Supplementary Material Real-Time Air Quality Forecasting, Part I: History, Techniques, and Current Status

Yang Zhang^{a,b,*}, Marc Bocquet^{c, d}, Vivien Mallet^{c, d}, Christian Seigneur^d, and Alexander Baklanov^e

^a Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, U.S.A.

^b School of Environment, Tsinghua University, Beijing, China

^c INRIA, Paris Rocquencourt Research Center, France

- ^d CEREA (Atmospheric Environment Center), Joint Laboratory École des Ponts ParisTech and EDF R&D, Universit éParis-Est, 77455 Marne-la-Vall é, France
- ^e Research Department, Danish Meteorological Institute (DMI), Copenhagen, DK-2100, Denmark

AQI Values	AQI Category	Color Code	Meanings (Health Effect)	O3 (ppb) Maximum 8-h Average	O ₃ (ppb) Maximum 1-h Average	PM _{2.5} 24-h Average (μg m ⁻³)	PM ₁₀ 24-h Average (μg m ⁻³)
0-50	Good	Green	Satisfactory air quality (Air pollution poses little or no risk.)	0-59	-	0.0-15.4	0-54
51-100	Moderate	Yellow	Acceptable air quality. Unusually sensitive people should consider reducing prolonged or heavy outdoor exertion.(Unusually sensitive individuals may experience respiratory symptoms.)	60-75	-	15.5-35.4	55-154
101-150	Unhealthy for Sensitive Groups	Orange	Sensitive groups should reduce prolonged or heavy outdoor exertion (Sensitive groups may experience health effects.)	76-95	125-164	35.5-65.4	155-254
151-200	Unhealthy	Red	Sensitive groups should avoid prolonged or heavy outdoor exertion; everyone else should limit prolonged or heavy outdoor exertion (Everyone may begin to experience health effects.)	96-115	165-204	55.5-150.4	255-354
201-300	Very Unhealthy	Purple	Sensitivity groups should avoid all outdoor exertion, everyone else should limit outdoor exertion (Health warnings of emergency conditions; the entire population is likely to be affected.)	116-374	205-404	150.5-250.4	355-424
301-500	Hazardous	Maroon	Everyone should avoid all physical outdoor activities (Health alert; everyone may experience more serious health effects.)	-	405-604	250.4-500.4	425-604

Table A1. The U.S. EPA Air Quality Index for O₃ and PM (http://www.airnow.gov; U.S. EPA, 2000; 2009)

Table A2. Inputs of Major RT-AQF Model Systems

Model System	Emissions	Chemical Initial/ Boundary Conditions
	Global Models	
GOCART	Anthropogenic emissions based on EDGAR and Cooke et al., 1999. Dust,	Default chemical ICs
	sea-salt, and DMS emissions based on an empirical formula. BVOCs	
	emissions based on Guenther et al., 1995. continuous volcanic emissions are	
	taken from a database of Andres and Kasgnoc (1 998)	
GEM-AO	Anthropogenic emissions based on EDGAR 2.0 and GEIA, biogenic, ocean	The CMAM model for the first time model run. Use a spinup
0201112	and soil emission for CO NO and 7 VOC species Regional application uses	of 6-month: Global BCs: climatologies for Ω_2 NO NO ₂
	regional emissions	HNO ₂ HNO ₄ and N ₂ O ₅ for upper boundary: Reginal BCs:
	regional emissions	Clobal CEM AO
		Chobal GEM-AQ
LMDZT -INCA	Anthropogenic emissions based on EDGAR v2.0 and v3.2 and various	Chemical ICs based on MOZART:
	sources such as Liousse et al. 1996. NO _x emissions from oceangoing ships	BCs: O ₃ profiles based on sounding and satellite data in the
	and aircraft emissions. Soil emissions of NO and BVOC are based on the	stratosphere
	ORCHIDEE dynamical vegetation model [Krinner et al., 2005]. Online dust	
	and sea-salt emissions, emissions of N ₂ O and CH ₄	
MOCAGE	Offline anthropogenic emissions based on GEIA, EDGAR, or GEMS-TNO	Default ICs for day 1 and the previous day's forecast
	inventories: static biogenic emissions based on Gunther (1997)	afterwards: BCs: N/A for global runs: climatologies computed
		with another version of MOCAGE for regional runs
MATCH-NCAR	Anthropogenic emissions based on 1990 EDGAR inventory: soil emissions	Default ICs based on previous model runs for day 1 and the
Marien Nerik	lightning NO emissions susced on 1990 EDOTAR inventory, son emissions,	previous day's forecast afterwards: BCs: prescribed CH at
	ingluting two _x emissions, and art emissions	previous day's forecast anerwards, BCs. prescribed CH ₄ at
		surface and top of the domain, and O_3 and NO_y in the
		stratosphere based on observations
ECHAM5	Anthropogenic emissions of SO ₂ , CO, BC, POM based on AEROCOM;	Prescribed CO ₂ ;OH, H ₂ O ₂ , NO ₂ , and O ₃ based on MOZART;
	prescribed Terrestrial biogenic DMS emissions, online oceanic DMS, sea-	BCs: N/A
	salt and dust emissions	
FLEXPART	EDGAR industrial CO emissions inventory. Biogenic and NMHC emissions	ICs: Zero; BC: N/A
	are not included	
ECMWF-IFS-	Anthropogenic emissions are based RETRO, GFEDv2, SPEW, EDGAR, in	ICs are from previous run for day 1 and previous day's forecast
CTM	all three models: online sea-salt and dust emissions	afterwards: BCs: N/A
GP AOF	anthronogenic emissions based on ICAP and EAgrid 2000 over Japan PEAS	ICs: None for global CHASEP for regional:
UK-AQI	antilopogenic emissions based on JCAF and EAgnd 2000 over Japan, KEAS	DCs. None for global, CHASEN for regional,
	over China and Korea, and EDGAK over Russia; Biogenic emissions are	BUS: N/A for global runs; BU for WRF/Unem is derived from
	based on Guenther et al. (1993)	CHASER
	Regional Models	
AAQFS	offline forecasted anthropogenic emissions; online	ICs: a generic set of continental/oceanic
	biogenic, sea-salt and dust emissions	concentration profiles for day 1 and the previous day's forecast
		afterwards; BCs: clean background trace species concentrations
MAQSIP-RT &	projected anthropogenic emissions using online SMOKE; online biogenic	Default ICs; BCs: fixed boundary conditions of PM _{2.5} and its
CMAQ	emissions by BEIS 3.9	composition
AIRPACT3	offline projected anthropogenic emissions; forecasted fire emissions using	Default ICs for day 1 and the previous day's forecast
imunoit	USDA-FSB BlueSky: biogenic emissions by BEIS: Meteorologically	afterwards: BCs: average of 1990-1999 results of the
	dependent NH emissions	MOZART 2
AOEMS	Offling anthrong gaming amigging based on U.C. NEL 00 processed with	ICa: A 2 day anin up gup from nominal ICa (25 mb for O and
AQFMIS	Offine andropogenic emissions based on U.S. NEI-99 processed with	ICS: A 2-day spin-up fun from nominal ICS (55 ppb for O_3 and
	SMOKE; biogenic emissions by BEIS2	180 ppb for CO) for day I and the previous day's forecast
		afterwards; BCs: Prescribed time-invariant O ₃ and CO
		concentration of 35 ppb and 100 ppb at all heights
STEM-2K3	Offline anthropogenic emissions based on U.S. NEI-99 (v. 3) and 2000	Default ICs for day 1 and the previous day's forecast
	Canadian inventory; Biogenic emissions from the 1990 IGAC-GEIA archive	afterwards; BC: time-varying lateral and top BCs based on the
	or BEIS2	MOZART or RAOMS global model forecast
NAOEC	Offling projected anthronogenia, amissions based on 2001 NEL processed	Default ICs for day 1 and the pravious day's foreast
NAQIC	with SMOKEL Diogenic emissions by DEIS y 2.12	afterwarder DCar all anagies with static lateral DCa based on
	with SWOKE, Diogenic emissions by DEIS V. 5.15	anerwards; BCs: an species with static lateral BCs based on
	,	continental clean condition profiles; in some cases,
		climatology and NCEP GFS forecast for low and upper
		tropospheric O ₃ , respectively
WRF/Chem	Offline anthropogenic emissions based on U.S. NET-99 v. 3; online biogenic	Default ICs for day 1 and the previous day's forecast
	emissions based on Guenther et al. (1994, 1995) and Simpson et al. (1995),	afterwards; BCs: prescribed BCs based on average of mid
	Online sea-salt and dust emissions	latitude aircraft profiles over the eastern Pacific. fixed BCs of
		PM _{2.5} and its composition
WRF/Chem-	Offline projected anthropogenic emissions based on VISTAS2002. Online	ICs based on VISTAS 2009 CMAO simulations for day 1 and
MADRID	biogenic emissions based on Guenther et al. (1004, 1005) and Simpson et al.	the previous day's forecast afterwards: RCs: time varying PCs
MADKID	(1005) Online see selt and dust emissions	based on VISTAS 2000 CMAO simulations
CEM AUDANC	(1775). Online sea-sait and dust emissions	A harden to 1 Ab 2009 CIVIAQ SIMULATIONS
GEM-AURAMS	Offline projected anthropogenic emissions based on the 1990 Canadian and	A norizontally homogeneous, uniform initial O_3 profile of 48.2
	U.S. national criteria air contaminant inventories processed with CEPS;	ppb; in some cases, ICs for all species except O ₃ are set to BCs
	Online biogenic emissions by BEIS2; online sea-salt emissions	profiles that decreased exponentially with height; static BCs
		for all species
GEM-CHRONOS	Offline projected anthropogenic emissions based on the 1990 Canadian and	A horizontally homogeneous, uniform initial O ₃ profile of 36.1
	U.S. national criteria air contaminant inventories processed with CEPS:	ppb. Fixed chem. ICs for day 1, and the previous day's
	Online biogenic emissions by BEIS2	forecast afterwards; static BCs for all species, zero gradient
		inflow open boundary out-flow
GEM MACU15	CAN 2005 amissions and US amissions processed with SMOKE2 2 DVOC	Default Chemical ICs for initial run and the provious device
OLWI-WIACHIS	CAIN 2005 CHIISSIONS and US CHIISSIONS PROCESSED WITH SWICKEZ.5. BYOU	forecast of terror and a DC alimeted in the previous day s
	and NO IFOM BEIS V3.0.9	Torecast alterwards; BC: climatological profiles for O ₃ , CO and
1		PM _{2.5} based on satellite observations, other gases based on old
		ADOM-II clean atmosphere conditions

