-h average O3 and in August for max 8-h
average O3. The b value is the lowest in September, leading to the
highest FAR values for both max 1-h and 8-h average O3. Similarly,
the FAR values are the lowest in June due to the highest b values. For
24-h average PM2.5, monthly-mean A, CSI, POD, B, and FAR are
70.8e91.9%, 10.8e26.7%, 16.0e47.8%, 0.5e1.3, and 38.6e74.7%,
respectively. Unlike O3, A and FAR are the highest and CSI and POD
are the lowest in May for PM2.5. A is the lowest in both June and
August. FAR is the lowest in June. B is the highest in September with
a value of 1.3, indicating that PM2.5 is overpredicted in this month. B
values are less than 1 for other months, indicating underpredicted
PM2.5 concentrations. As indicated in Table S2, the model gives
higher CSI, POD, and B for max 1-h O3 in urban areas but a more
uniform categorical performance for max 8-h O3 in all areas. The
model gives higher CSI, POD, and B and lower FAR and A for 24-h
average PM2.5 in urban/suburban areas. A and FAR are the highest
and CSI, POD and B the lowest in coastal areas.

4. Sensitivity studies

4.1. The impact of biogenic emissions

In addition to the uncertainty in the projected agricultural NH3

emissions and anthropogenic emissions of specific industrial
Table 2
Summary of categorical evaluation for O3 and PM2.5 in MayeSeptember of 2009.

Threshold Period A (%) CSI

Max 1-h O3 (ppb) 80 ppb May 94.6 2.0
June 92.3 7.7
Jul 92.9 6.0
August 92.2 4.8
September 97.9 0.4
MayeSeptember 94.0 5.2

Max 8-h average O3 (ppb) 60 ppb May 88.3 12.5
June 80.0 15.1
Jul 83.9 14.8
August 84.5 17.5
September 91.8 2.5
MayeSeptember 85.6 14.0

24-hraverage PM2.5 (mg m�3) 15 mg m�3 May 91.9 10.8
June 69.9 26.7
Jul 70.8 19.2
August 69.9 21.1
September 78.8 25.8
MayeSeptember 76.2 22.3

1. A: Accuracy; CSI: Critical success index; POD: probability of detection; B: bias: FAR: Fa
2. a, b, c, d, are the number of simulated and observed data pairs at one site for a specifi
sources, other uncertainties arise from biogenic VOC (BVOC) emis-
sions that are influenced by real-timemeteorological factors such as
temperature, humidity, and solar radiation. WRF/Chem offers two
options to simulate biogenic emissions: offline and online. The off-
line BVOC emissions from the VISTAS emission inventories are used
in RT-AQF results described previously. To study the sensitivity of
model performance to BVOC emissions, a sensitivity simulation is
conducted for July, 2009 by replacing offline BVOC emissions with
an online BVOC emission scheme that is based on Guenther et al.
(1993) and Simpson et al. (1995) (referred to as the Guenther
scheme). In the Guenther scheme, emissions of isoprene, mono-
terpenes, other VOCs (OVOCs) including alkanes, xylene, alkenes,
ketones, aldehyde, formaldehyde, ethane, organic acid from plants,
and nitrogen oxide (NO) from soil are included. Their emission rates
are calculated according to the types of plants, temperature, solar
radiation, and occurrence of rain. In the default Guenther scheme in
WRF/Chem, themonoterpenes emission is allocated to isoprene and
OVOCs (Grell et al., 2005; Fast et al., 2006) because the Guenther
scheme is only coupled with the gas-phase mechanism of the
Regional Acid Deposition Model (RADM) that does not include
monoterpenes. Since CB05 used in WRF/Chem-MADRID explicitly
simulates monoterpenes, the Guenther scheme is modified to allo-
cate monoterpenes emissions to monoterpenes (rather than
isoprene and OVOCs) in this study (referred to as the modified
Guenther scheme). The modified Guenther scheme results in lower
isoprene and higher monoterpenes emissions than the VISTAS 2009
offline biogenic emissions and thus lower (by up to 6 ppb) and
higher (by up to 3 ppb)mixing ratios of isoprene andmonoterpenes,
respectively, in the southeastern U.S., as shown in Fig. S2. Several
studies (Kang et al., 2004; Zhang et al., 2009) have shown that most
areas in the Southeastern U.S. are NOx-limited in summer. Lower
online isoprene emissions make more HOx radicals available for the
conversion of NO to NO2, which increases O3 formation in a large
areas in the domain (e.g., regions 4e6), with a domain-wide mean
increase of 0.38 ppb (or by 8.9%) (see Fig. S3). Simulated O3 mixing
ratios with online BVOCs emissions, however, decrease in several
regions (e.g., regions 1e2 and the southern portion of region 8).
Many studies have shown that monoterpenes and isoprene are
major precursors of SOA formation (e.g., Kroll et al., 2006; Zhang
et al., 2007). The increased monoterpenes mixing ratios from the
sensitivity simulation lead to an increase in SOA that dominates
over the decrease in SOA due to lower isoprene mixing ratios,
resulting in higher domain-wide simulated PM2.5 concentrations by
w0.6 mg m�3 (or by 6.2%).
(%) POD (%) B FAR (%) a b c d