Table A2. Inputs and Outputs of Major RT-AQF Model Systems (continued)

Model System	Emissions	Chemical Initial/ Boundary Conditions
AIRPARIF ¹	Regional emission inventory developed by air quality agencies of the Paris region and adjacent regions.	ICs: previous day's forecast; BCs: from the national CHIMERE simulation.
CHIMERE	Offline projected anthropogenic emissions based on the EMEP yearly totals, with monthly, daily, and hourly factors or based on other inventories such as GEMS-TNO; parameterized biogenic emissions based on Guenther (1997).	Default ICs for day 1 and previous day's forecast for remaining days. Default ICs are based on LMDzINCA climatological monthly means for gases from the LMDzINCA model and the GOCART climatological monthly means for aerosols; in some cases, ICs are based on MACC-GRG; BCs: monthly means climatological data simulated by the LMDz-INCA global CTM for gaseous species; monthly mean PM predictions from GOCART
POLYPHEMUS	Offline projected emissions based on the EMEP yearly totals, with monthly, daily and hourly factors; biogenic emissions based on Simpson et al. [1999]	Default ICs for day 1 and the previous day's forecast afterwards; BCs: derived from a "typical year" simulation of MOZART for gases and from a simulation of GOCART for PM species.
-ATMI THOR	Anthropogenic emissions are based on EMEP and the Danish emission inventories; Biogenic emissions calculated from land use data.	Default ICs for day 1 and the previous day's forecast afterwards; BCs: seasonal mean for O ₃
DACFOS	Anthropogenic and biogenic emissions are based on EMEP and TNO/MEGAPOLI emissions and land-use; Pollen emissions calculated online.	A 2-day spin-up run from climatic IC data; BCs: time-varying BCs based on the MOZART global model forecast for regional scale and GEMS/MACC BC for inner domain
FUMAPEX UAQIFS	Anthropogenic emissions are based on multiple emission inventories processed with EMMA	Derived from measurements or a coarser grid model such as global ECMWF model or CHIMERE or PREV'AIR; BCs: derived from a coarser model such as global ECMWF model or CHIMERE or measurements
EURAD	Anthropogenic emissions based on 2000 GEMS-TNO inventory; biogenic emissions based on NKUA monthly emission potentials; online sea-salt and dust emissions	3d-var analysis for the day before; BCs: based on the MOZART IFS forecast for the day before
EMEP-Unified	Anthropogenic emissions based on EMEP 2003 emissions; online biogenic emissions	Default ICs based on climatologies for day 1 and the previous day's forecast afterwards; BCs: climatologies for all gases except for O_3 , which is set to be a constant of 40 ppb
MATCH	Anthropogenic emissions based on 2000 GEMS-TNO inventory	Default ICs for day 1 and the previous day's forecast afterwards; BCs: static BCs based on climatology or MOZART IFS forecast for the day before. In some cases, dynamic BCs are used
LOTOS-EUROS	Anthropogenic emissions are based on 2000 GEMS-TNO (2000) inventory; biogenic emissions based on Guenther et al., 1993; online sea-salt emissions	Default ICs for day 1 and the previous day's forecast afterwards; BCs: based on GRG MOZART/IFS global model forecast for the day before. Either 0 or a constant for PM species
SILAM v.4.5.4	Anthropogenic emissions based on GEMS-TNO and EMEP inventory; online biogenic emissions based on Guenther et al., 1993; online sea-salt emissions	Default ICs for day 1 and the previous day's forecast afterwards; BCs: based on the MOZART model values for all species
WRF/CMAQ	Anthropogenic emissions based on UK NAEI and EMEP inventories; biogenic emissions calculated using a biogenic potential inventory	Default ICs for day 1 and the previous day's forecast afterwards; BCs: based on the global STOCHEM model
NAME-III	All emissions are represented by PM emissions	Monthly average 3-D background fields from STOCHEM; BCs: BCs derived from mean monthly levels observed at Mace Head
OPANA v4.0 & Predecessors	Global and European emission inventories processed with the EMIMO emission model; biogenic and anthropogenic emissions	ICs for MM5-CMAQ-EMIMO are from a global model; ICs for CFD are from MM5-CMAQ-EMIMO; BCs for MM5-CMAQ- EMIMO are from a global model; BCs for CFD are from MM5-CMAQ-EMIMO
CALIOPE	The EMEP expert emission inventory, the HERMES emission model, and the Dream dust model	Day 1: Default ICs based on climate profiles in CMAQ; monthly climatology from LMDz-INCA for CHIMERE. The previous day's forecast afterwards; BCs: derived from the LMDz-INCA2 global climate-chemistry model
SKIRON/TAPM	Anthropogenic emissions based on combination of TNO European emissions, EMEP shipping emissions and GEIA global emissions database	Default ICs for day 1 and the previous day's forecast afterwards; default BCs in CAMx
ForeChem	Anthropogenic emissions based on EMEP expert emissions at continental scale and from CTN-ACE in Italy. Biogenic emissions are from MEGAN	Default ICs for day 1 and the previous day's forecast afterwards; default hourly dynamic BCs in CHIMERE
EMS-Beijing	Anthropogenic emissions based on Trace_P, INTEX-B, and emissions from local EPA agencies; BVOCs are based on GEIA, processed with SMOKE	Default ICs for day 1 and the previous day's forecast afterwards; BC for O_3 is fixed at 20 ppb and change exponentially to 30 ppb
CFORS	The anthropogenic emission inventories of Streets et al. (2003). Online dust emission module, sea salt emissions.	ICs of chemical tracers are set to zero; zero-gradient BCs
POLYPHEMUS	the Comisi án Nacional del Medio Ambiente (CONAMA) anthropogenic emission inventory of Departamento de Investigaciones Científicas y t écnicas de la Universidad Catolica (DICTUC) for the Santiago region	Default ICs for day 1 and the previous day's forecast for remaining days; BCs: derived from a "typical year" simulation of the MOZART 2 model

¹ There are several air quality systems used by regional air quality agencies (e.g., Association agr éés de surveillance de la qualit é de l'air (AASQAs)) and only the one for the Paris region is given here as an example.

Table A3. Chemist	ry and Aerosol	Treatments in M	ajor RT-AQ	OF Model Systems ¹
-------------------	----------------	-----------------	------------	--------------------------------------

		histry and recessor freatments in M		
Organization/Model System	Gas-phase chemistry	Aerosol Size and Composition	Aerosol Microphysical Processes	Cloud Chemistry
GOCART	SO ₂ and DMS oxidation by prescribed OH and NO ₃	Sectional (4-bin for sea-salt over 0.1-10 μ m, 7-bin for dust over 0.1-6 μ m) SO ₄ ²⁻ , EC, primary OC, Na ⁺ , Cl ⁻ , H ₂ O, dust	None	SO ₂ oxidation by dissolved prescribed H ₂ O ₂
.GEM-AQ	Modified ADOM-II	Sectional (12-bin over $0.005 - 10.24 \mu\text{m}$) SO ₄ ²⁻ , EC, primary OC, Na ⁺ , Cl ⁻ , soil dust	Detailed microphysical processes (except for SOA) as treated in CAM of Gong et al., 2003)	A simplified aqueous phase reaction module for oxidation of SO_2 to SO_4^{2-}
LMDzt -INCA	Detailed CH ₄ -NOx-CO-O ₃ –NMHC chemistry	Modal (accumulation mode) Prescribed SO_4^{2-} field	None	None
MOCAGE	RACM for tropospheric chemistry and REPROBUS for stratospheric chemistry	Sectional; dust, EC, sulfate, sea salts, primary PM _{2.5} and PM ₁₀	None	None
MATCH-NCAR	O ₃ -HO _x -NO _y -CH ₄ -CO-organic chemistry using MATCH-MPIC	None	None	Equilibrium partitioning of 19 species into H ₂ O/ice crystals using Henry's law constants
ECHAM5	CH ₄ -N ₂ O-CFC-SO ₂ -DMS-sulfate chemistry with prescribed OH, H ₂ O ₂ , NO ₂ , and O ₃	Modal (7-mode) SO ₄ ²⁻ , EC, primary OC, Na ⁺ , Cl ⁻ , dust	Detailed microphysical processes as in M7 module of Vignati et al. (2004)	SO ₂ oxidation by O ₃ and H ₂ O ₂
FLEXPART	No explicit chemistry, CO is simulated by assuming an e-folding lifetime of 36 days	None	None	None
ECMWF-IFS-CTM	JPL-03 and JPL-06 and SO ₃ /NH ₃ /NH ₄ mechanism from MOZART4 in MOZART- 3,CBM-IV in TM5, REPROBUS in MOCAGE	Sectional (3-bin) for sea-salt and dust; and bulk for other aerosols SO ₄ ²⁻ , EC, primary OC, Na ⁺ , Cl ⁻ , dust	None	None
GR-AQF	O ₃ -HO _x -NO _x -CH ₄ -CO-NMHC chemistry in CHASER RADM2 for WRF/Chem	None	None	None
		Regional Models	•	
AAQFS	GRS and CB-IV	Sectional (8 bins); $SO_4^{2^\circ}$, NO_3° , NH_4^+ , EC, OC, Na^+ , Cl, H ₂ O, wind-blown dust	None	None
MAQSIP-RT & CMAQ	Modified CB –IV for MAQSIP, CB05 for CMAQ	No PM treatments in MAQSIP; modal (3-mode); SO4 ²⁻ , NO3 ⁻ , NH4 ⁺ , EC, OC, Na ⁺ , Cl ⁻ , H ₂ O for CMAQ	None for MAQSIP; Detailed microphysical processes as treated AERO5 in CMAQ v4.5.1 with modified SOA	None for MAQSIP RADM for CMAQ
AIRPACT3 & Predecessors	SAPRC99	Modal (3-mode); SO ₄ ² , NO ₃ , NH ₄ ⁺ , EC, OC, Na ⁺ , Cl ⁻ , H ₂ O	Same as US NOAA/EPA's NAQFC with AERO4 in CMAQ v4.6	Same as US NOAA/EPA's NAQFC
AQFMS	Modified CB –IV, CB05	Modal in both CAMx and CMAQ; SO4 ²⁻ , NO3 ⁻ , NH4 ⁺ , EC, OC, Na ⁺ , Cl ⁺ , H ₂ O	Detailed microphysical processes as treated in CF in CAMx 5.2 and AERO5 in CMAQ v4.7.1	RADM in CAMx and CMAQ
STEM-2K3	SAPRC99	Sectional (4-bin); $SO_4^{2^\circ}$, NO_3^{-} , NH_4^+ , EC, OC, Na^+ , Cl ⁻ , K ⁺ , CA^{2^+} , Mg^{2^+} , $CO_3^{2^\circ}$, H_2O , mineral dust	Detailed microphysical processes	equilibrium partitioning of SO ₂ , H ₂ O ₂ and O ₃ into cloud using Henry's Law
NAQFC	CB-IV	Modal (3-mode); SO4 ²⁻ , NO3 ⁻ , NH4 ⁺ , EC, OC, Na ⁺ , Cl ⁻ , H ₂ O	Detailed microphysical processes as treated in AERO4 in CMAQv4.6	equilibrium partitioning of SO ₂ , H ₂ O ₂ and O ₃ into cloud using Henry's Law; RADM2 aqueous-phase chemistry including 5 kinetic reactions for aqueous-phase oxidation of SO ₂
WRF/Chem	RADM2	Modal (3-mode); SO ₄ ²⁻ , NO ₃ ⁻ , NH ₄ ⁺ , EC, OC, Na ⁺ , Cl ⁻ , H ₂ O, dust	Detailed microphysical processes as treated in MADE/SOAGAM	None
WRF/Chem-MADRID	CB05	Sectional (8-bin); SO_4^{2-} , NO_3^- , NH_4^+ , EC, OC, Na^+ , CI^- , H_2O , dust	Detailed microphysical processes as treated in MADRID	CMU aqueous-phase chemistry
GEM-AURAMS	ADOM-II	Sectional (12-bin over 0.01 to 40.96 μm); SO ₄ ²⁻ , NO ₃ ⁻ , NH ₄ ⁺ , EC, OC, Na ⁺ , Cl ⁻ , H ₂ O, crustal materials	Detailed microphysical processes as treated in the CAM aerosol model	ADOM aqueous-phase chemistry with mass transfer of SO ₂ , O ₃ , H ₂ O ₂ , ROOH, HNO ₃ , NH ₃ , and CO and oxidation of S(IV) by dissolved O ₃ , H ₂ O ₂ , ROOR', and O ₂ (catalyzed by Fe ³⁺ and Mg ²⁺)
GEM-CHRONOS	ADOM-II	Moment or sectional (2-bin: 0-2.5 and 2.5-10 μm); SO ₄ ²⁻ , NO ₃ ⁻ , NH ₄ ⁺ , EC, OC, Na ⁺ , Cl ⁻ , H ₂ O	equilibrium gas-particle mass transfer Thermodynamics based on vectorized ISORROPIA, SOA formation based on fixed aerosol yield approach	None
GEM-MACH15	Modified ADOM-II + N_2O_5 + H2O heterogeneous Reaction to form NO_3^-	Sectional (2-12 bins) SO ₄ ²⁻ , NO ₃ ⁻ , NH ₄ ⁺ , EC, POC, SOA, CM, Na ⁺ , Cl ⁻ , H ₂ O	Detailed microphysical processes as treated in CAM (Gong et al., 2003)), SOA based on instantaneous aerosol yield	ADOM mechanism (Young and Lurmann, 1984) with 20 reactions involving 7 gaseous and 13 aqueous species

Table A3. Chemistry and Aerosol Treatments in Major RT-AQF Model System	ms ¹ (continued)
---	-----------------------------

	rucie rice enemistry	und menosor medunients in major re	i i i viouei systems (continuee	-)
Organization Model System	Gas-phase chemistry	Aerosol Size and Composition	Aerosol Microphysical Processes	Cloud Chemistry
AIRPARIF ²	MELCHIOR	Sectional (6-bin from 0.010 to 40 μ m); SO ₄ ²⁻ , NO ₃ ⁻ , NH ₄ ⁺ , SOA, POA, EC, H ₂ O, dust	Detailed microphysical processes	7 aqueous reactions are included. Several aqueous-phase reactions considered.
CHIMERE	MELCHIOR1 and MELCHIOR2	Sectional (6-bin from 0.010 to 40 μ m); SO ₄ ²⁻ , NO ₃ ⁻ , NH ₄ ⁺ , SOA, POA, EC, H ₂ O, dust	Detailed microphysical processes	7 aqueous reactions are included. Several aqueous-phase reactions considered.
POLYPHEMUS	RACM	Sectional (10-bin, from 0.010 to 10 μ m); SO ₄ ²⁻ , NO ₃ ⁻ , NH ₄ ⁺ , EC, OC (several group), Na ⁺ , Cl ⁻ , H ₂ O, dust	Detailed microphysical processes as treated in SIREAM	aqueous chemistry scheme derived from the one proposed in VSRM (Fahey and Pandis, 2001).
THOR	CB-IV	Bulk, primary PM _{2.5} , PM ₁₀ , and TSP, sea salt	None	None
DACFOS	CB-IV	Bulk, modal (CAC) or sectional (CAMx), primary PM _{2.5} , PM ₁₀ , TSP and pollen; SO ₄ ⁻²⁻ , NO ₃ ⁻ , NH ₄ ⁺ , SOA, POA, EC, H ₂ O	Detailed microphysical processes as treated in CAMx 5.2	RADM approach
UAQIFS ³	 PSSA for NO₂ Basic reactions for NO_x and O₃ CBM-IV SAPRC-90, MELCHIOR None 	 Bulk, PM_{2.5} and PM₁₀ Bulk, PM_{2.5} none modal (aero3), SO₄²⁻, NO₃⁻, NH₄⁺, EC, OC, Na⁺, Cl⁺, H₂O or bulk (aero0), inorganic aerosols Sectional (same as the CHIMERE PM module) None 	 None None None CMAQ aero3 and a simplified bulk module Same detailed as treated in CHIMERE None 	 None None None None None None None None
EURAD	RADM2; RACM-MIM	Modal with fixed standard deviations (two fine and one coarse modes); SO4 ²⁻ , NO3 ⁻ , NH4 ⁺ , EC, OC, Na ⁺ , Cl ⁻ , H ₂ O, dust	Detailed microphysical processes	10 gas/aqueous-phase equilibria,5 irreversible S(IV) oxidation by H_2O_2 , O_3 , CH_3OOH , O_2 catalyzed by Fe^{3+} and Mg^{2+} , and CH_3CO_3H
EMEP-Unified	The EMEP gas-phase chemistry	Sectional (2-bin, PM _{2.5} and PM _{10-2.5});SO ₄ ²⁻ , NO ₃ ⁻ , NH ₄ ⁺ , Na ⁺ , Cl ⁻ , H ₂ O, anthropogenic primary PM	Inorganic aerosol thermodynamic equilibrium is based on the EQSAM model	SO_2 oxidation by O_3 and H_2O_2
MATCH	Revised EMEP chemistry scheme with isoprene production	Sectional (4-bin from 0.02- 10 m) SO_4^{2-} , NO_3^{-} , NH_4^+ , EC, primary OC, Na^+ , Cl ⁻ , H ₂ O, dust	(NH ₄) ₂ SO ₄ and NH ₄ NO ₃ formation via 5 aerosol equilibrium reactions following Hov et al. (2004)	SO ₂ oxidation by O ₃ and H ₂ O ₂ , equilibrium partitioning of SO ₂ , CO ₂ , H ₂ O ₂ and O ₃ into cloud using Henry's Law (Berge, 1993)
LOTOS-EUROS	TNO Modified CBM- IV, CB99	Bulk; SO ₄ ^{2°} , NO ₃ ⁻ , NH ₄ ⁺ , EC, primary OC, biogenic SOA, Na ⁺ , Cl ⁻ , H ₂ O	ISORROPIA inorganic thermodynamics, MARS or EQSAM; Biogenic SOA formation SORGAM. No anthropogenic SOA formation	One first-order reaction to account for aqueous phase and heterogeneous formation of SO_4^{2-}
SILAM v.4.5.4	Two main options 1. Basic acid and O ₃ chemistry 2. CB-IV	Bulk or Sectional (ADB); SO ₄ ²⁻ , NO ₃ ⁻ , NH ₄ ⁺ , Na ⁺ , Cl ⁻ , biogenic primary PM such as natural birch pollen	Bulk treatments for inert PM; ADB scheme includes detailed 1 microphysics. Its tracer module also treats radioactive decay of up to ~500 nuclides and natural birch pollen.	None
WRF/CMAQ	CB05	Modal (3-mode); SO ₄ ²⁻ , NO ₃ ⁻ , NH ₄ ⁺ , EC, OC, Na ⁺ , Cl ⁺ , H ₂ O	Detailed microphysical processes as treated in AERO5 in CMAQ v4.7.1	RADM Aqueous-phase chemistry
NAME-III	the STOCHEM mechanism used in STOCHEM global chemistry	Bulk; SO4 ²⁻ , NO3 ⁻ , NH4 ⁺ , EC, OC, Na ⁺ , Cl ⁻ , H ₂ O, dust	None	None
OPANA v4.0	CB05, RADM, SAPRC99	Modal (3-mode); SO4 ²⁻ , NO3 ⁻ , NH4 ⁺ , EC, OC, Na ⁺ , Cl ⁻ , H ₂ O, dust	Detailed microphysical processes	RADM aqueous-phase chemistry
CALIOPE	CBM-IV in CMAQ and MELCHIOR in CHIMERE	Same as CMAQ and CHIMERE, plus dust	Detailed microphysical processes as treated in CMAQ and CHIMERE	Same as CMAQ and CHIMERE
SKIRON/TAPM	CBM-IV (mechanism 4 in CAMx)	Modal; $SO_4^{2^{-}}$, NO_3^{-} , NH_4^{+} , EC, OC, Na^{+} , Cl ⁻ , H_2O , dust.	Detailed microphysical processes as treated in CF in CAMx 4.31	RADM aqueous-phase chemistry
ForeChem	MELCHIOR 1 and MELCHIOR2	Sectional (8-bin from 0.010 to $40 \mu m$); SO4 ²⁻ , NO3 ⁻ , NH4 ⁺ , Na ⁺ , Cl ⁻ , OC, EC, H ₂ O, dust	Detailed microphysical processes as treated in CHIMERE	Same as CHIMERE
EMS-Beijing	CBMZ in NAQPMS, and CB-IV in CMAQ and CAMx	Sectional (9 bins) in NAQPMS Modal (3-mode in CMAQ and 2-mode in CAMx)	Detailed microphysical processes as treated in CF in NAQPMS, CAMx, AERO4 in CMAQ	RADM aqueous-phase chemistry
CFORS	Linear conversion of SO_2 to SO_4^{2-}	Sectional (12 bins); SO ₄ ²⁻ , EC, POC, Na ⁺ , Cl ⁺ , H ₂ O, dust	None	None
POLYPHEMUS	RACM	None	None	None