22.0 10.0 97.7 576 13 10,914 46
25.5 2.5 90.0 658 73 10,332 213
40.8 6.2 93.4 754 53 10,766 77
43.0 8.3 94.8 844 46 10,707 61
5.6 11.9 99.5 218 5 11,024 22

31.3 5.3 94.1 3050 190 53,743 419
29.1 1.6 82.0 863 189 9813 460
26.0 1.0 73.5 1100 395 8470 1123
41.7 2.2 81.4 1389 318 9278 444
56.8 2.8 79.7 1474 374 9179 285
7.2 1.9 96.2 594 27 9901 300

33.3 1.7 80.6 5420 1303 46,641 2612
16.0 0.6 74.7 160 54 4655 284
32.1 0.5 38.6 341 541 2904 1143
27.1 0.7 60.1 539 358 3282 965
30.0 0.7 58.2 571 409 3137 955
47.8 1.3 64.1 643 362 3482 395
31.5 0.7 56.6 2254 1724 17,460 3742

lse alarm ratio.
c time in the four regions shown in Fig. S1.



Table 3
Comparison of discrete evaluation of the baseline RT-AQF with offline biogenic
emissions and the sensitivity simulations with online biogenic emissions based on
the modified Guenther scheme, and modified boundary conditions in July 2009.

Mean
Obs

Mean
Sim

MB RMSE NMB
(%)

NME
(%)

Max 1-h O3 (ppb) Offline BVOCs 48.5 54.4 5.9 16.9 12.1 25.9
Online BVOCs 54.4 5.9 16.9 12.1 26.0
Modified LBCs 50.3 1.8 15.6 3.7 24.3

Max 8-h average O3

(ppb)
Offline BVOCs 43.5 47.9 4.4 13.3 10.2 23.6
Online BVOCs 48.1 4.6 13.4 10.5 23.9
Modified LBCs 44.4 0.9 12.6 2.0 22.3

24-h average PM2.5

(mg m�3)
Offline BVOCs 12.5 11.4 �1.1 6.0 �8.9 35.9
Online BVOCs 12.3 �0.3 6.0 �1.7 35.4
Modified LBCs 12.8 0.3 6.1 2.8 36.5

Obs: Observation; Sim: Simulation; MB: Mean Bias; RMSE: Root Mean Square Error;
NMB: Normalized Mean Bias; NME: Normalized Mean Error; BVOCs: Biogenic
Volatile Organic Carbons; LBCs: Lateral Boundary Conditions.

M.-T. Chuang et al. / Atmospheric Environment 45 (2011) 6241e62506248
Table 3 compares model performance using offline and online
BVOC emissions in July 2009. The use of online BVOC emissions
slightly reduces the domain-wide mean MB and NMB for PM2.5 but
slightly increases those for max 8-h O3. As shown in Fig. 7, the
online BVOC emission reduces the positive bias of O3 in regions 1
and 2, but leads to higher MBs for O3 in regions 5e8, where
isoprene emissions are reduced. The use of online BVOC emissions
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(upper) and 24-h average PM2.5 (lower) from simulations with offline (baseline) and
online (Guenther scheme) biogenic volatile compound emissions, and modified
boundary condition (labeled as offline BVOCs, online BVOCs, and modified BCs,
respectively).
reduces the negative MBs and NMBs for PM2.5 in regions 5e8,
where monoterpenes emissions are enhanced. PM2.5 predictions in
regions 1e4 are worse, due primarily to increased SOA resulted
from increased monoterpenes. In addition, in July when fronts did
not influence the domain, wind direction was usually from south-
east and south. Enhanced levels of PM and/or its precursors with
online BVOC emissions may be transported from regions 5e8 into
regions 1e4, contributing to overpredictions for these four regions.