¹ The list of acronyms is provided in Appendix. ² There are several air quality systems used by regional air quality agencies (Association agr éées de surveillance de la qualité de l'air (AASQAs)) and only the one for the Paris region is given here as an example. ³ FUMAPEX includes six UAQIFS model systems implemented in six cities in five countries. The labels 1-6 correspond to the six model systems listed in Table 5.

pollutants	Area	Period	MB	RMSE	NMB	NME	Threshold	А	CSI	POD	В	FAR	model	reference
					(%)	(%)		(%)	(%)	(%)		(%)		
maximum 1-h	W EU	5/1-9/30,1998	1.5	11.0	_	_	_	_	_		_		ECMWRF/CHIMERE	SC01
average O ₃	Melbourne	March 7-9, 2001	-6 to -1		-12 to -14	17-24							AAQFS	MA01b
-	/Sydney,	1/1-5/31, 2001					60			30-70		14-63	AAQFS	CO04
	Australia	Summer,					60			33-89			AAQFS	CH05 ^a
		2001-2003					80			37-53			AAOFS	CH05 ^a
	NE US	8/5-29,2002	1.4	14.6	2.2	18.0	125	99.2	9.7	14.0	0.6	76	MAOSIP-RT	KA05
	NE US	8/5-29,2002	9.5	21.3	15.0	25.8	125	97.0	9.8	29.8	2.3	87.2	MM5/Chem	KA05
	NE US	8/5-29,2002	3.2	19.1	5.1	23.4	125	99.0	8.3	18.2	1.4	86.7	Hysplit/CheM	KA05
	NIP	8/13-16.2000	_	_	_	_	60	89.7-92.2	6.7-15.0	6.9-22.1	0.1-0.7	33.3-69.6	MM5/CMAO	JI06
	E US.	7/1-8/15.2004	8.5	16.9	16.4	25.3	_	_	_	_	_	_	Eta/CMAO ^a	YU07
	EUS	7/1-8/15 2004	43	14.8	7.0	18.2	_	_	_	_	_	_	Eta/CMAO ^b	YU07
	EU	Spring/summer	$0-5.6 \mu g m^{-3}$	0.83-20.1	,	10.2	180 µg m ⁻³	15-41				03-09	PREV'AIR	HO08
	20	2004-2006	0 010 µg iii	ug m ⁻³			100 µg	10 11				010 019		11000
	FU	7/1-8/31 2005	-0.7	μ <u>σ</u>	_	_	_	_	_	_	_	_	CHIMERE	\$709
	SUS	5/1-9/30 2009	4 5	16.8	9.5	267	80	94.0	52	31.3	53	94.1	WRF/Chem-MADRID	MT11/12
	5 65	5/1-9/50,2009	4.5	10.0	2.5	20.7	60	75.3	21.7	46.1	1.6	71.1	WRI/Chem-Wi/DRID	WII 11/12
mavimum 8-	NE US	8/1-10 2001					85	80.0	34.0	40.1	1.0	13.0	MM5/MAOSIP BT	MC04
hr average O.	NE US	8/5-29 2002	83	18.2	15.1	25.4	85	85.8	18.1	4 <i>)</i> .0 26.7	0.7	64.0	MAOSIP_RT	KA05
in average 03	NE US	8/5 20 2002	28	13.0	5.0	18.6	85	76.2	17.6	26.7	1.4	74.6	MM5/Chom	KA05
	NE US	8/5 20 2002	1.2	15.0	2.1	22.5	85	80.5	5.8	7 1	0.3	763	Hysplit/Chom	KA05
	NE 03	8/3-29,2002	-1.2	15.8	-2.1	22.3	85	69.5	5.8	/.1	0.5	70.5	riyspin/Chem	KA05
	NE US	6/1-9/30,2004	10.2	15.7	22.8	28.1	85	98.9	14.2	41.0	2.3	82.1	Eta/CMAQ	ED06
	E US	7/1-8/15,2004	10.4	16.6	22.6	28.8	_	_	_	_	_	_	Eta/CMAQ	YU07
	E US	7/1-8/15,2004	6.5	13.9	11.9	19.7	_	_	_	_	_	_	Eta/CMAQ ^c	YU07
	NY	7/1-9/30,2004	6.5	12.8	_	_	_	_	_	_	_	_	Eta/CMAQ	HO07
	NY	1/1-3/31,2005	1.4	8.7	_	_	_	_	_	_	_	_	Eta/CMAQ	HO07
	NY	6/1-9/30,2005	4.7	13.0	_	_	_	_	_	_	_	_	Eta/CMAQ	HO07
	NY	7/1-9/30,2004	_	_	_	_	65	84.0-95.2	31.4-53.2	46.5-84.8	_	32.9-55.2	Eta/CMAQ	HO07
		1/1-3/31, 6/1-	_	_	_	_	85	96.1-99.8	0.0-29.0	0.0-58.3	_	N/A ^d ,	Eta/CMAQ	HO07
		9/30,2005										36.7-82.5	-	
	NE US	7/14-8/17,2004	14.3	20.9	_	_	_	_	_	_	_	_	WRF/chem-1	MK07
	and		3.4	11.6	_	_	_	_	_	_	_	_	WRF/chem2 ^a	MK07
	SE CA		11.9	16.6	_	_	_	_	_	_	_	_	WRF/chem2 ^b	MK07
			17.0	23.2	_	_	_	_	_	_	_	_	CHRONOS	MK07
			5.9	16.2	_	_	_	_	_	_	_	_	AURAMS	MK07
			26.4	31.0	_	_	_	_	_	_	_	_	STEM-2K3	MK07
			13.4	17.9	_	_	_	_	_	_	_	_	ET/CMAQ	MK07
	PN	8/1-9/30,2004	2.7		6	17	_	_	_	_	_	_	MM5/CMAQ	CH08
	NE US	8/12.2005		_	_	_	85	91.6	23.4	31.3	0.7	51.6	Eta/CMAO	LE08
	EUS	8/12.2005	_	_	_	_	85	90.4	24.3	37.5	0.9	59.1	Eta/CMAO	LE08
	CONUS	8/12.2005	_	_	_	_	85	87.4	26.0	54.2	1.6	66.7	Eta/CMAO	LE08
	EUS	6/1-9/30 2005	10.9	163	22.4	27.1	_	_	_	_	_	_	WRF-NMM/CMAO	ED09
	EUS	6/1-9/30 2006	10.5	15.6	25.2	30.4	_	_	_	_	_	_	WRF-NMM/CMAO	ED09
	EUS	6/1-9/30 2007	79	14.5	16.5	24.1	_	_	_	_	_	_	WRF-NMM/CMAO	ED09
	CONUS	6/1-8/31 2007	43	13.0	87	20.4	75	92.4	23.2	42.5	12	663	WRF-NMM/CMAO	ED09
	CONUS	6/1-8/31 2007					85	96.9	15.4	32.2	1.2	77.3	WRF-NMM/CMAO	ED09
	Eastern	8/31-10/12 2006	60	13.1			75	/0./	18.0	32.0	1.1	59.0	7-model ensemble ^e	DI10
	Texas	0/01-10/12,2000	0.0	13.1			85		60	10.0		70.0	/ model ensemble	2310
	10,743						05		0.0	10.0		70.0		

Table A4. Discrete and categorical evaluation of RT-AQF results for O₃ and PM_{2.5} predictions.

		Tuble III. DI		eutegomet	ii evaluat	1011 01	ICI /IQI	results	101 O 3 ui	1012.5	predic		itiliaea)	
pollutants	Area	Period	MB	RMSE	NMB	NME	Threshold	A (%)	CSI (%)	POD	В	FAR (%)	model	Author
maximum 8	S LIS	5/1 0/30 2000	3.5	13.6	83	25.0	65	01.5	0.2	28.4	2.4	88.0	W/DE/Chem MADPID	MT11/12
h avorago O.	5 05	5/1-9/50, 2009	5.5	15.0	0.5	25.0	75	07.2	3.0	25.5	5.9	05.6	WRI/Chelii-WADRID	
li average O3							85	97.2 99.0	0.9	15.6	17.0	99.1		
hourly O ₃	NE US	8/1-10,2001	-18.0 - 12.5	14.0 - 25.9	_	_	_	_	_	_	_	_	MM5/MAQSIP_RT ^f	MC04
•	W EU	1999 - 2002	3.2-4.4	_	9.8-10.8	_	_	_	_	_	_		CHIMERE	BV04
	LP-S	6/21-23,2001	-13.2	_	_	_	_	_	_	_	_	_	UAM-V	OR04
	SP-B	8/2-5.11-14.1999	3.8-5.8	14.7-20.3	_	_	_	_	_	_	_	_	RAMS	DE05
	NIP	8/13-16,2000	0.52	6.7	1.7	30.8	_	_	_	_	_	_	MM5/CMAQ	JI06
	E US	7/1-8/15,2004	11.5	19.4	40.9	54.8	_	_	_	_	_	_	Eta/CMAO ^b	YU07
	E US	7/1-8/15.2004	3.2	14.9	6.1	21.5	_	_	_	_	_	_	Eta/CMAO ^{a, c}	YU07
	EU	Spring/summer, 2004-2006	12.3 μg m ⁻³	28.2 μg m ⁻³									PREV'AIR	HO08
	NA	6/8-7/13 /2007	-62	17.3									GEM-CHRONOS	MO08
	NA	2/2-3/8 2008	-18.4	22.1									GEM-CHRONOS	M008
	NA	6/8-7/13 /2007	-6.1	16.2									GEM-MACH15	M008
	NA	2/2-3/8 2008	-7.1	13.5									GEM-MACH15	M008
	EU	7/1-8/31 2005	-47		_	_	_	_	_	_	_		CHIMERE	SZ09
	IP	2004	-8397	135 - 145	-6883	_	_	_	_	_	_	_	CHIMERE	V109
	S US	5/1-9/30,2009	4.5	14.9	15.4	39.9	80	99.2	2.5	18.8	6.8	97.2	WRF/Chem-MADRID	MT11/12
24-h	NY	7/1-9/30,2004	5.4	13.2	_	_	_	_	_	_	_	_	Eta/CMAQ	HO07
average	NY	1/1-3/31,2005	6.2	14.5	_	_	_	_	_	_	_	_	Eta/CMAQ	HO07
PM _{2.5}	NY	6/1-7/31,2005	4.4	13.6	_	_	_	_	_	_	_	_	Eta/CMAO	HO07
210	NY	7/1-9/30.2004		_	_	_	15.5	60.8-89.7	22.5-53.7	24.3-90.9	_	25.0-55.0	Eta/CMAO	HO07
		1/1-3/31.6/1-		_	_	_	45.5	91.4-99.7	0-3.6	0-44.7		N/A ^d ,	Eta/CMAO	HO07
		7/31,2005										96.2-100		
	EUS	7/14-8/17, 2004		1.96									WRF/chem-1 ^c	MK07
	EUS	7/14-8/17, 2004		1.86									WRF/chem2 ^g	MK07
	EUS	7/14-8/17.2004		2.03									WRF/chem2 ^h	MK07
	EUS	7/14-8/17, 2004		1.96									CHRONOS	MK07
	EUS	7/14-8/17.2004		1.92									AURAMS	MK07
	EUS	7/14-8/17, 2004		1.77									STEM-2K3	MK07
	EUS	7/14-8/17, 2004		1.79									Eta/CMAO	MK07
	EUS	7/14-8/17, 2004		1.68									6-model ensemble ⁱ	MK07
	EUS	7/14-8/17 2004		1 69									6-model ensemble ⁱ	MK07
	PN	8/1-11/30 2004	2.1-2.2	_	17-32	70-81	_	_	_	_	_	_	MM5/CMAO	CH08
	EUS	7/14-8/18 2004	-3.2	8.8	-21.0	41 2	_	_	_	_	_		Eta/CMAO	YU08
	eastern	8/31-10/12 2006	-13	5 5	2110		31.5		0.0	0.0		100	7-model ensemble ^e	DI10
	Texas	0/01 10/12,2000	1.5	5.5			16.5		8.0	14		80	/ model ensemble	2310
	NA	Summer 2008	-2.08	12.8									GEM-CHRONOS	MA09
	NA	Winter 2008	0.86	14.1									GEM-CHRONOS	MA09
	NA	Summer 2009	-0.70	12.9									GEM-CHRONOS	MA09
	NA	Summer 2008	0.69	13.5									GEM-MACH15	MA09
	NA	Winter 2008	-0.18	15.9									GEM-MACH15	MA09
	NA	Summer 2009	2.08	13.6									GEM-MACH15	MA09
	S US	5/1-9/30.2009	-0.6	5.9	-5.6	37.0	15.5	78.0	20.6	29.1	0.7	58.8	WRF/Chem-MADRID	MT11/12
							45.5	99.5	0.0	0.0	1.9	100.0		

Table A4. Discrete and categorical evaluation of RT-AQF results for O₃ and PM_{2.5} predictions (continued)

				Suitegoniei	ii ovuluu	1011 01		i iosuits i	or O ₃ un	u i ivi _{2.5}	prodicti		intiliaca)	
Hourly PM _{2.5}	E US	7/14-8/18,2004	-3.3	11.3	-21.1	51.4	—	—	_	_	_	_	Eta/CMAQ	YU08
	S US	5/1-9/30,2009	-0.6	8.3	-5.2	49.8	15.0	72.1	20.5	29.2	0.7	59.1	WRF/Chem-MADRID	MT11/12
24-h average	ME	March, June, July,								31-65		78-98	AAQFS	MA01b
PM10		2001												
	OS	11/01,1999 -	-20.9 to	37.9-47.2	-36.5 to								MM5- AirQUIS	BE02
		04/30, 2000	13.8 ^j		24 ^j									
	EU	Summer, 2004-	-3.5 to -1.3	8.3-8.9									PREV'AIR	HO08
		2006												
		Winter, 2004-	-5.7 to -1.5	12.5-14.3										
		2006												
	IP	6/19-7/12, 2006	-29				30.0	29.2-54.2	15.0-54.2	15.0-54.2	0.5-0.9	0	MM5/CMAQ	Л08
							50.0	16.7-79.2	9.1-16.7	9.1-16.7	0.8-0.9	0		
			-7				30.0	95.8-100	95.2-100	100.0	0.9	0-4.8	MM5/CMAQ/DREAM	
							50.0	70.8-95.8	68.2-83.3	68.2-83.3	0.9	0	-	
	NE	2005		15.4									LOTOS-EUROS	MAN09
	NE	2004-2006	-13.2	16.3					8.3					
	NE	2004-2006	-0.03 to -1.3	9.1-9.6					44.5-49.2				LOTOS-EUROS	
													With bias correction	

Table A4. Discrete and categorical evaluation of RT-AQF results for O₃ and PM_{2.5} predictions (continued)

1. MB: Mean Bias; RMSE: Root Mean Square Error; NMB: Normalized Mean Bias; NME: Normalized Mean Error; A: Accuracy; CSI: Critical Success index; POD: Probability Of Detection; B: Bias; FAR: False Alarm Ratio.