4.2. The impact of lateral boundary conditions

In this sensitivity simulation, the concentrations of O3 and PM2.5
at all four lateral boundaries used in July 2009 baseline RT-AQF
simulation are decreased by 20% and increased by 20%, respec-
tively. As shown in Fig. S4, the overprediction of O3 is reduced in
most areas with a domain-wide mean reduction of 2.1 ppb (or
by �4.8%) except the south of Georgia and north of Florida and
southeast of South Carolina. The largest reductions occurred in
Louisiana and Mississippi. In July, there were still intermittent
fronts moving from north to south or being stagnant in the domain.
In areas ahead of the fronts, prevailing winds in Mississippi and
Louisiana tended to be from the west and southwest along the Gulf
coastal area. With reduced LBCs for O3, less incoming O3 titrate less
NO at night to form less NO2 locally that leads to less local O3
formation during daytime. This effect is more obvious near thewest
boundary and especially in New Orleans. On the other hand,
excessive NO as a result of less O3 titration in Mississippi and
Louisiana can be transported to the downwind area with the front
and enhance O3 formation in south of Georgia, north of Florida and
southeast of South Carolina. Another possible reason leading to O3
increase in those areas is the decrease of the photolysis rate of O3 as
a result of increased PM2.5 LBCs due to the feedbacks of aerosols
into photolysis. As shown in Fig. 7, the predictions of O3 in all
regions are improved (note that O3 mixing ratios in region 7 change
from overprediction to underpredictions, particularly in New
Orleans, but with lower absolute MB). For PM2.5, with increased
LBCs, MBs in regions 1e4 are increased but they are reduced in
regions 5e8, leading to a net decrease in bias for domain-wide
PM2.5 predictions. Domain-wide PM2.5 concentration increase by
up to 1.3 mg m�3 (or by 16.6%). As shown in Table 3, the model
performance with modified LBCs is improved for O3 and PM2.5
predictions.

5. Conclusions

In this study, an RT-AQF system has been developed based on
WRF/Chem-MADRID and deployed for RT-AQF in the southeastern
U.S. during MayeSeptember, 2009. Forecasted max 1-h and 8-h
average O3 mixing ratios are overpredicted while forecasted 24-h
average PM2.5 concentrations are underpredicted. The over-
prediction of O3 is possibly caused by uncertainties in emissions (in
particular, BVOC emissions), inaccuracies in the predicted meteo-
rological variables (e.g., T2, WS10) and uncertainties in LBCs. The
underprediction of PM2.5 is likely due to the uncertainties in the
emissions of precursors such as NH3 and BVOC emissions, over-
predictions of precipitation, and imperfect LBCs. The online BVOC
emissions calculated based on the modified Guenther scheme can
help improve domain average PM2.5 and O3 and PM2.5 forecast in
some regions, but may give larger biases for other regions. Adjusted
LBCs reduce domain-wide overpredictions of O3 but cause the
underpredictions of O3 at urban cities near the boundaries. They
reduce domain-wide underpredictions of PM2.5 but cause larger
biases for some regions.

While the RT-AQF model based on WRF/Chem-MADRID
demonstrates a promising forecasting skill that is consistent with
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current RT-AQF models, several aspects can be improved. For
example, online BVOC emissions that reflect the impact of real-time
meteorological conditions should be used for future RT-AQF,
the emission factors of isoprene and other BVOCs in the Guenther
scheme can be improved based on latest measurements. The
impact of real-time meteorology on other meteorologically-
dependent emissions such as NH3 emissions and parameters such
as plume rise should also be considered. The SOA module can be
further improved to include SOA formation via the condense-phase
oligomerization and aqueous-phase oxidation of glyoxal and
methylglyoxal in cloud droplets, which has been shown to play an
important role (Carlton et al., 2008). For the RT-AQF application,
when additional resources available, the current 12-km domain
may be expanded to reduce the impact of imperfect LBCs or
resolved with finer grid for RT-AQF in sub-domain within the 12-
km domain (Tie et al., 2010). The current chemical LBCs based on
the 2009 VISTA CMAQ simulation can be replaced by those
derived from the real-time chemical composition forecasts of
a global AQF model (e.g., the one developed in the Monitoring
Atmospheric Composition & Climate (MACC) project, http://www.
gmes-atmosphere.eu) or a regional AQF model (e.g., the NOAA
Earth System Research Laboratory WRF/Chem) that covers a larger
domain than the current 12-km domain. The underprediction of
wind speed and overprediction of precipitation may be improved
by using improved dynamics, cloud microphysics, and radiation
schemes and/or testing alternative options and combinations to
obtain an optimal configuration for model representations of
meteorological conditions in the southeastern U.S. Finally, some
studies have attempted to improve the forecasting results using
several approaches. For example, Guillas et al. (2008) used the
Model Diagnostic Correction (MDC) approach and reduced the
errors of forecast by up to 25%. Kang et al. (2008) applied bias
adjustment techniques of the hybrid forecast and the Kalman filter
method to improve the systematic positive bias in the O3 predic-
tions. These bias correction approaches may be explored to further
improve the model’s forecasting skill.
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