2. The unit for MB, RSME, and threshold are ppb for O_3 (except those indicated) and $\mu g m^{-3}$ for $PM_{2.5}$.

3. Superscripts a:all data pairs are included without cutoff threshold value; b: cutoff threshold value for O₃ concentrations is 40 ppb; c: based on the EPA NET-96 emissions inventory for the United States, and a 1985 base year inventory for Canada at a horizontal resolution of 27-km; d: An FAR of N/A indicates that no exceedances were predicted by the AQF model; e: the seven models include: WRF/chem-2 (27-km), WRF/chem-2 (12-km), CHRONOS, AURAMS, STEM-2K3, BAMS (15-km), and NMM/CMAQ; f: cutoff threshold value for O₃ concentrations is 60 ppb; g: based on the EPA NEI-99 inventory for the United States and a 2000 base year inventory for Canada at a horizontal resolution of 12 km; i: the six models include: WRF/chem (36-km), WRF/chem. (12-km), CHRONOS, AURAMS, STEM-2K3, and Eta/CMAQ; j: calculated based on data reported in this paper.

4. S US: Southeastern U.S.; E US: Eastern U.S., NE US: Northeastern U.S.; PN: Pacific Northwest; NY: New York State; EU: Europe; W EU: Western Europe; SE CA: southeastern Canada; LP-S: La Plana, Spain; SP-B: São Paulo, Brazil; NIP: Northeastern Iberian Peninsula; IP: Iberian Peninsula; NA: North America; ME: Melbourne, Australia; OS: Oslo, Norway; NE: the Netherlands.

5. See a list of acronym in the Appendix for all model names

6. MT11/12: Chuang et al. (2011)/Chuang et al. (2012); MA01a: Manins (2001a); MA01b: Manins (2001b); SC01: Schmidt et al. (2001); BV04: Blond and Vautard (2004); CO04: Cope et al. (2004); MC04: McHenry et al. (2004); OR04: Ortega et al. (2004); DE05: de Freitas et al. (2005); CH05: Cope and Hess (2005); KA05: Kang et al. (2005); ED06: Eder et al. (2006); HO07: Hogrefe et al. (2007); JI06: Jim énez et al. (2006); MK07; McKeen et al. (2007); YU07: Yu et al. (2007); CH08: Chen et al. (2008); MO08: Moran and Crevier, 2008; MA09: Makar et al., 2009; ED09: Eder et al. (2009); LE08: Lee et al. (2008); YU08: Yu et al. (2008); HO08: Honor éet al., 2008; SZ09: Szopa et al. (2009); VI09: Vivanco et al. (2009); BE02: Berge et al., 2002; JI08: Jim énez et al. (2008); MAN09: Manders et al. (2009); DJ10: Djalalova et al. (2010).

Additional References

- Berge, E., S.-E. Walker, A. Sorteberg, M. Lenkopane, S. Eastwood, H. I. Jablonska, and M. Ø.
 Koltzow (2002), A real-time operational forecast model for meteorology and air quality during peak air pollution episodes in Oslo, Norway, *Water, Air, and Soil Pollution: Focus*, 2, 745-757.
- Chuang, M.-T., Y. Zhang, and D.-W. Kang (2012), Erratum to "Application of WRF/Chem-MADRID for Real-Time Air Quality Forecasting over the Southeastern United States" [Atmos. Environ. 45 (2011) 6241-6250], Atmos. Environ., in review.
- Cope, M. E., G. D. Hess, S. Lee, K. Tory, M. Azzi, J. Carras, W. Lilley, P. C. Manins, P. Nelson, L. Ng, K. Puri, N. Wong, S. Walsh, and M.Young (2004), The Australian Air Quality Forecasting System. Part I: Project description and early outcomes, *J. of Applied Meteorology*, *43*, 649-662.
- Cope, M.E., and G.D. Hess (2005), Air quality forecasting: a review and comparison of the approaches used internationally and in Australia, *Clean Air and Environmental Quality*, *39* (1): 52-60.
- Djalalova, I., J. Wilczak, S. McKeen, G. Grell, S. Peckham, M. Pagowski, L. DelleMonache, J. McQueen, Y. Tang, P. Lee, J. McHenry, W. Gong, V. Bouchet, and R. Mathur (2010), Ensemble and bias-correction techniques for air quality model forecasts of surface O₃ and PM_{2.5} during the TEXAQS-II experiment of 2006, *Atmos. Environ.*, 44, 455-467,doi: 10.1016/j.atmosenv.2009.11.007.
- Eder, B., D. Kang, R. Mathur, J. Pleim, S. Yu, T. Otte, and G. Pouliot (2009), A performance evaluation of the National Air Quality Forecast Capability for the summer of 2007, *Atmos. Environ.*, 43, 2312-2320, doi: 10.1016/j.atmosenv.2009.01.033.
- Jim énez, P., O. Jorba, R. Parra, and J. M. Baldasano (2006), Evaluation of MM5-EMICAT2000-CMAQ performance and sensitivity in complex terrain: High-resolution application to the

northeastern Iberian Peninsula, Atmos. Environ., 41, 5056-5072, doi:

10.1016/j.atmosenv.2005.12.060.

- Jim énez-Guerrero, P., C. P érez, O. Jorba, and J. M. Baldasano (2008), Contribution of Saharan dust in an integrated air quality system and its on-line assessment, *Geophys. Res. Lett.*, 35, L03814, doi:10.1029/2007GL031580, 2008.
- Lee, P., D. Kang, J. McQueen, M. Tsisulko, M. Hart, G. DiMego, N. Seaman, and P. Davidson (2008), Impact of domain size on modeled ozone forecast for the Northeastern United states, *Journal of Applied Meteorology and Climatology*, 47, 443-461, doi: 10.1175/2007JAMC1408.1.
- Makar, P. A., et al. (2009), Modelling the impacts of ammonia emissions reductions on North American air quality, *Atmos. Chem. Phys.*, *9*, 7183–7212, doi:10.5194/acp-9-7183-2009.
- Manins, P. (2001a), Current Status, Preliminary Validation Study of the Australian Air QualityForecasting System, Project Report, PSS : dh79, Department of the Environment and Heritage,CSIRO Atmospheric Research, PMB 1 Aspendale 3195, Australia.
- Manins, P. C.(2001b), Air Quality Forecasting For Australia's Major Cities, Final Report, PSS: dh79A,
 Department of Environment and Heritage, CSIRO Atmospheric Research, 341 pp., PMB 1
 Aspendale 3195, Australia, November.
- Moran, M., and L.-P. Crevier (2008), Development and evaluation of a new operational Air Quality Forecast Model: GEM-MACH15, RPN Seminar Series, CMC, Dorval, May 30.
- Ortega, S., M. R. Soler, J. Beneito, and D. Pino (2004), Evaluation of two ozone air quality modelling systems, *Atmos. Chem. Phys.*, *4*, 1389-1398.
- Schmidt, H., C. Derognat, R. Vautard, and M. Beekmann (2001), A comparison of simulated and observed ozone mixing ratios for the summer of 1998 in western Europe, *Atmos. Environ.*, 35, 6277–6297.

- Szopa, S., G. Foret, L. Menut, and A. Cozic (2009), Impact of large scale circulation on European summer surface ozone and consequences for modelling forecast, *Atmos. Environ.*, 43, 1189-1195, doi: 10.1016/j.atmosenv.2008.10.039.
- Vivanco, M.G., I. Palomino, F. Mart ń, M. Palacios, O. Jorba, P. Jim énez, J. M. Baldasano, and O. Azula (2009), An Evaluation of the Performance of the CHIMERE Model over Spain Using
 Meteorology from MM5 and WRF Models, Computational Science and Its Applications ICCSA 2009, *Lecture Notes in Computer Science*, *5592*, 107-117, DOI: 10.1007/978-3-642-02454-2_8.

Appendix: List of Acronyms and Symbols

Acronyms and Symbols	Definitions
3-D	Three-dimensional
3D-Var	Three-dimensional variational method
4D-Var	Four-dimensional variational method
Α	Accuracy
AAQFS	The Australian Air Quality Forecasting System
AASQAs	The Association agréées de surveillance de la qualité de l'air
ACCENT+	Atmospheric Composition Change: a European Network- Plus
ACE Asia	The Asian Aerosol Characterization Experiment
ADB	Aerosol Dynamics Basic research mode only
ADMS-Urban	The Atmospheric Diffusion Modeling System for Urban planning
ADOM	The Acid Deposition and Oxidants Model
AEC	The AER/EPRI/Caltech SOA model
AEROCOM	Aerosol Comparisons between Observations and Models
aFAR	Area false-alarm ratio
AFR	Air Force Regulation
aH	Area hit
AIRNow	The Aerometric Information Retrieval Now network
AIRPACT	The Air Indicator Report for Public Access and Community Tracking
AirQUIS	Air QUality Information System
NILU	The Norsk Institutt for LUftforskning (Norwegian Institute of Ai Research)
ALADIN	The Aire Limit & Adaptation Dynamique D éveloppement InterNational
ANNs	Artificial neural networks
AOD	Aerosol optical depth
API	Air pollution index
APP	Air pollution potential
AQF	Air quality forecasting
AQFMS	Air Quality Forecast Modeling System
AQI	Air quality index
AQMs	Air quality models
ASHOE	The Airborne Southern Hemisphere Ozone Experiment
AURAMS	A Unified Regional Air-quality Modelling System
ARGOS/DEMA	The Accident Reporting and Guidance Operational System of The Danish
	Emergency Management Agency
ARIMA	Auto-Regressive Integrated Moving Average model
ARPEGE	Action de Recherche Petite Échelle Grande Échelle (Action Research from large
	to small scale, a global numerical weather prediction system developed by
	M ét éo France)
ARW	The Advance Research Weather Research and Forecast
В	Bias
BAMS	The Baron Advanced Meteorological System, Inc.
BASTER	Base de donn és en temps reel (real-time database)
BCONs	Boundary conditions
BEIS	Biogenic Emissions Inventory System

Acronyms and Symbols	Definitions
BL	Boundary layer
BLUE	The Best Linear Unbiased Estimator
BrONO ₂	Bromine nitrate
BS	Brier score
BSC-CNS	Barcelona Supercomputing Center – Centro Nacional de Supercomputación
BVOCs	Biogenic volatile organic compounds
C ₆ H ₆	Benzene
CAA	The Clean Air Act
CAC	Chemistry Aerosol Cloud (CAC) model
CALMET	The California Meteorological model
CALGRID	The California Grid model
CALIOPE	An air quality forecasting system for Spain developed under The CALIOPE
	project funded by The Spanish Ministry of The Environment
Caltech	The California Institute of Technology
CAM	Canadian Aerosol Module
CAMx	Comprehensive Air quality Model with extensions (CAMx)
CAMO	The cellular automata traffic model
CAQI	The Common Air Quality Index
CAR-FMI	Contaminants in The Air from a Road of The Finnish Meteorological Institute
CART	Classification And Regression Trees
CASTNET	Clean Air Status and Trends Network
CB05	The 2005 version of carbon bond gas-phase mechanism
CB05Cl	The CB05 mechanism with chlorine extensions for The troposphere
CB05-TU	The CB05 with a new toluene mechanism
CB6	The carbon bond gas-phase mechanism version 6
CBM-Z	The carbon bond mechanism – version Z
CCN	Cloud condensation nuclei
CCSR/NIES/FRCGC	The Center for Climate System Research/National Institute for Environmental
	Study/Frontier Research Center for Global Change, Japan
CDA	Chemical data assimilation
CETEMPS	The Center of Excellence for The integration of remote sensing Techniques and
	numerical Modelling for The Prediction of Severe weather
CF	Coarse and Fine
CFD	Computational Fluid Dynamical models
CFORS	The Chemical Weather Forecast System
CFreq	The climatological frequency
CHASER	CHemical Atmospheric general circulation model for Study of atmospheric
	Environment and Radiative forcing
CFCs	Chlorofluorocarbons
CH ₄	Methane
CHRONOS	The Canadian Hemispheric and Regional Ozone and NO _x System
	The Carnegie Mellon/California Institute of Technology photochemical airshed
CITEPA	Centre Interprotessionnel Technique d'Etudes de la Pollution Atmosphérique
	Chlorine radical
Cl ₂	Molecular chlorine

Acronyms and Symbols	Definitions
ClONO ₂	Chlorine nitrate
CMAQ	The Community Multiscale Air Quality Modeling System
CMU	The Carnegie-Mellon University
СО	Carbon monoxide
CONAMA	The Comisión Nacional del Medio Ambiente of Chili
COST	The European Cooperation in Science and Technology
CSI	Critical success index or threat score
CSIRO	The Commonwealth Scientific and Industrial Research Organization of
	Australia Atmospheric Research
СТМ	Chemical Transport Module (Model)
CTN-ACE	Italian National Focal Point on Atmospheric Emissions
DACFOS	The Danish Atmospheric Chemistry FOrecasting System
DAQM	The Denver Air Quality Model
DERMA	The Danish Emergency Response Model of The Atmosphere
DICTUC	Departamento de Investigaciones Científicas y técnicas de la Universidad
	Catolica
DMI	Danish Meteorological Institute
DMS	Dimethyl sulfide
DMU - ATMI	Danmarks Miljøundersøgelser (DMU), Department of Atmospheric
	Environment, Afdelingen for ATmosfærisk MIljø(ATMI, The Department of
	Atmospheric Environment)
DREAM	The Danish Rimpuff and Eulerian Accidental release Model
DREAM	The Dust REgional Atmospheric Model
EAgrid 2000	East Asian Air Pollutant Emissions Grid Inventory
EBI	The Euler backwards iterative solver
EC	Elemental carbon
EC FP7	The European Commission Seventh Framework Programme
ECHAM5	A Global Climate Model developed based on ECMWF global forecast model
	by Max Planck Institute for Meteorology, HAMburg, version 5
ECMWF	The European Center for Medium-Range Weather Forecast
ECMWF-IFS-CTMs	ECMWF Integrated Forecast System with CTMs
EDGAR	The Emission Database for Global Atmospheric Research
EEA	European Environment Agency
EFA	The Ensemble Forecast of Analyses
EIM	An emissions inventory module used in AAQFS
EKF	The extended Kalman filter
EMEP	The European Monitoring and Evaluation Programme Model
EMEP-unified	The EMEP unified model that unifies previous versions of EMEP for
	acidification and oxidant modeling developed by The Norwegian
	Meteorological Institute
EMMA	The Emission Model for Mobile Machines
EMIMO	EMIssion Model
EMS-Beijing	The ensemble air quality multi-model forecast system for Beijing
EnKF	Ensemble Kalman filtering
Enviro-HIRLAM	Online coupled CTM-NWP model 'Environment - HIgh Resolution Limited
	Area', developed by The Danish Meteorological Institute

Act onyms and symbols Demitions	
EOS Earth Observing System	
EPA The U.S. Environmental Protection Agency	
ESMERALDA ÉtudeS Multi RégionALes De l'Atmosphère (Multi Regional Studies of	f The
Atmosphere)	
ESSA The Environmental Science Services Administration	
ETEX I and II European Tracer EXperiment I and II	
ETKF Ensemble Transform Kalman Filter	
EXPAND The EXposure model designed especially for Particulate matter And Ni	trogen
oxiDes	-
EU European Union	
EURAD The EURopean Air pollution Dispersion model	
EV economic value	
FAR false alarm ratio	
FARate false alarm rate	
FARM The Flexible Air quality Regional Model	
FB fractional bias	
FDDA The four-dimensional data assimilation	
FGE fractional gross error	
FL Fuzzy logic	
FMI Finnish Meteorological Institute	
ForeChem The Italian air quality Forecasting model	
FRCGC The Frontier Research Center for Global Change	
FUMAPEX Integrated Systems for Forecasting Urban Meteorology, Air Pollution a	nd
Population Exposure	
GAMs generalized additive models	
GATOR-GCMOM The gas, aerosol, transport, radiation, general circulation, mesoscale, and	d ocean
model	
GCM General Circulation Model	
GCTM a global Chemical Transport Model	
GEIA Global Emissions Inventory Activity	
GEM Global Environmental Multiscale Model	
GEM-AO The Global Environmental Multiscale weather prediction model with A	ir
Quality processes	
GEM-MACH15 a limited-area 15-km version of Global Environmental Multiscale mode	el-
Modelling Air quality and CHemistry	
GEMS Global and regional Earth-system (Atmosphere) Monitoring using Sate	llite and
in-situ data	
GEOS DAS The Goddard Earth Observing System Data Assimilation System	
GFDL Geophysical Fluid Dynamics Laboratory	
GFED Global Fire Emission Database	
GMES The Global Monitoring for Environment and Security Programme	
GOCART The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation	n and
Transport model	
GOME Global Ozone Monitoring Experiment	
GOMOS Global Ozone Monitoring by Occultation of Stars	

Acronyms and Symbols	Definitions
GRANTOUR	Global Aerosol Transport and Removal model
GR-AQF	The global-regional air-quality forecasting model system
GRG MOZART	Global Reactive Gases The Model for OZone and Related chemical Tracers
GRS	The Generic Reaction SET Model for Ozone
НСНО	formaldehyde
HCl	hydrochloric acid
HERMES	The High-Elective Resolution Modelling Emission System
Hg	Mercury
HIRLAM	HIgh Resolution Limited Area Model
HKD	Hansen and Kuipers discriminant
HNO ₃	Nitric acid
HNO ₄	Peroxynitrous acid
HO ₂	Hydroperoxy radical
HO _x	Hydrogen oxide radicals, $=OH+HO_2$
H ² O	The hydrophobic/hydrophilic organic molecular approach
H ₂ O ₂	Hydrogen peroxide
HONO	Nitrous acid
HRate	Hit rate
HSS	Heidke skill score
H_2SO_4	Sulfuric acid
HYSPLIT	HYbrid Single-Particle Lagrangian Integrated Trajectory
HYSPLIT –CheM	HYSPLIT-Chemistry Model
ICARTT	The International Consortium for Atmospheric Research on Transport and
	Transformation
ICONs	Initial conditions
IDEA	Infusing satellite data into environmental applications
IFS	Integrated forecasting system
IMPACT	The Integrated. Massively Parallel Atmospheric Chemical Transport
INDOEX	The Indian Ocean Experiment
INERIS	The French National Institute for Industrial Environment and Risks
INTERREG IIIC	The European Union INTERREGional co-operation (strand C) programme
INTEX-B	The Intercontinental Chemical Transport Experiment-Phase B
IOA	Index of agreement
IPCC	Intergovernmental Panel on Climate Change
IPSL	The Institut Pierre-Simon Laplace
IVOCs	Intermediate volatility organic compounds
JCAP	Japan Clean Air Program
JPL-06 chemistry	The Jet Propulsion Laboratory 2006 mechanism
KF	The Kalman filter method
LACAPCD	Los Angeles County Air Pollution Control District
LAMI	The Limited Area Model Italy
LAPS	Limited Area Prediction System of Bureau of Meteorology, Australia
LES	Large Eddy Simulation
LETKF	Local Ensemble Transform KF
LMDzt-INCA	The Laboratoire de M & éorologie Dynamique (Dynamic Meteorology
	Laboratory) – Zoom Tracers GCM with INteraction of Chemistry and Aerosol

Acronyms and Symbols	Definitions
LOTOS-EUROS	LOng Term Ozone Simulation - EURopean Operational Smog model
LRA	Linear Regression Analysis
MACC	Monitoring atmospheric composition & climate
MADE/SORGAM	The Modal Aerosol Dynamics Model for Europe/The Secondary Organic
	Aerosol Model
MADRID	The Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution
MAGE	Mean absolute gross error
MAQSIP-RT	The Multiscale Air Quality Simulation Platform—Real Time
MATCH	Multiple-Scale Atmospheric Transport and Chemistry Modeling System
	(Sweden)
MATCH-MPIC	The Model of Atmospheric Transport and Chemistry- MPIC version
MATCH-NCAR	The Model of Atmospheric Transport and Chemistry developed at The U.S.
	National Center for Atmospheric Research
MB	Mean bias
M ét éo France	The French Meteorological Office
MDC	The Model Diagnostic and Correction approach
MEGAN	The Model of Emissions of Gases and Aerosols from Nature
MEGAPOLI	<u>Megacities:</u> <u>E</u> missions, urban, regional and <u>G</u> lobal <u>A</u> tmospheric <u>POL</u> lution and
	climate effects, and Integrated tools for assessment and mitigation
MELCHIOR1 and 2	The Mode lE Lagrangien de la CHImie de l'Ozone a l'échelle R égionale
	versions 1 and 2
MFB	Mean fractional bias
MFE	Mean fractional error
MICROSYS	Micro-scale air quality modeling system
MIRAGE 1 & 2	The Model for Integrated Research on Atmospheric Global Exchanges,
	versions 1 & 2
MM5	Mesoscale Model version 5
MM5/Chem	MM5 with Chemistry
MNB	Mean normalized bias
MNGE	Mean normalized gross error
MNFB	The mean normalized factor bias
MNGFE	The mean normalized gross factor error
MOCAGE	The Mod de de Chimie Atmosph érique áGrande Echelle
MODIS	MODerate-resolution Imaging Spectroradiometer
MOPPIT	Measurements Of Pollution In The Troposphere
MOS	The model output statistics
MOSAIC	The Model for Simulating Aerosol Interactions and Chemistry
MOST	The Monin-Obukhov similarity theory
MOZART-3 & 4	The Model for Ozone and Related chemical Tracers, versions 3 & 4
MPIC	Max-Planck-Institute for Chemistry
MSC	The Meteorological Service of Canada
MYJ	The Mellor-Yamada-Janjic scheme
Na	Sodium
NAAQSs	National Ambient Air Quality Standards
NaCl	Sodium chloride

Acronyms and Symbols	Definitions
U.K. NAEI	UK National Atmospheric Emissions Inventory
NAME III	The Numerical Atmospheric dispersion Modeling Environment model
NaNO ₃	Sodium nitrate
NAQFC	The National Air Quality Forecast Capability
NAQPMS	The IAP/CAS nested air quality prediction modeling system
NCAR	The U.S. National Center for Atmospheric Research
NCEP	National Centers for Environmental Prediction
NEAQS	2004 New England Air Quality Study field experiment
NEI	National Emissions Inventory
NERI	National Environmental Research Institute, Denmark
NH ₃	Ammonia
NINFA	North Italian Network to Forecast Aerosol pollution
NLR	Nonlinear regression
NMB	Normalized mean bias
NMBF	The normalized mean bias factor
NMC	The USWB National Meteorological Center
NMEF	The normalized mean error factor
NMGE	Normalized mean gross error
NMM	Nonhydrostatic mesoscale model
NO	Nitric oxide
NO ₂	Nitrogen dioxide
NO ₃	Nitrate radical
NO _x	Nitrogen oxides – The sum of NO and NO ₂
NO _v	Reactive odd nitrogen species – includes NO_x and secondary nitrogen species,
	excludes N ₂ O
N ₂ O	nitrous oxide
N ₂ O ₅	Dinitrogen pentoxide
NOAA	The U.S. National Oceanic and Atmospheric Administration
NRC	The U.S. National Research Council
NSW	New South Wales, Australia
NUDAPT	The National Urban Database and Access Portal Tool
NWP	Numerical Weather Prediction system
NWS/NCEP	The U.S. National Weather Service
O ₃	Ozone
OA	Organic aerosol
OAD	Ozone Action Days
OH	Hydroxyl radical
OC	Organic carbon
OI	Optimal interpolation
OM	Organic matter
OOA	Oxygenated organic aerosol
OPANA	OPerational version of The Atmospheric Numerical pollution model for urban
	and regional Areas
OPPIO	Ozone and PM ₁₀ Polynomial Inference based on Observations
ORCHIDEE	Organizing Carbon and Hydrology in Dynamic Ecosystems dynamical
	vegetation model

Acronyms and Symbols	Definitions
OSPM	The Operational Street Pollution Model
PAN	Peroxyacytyl nitrate
Pb	Lead
PBL	Planetary boundary layer
PCA	Principal Components Analysis
PEACE-C	The Pacific Exploration of Asian Continental Emission phase C
PM ₁	Airborne particulate matter with an aerodynamic diameter of 1 µm or less
PM_{10}	Airborne particulate matter with an aerodynamic diameter of 10 µm or less
PM _{2.5}	Airborne particulate matter with an aerodynamic diameter of 2.5 µm or less
POA	Primary organic aerosol
POD	Probability of Detection
POLINAT 2	The Pollution from Aircraft Emissions in The North Atlantic Flight Corridor
PPA	pair peak accuracy
Prev'air	Prévision de l'air (Air forecast)
PSI	The Pollutant Standard Index
PSS	Pierce skill score
PSSA	Peudo steady state approximation
r	Correlation coefficient
RACM	The Regional Atmospheric Chemistry Model
RADM	The U.S. EPA Regional Acid Deposition Model
RAMS	The Regional Atmospheric Modeling System
RANS	The Reynolds Average Navier Stokes model
REAS	Regional Emission Inventory in Asia
REMSAD	Regional Modeling System for Aerosols and Deposition
REPROBUS	The REactive Processes Ruling The Ozone BUdget in The Stratosphere
	(REPROBUS) model
RMSE	The root mean square error
Rn	Radon
ROM	The regional oxidant model
RPM	The Regional Particulate Model
RT-AQF	Real-time air quality forecasting
RTD	Research and Technological Development
SAPRC-90	The 1990 Statewide Air Pollution Research Center gas-phase mechanism
SAPRC-99	The 1999 Statewide Air Pollution Research Center gas-phase mechanism
SAPRC-07	The 2007 Statewide Air Pollution Research Center gas-phase mechanism
SCAPE II	Simulating Composition of Atmospheric Particles in Equilibrium, version 2
SCIAMACHY	SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY
SEEK	Singular Evolutive Extended KF
SEIK	Singular Evolutive Interpolated KF
SESAME	The Second European Stratospheric Arctic and Middle-Latitude Experiment
SILAM	System for Integrated modeLling of Atmospheric coMposition
SIREAM	The SIze REsolved Aerosol Model
SKIRON/TAPM	The SKIRON forecasting model/The Air Pollution Model
SMHI	Swedish Meteorological and Hydrological Institute
SMOKE	The Sparse Matrix Operator Kernel Emissions
SMVGEAR	The sparse-matrix vectorized GEAR code

Acronyms and Symbols	Definitions
SO ₂	Sulfur dioxide
SO _x	Sulfur oxides
SOA	Secondary organic aerosol
SPEW	Speciated Particulate Emission Wizard
SPPA	Spatially-paired peak accuracy
SS	Skill score
STEM-I	Sulfur Transport Eulerian Model version I
STEM-2K3	The Sulfur Transport and Emissions Model 2003
STOCHEM	The Global 3-D Lagrangian chemistry-transport model
SVOCs	Semi-volatile organic compounds
TexAQS II/GoMACCS	The 2006 Second Texas Air Quality Study/Gulf of Mexico Atmospheric
	Composition and Climate Study
Denmark/DMU-ATMI	Denmark/Danmarks Miljøundersøgelser (DMU)-Afdelingen for Atmosfærisk
THOR	Miljø(The National Environmental Research Institute (NERI)-Department of
	Atmospheric Environment) an Integrated Air Pollution Forecasting and
	Scenario Management System
TM5 (KNMI-cy3-	Tracer Model version 5 (Koninklijk Nederlands Meteorologisch Instituut
GEMS)	(KNMI), Royal Netherlands Meteorological Institute –cy3 - Global and
	regional Earth-system (Atmosphere) Monitoring using Satellite and in-situ
	data)
TNO	Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek
	(The Netherlands Organisation for Applied Scientific Research Emissions
TO 140	Assessment Model (TEAM))
TOMS	The Total Ozone Mapping Spectrometer
	Temporally-paired peak accuracy
TRACE-P	The Transport and Chemical Evolution over The Pacific
	Threat score
	I rue skill score
UAQIFS	Urban air quality information and forecasting system
UAM	Urban airshed model (The first three-dimensional air quality model for
LIAN IN CAN	I have a single of model suggion IV & V
$\frac{\text{UAM-IV} \otimes \text{V}}{\text{UAM} \text{AEDO}(1 \text{T})}$	The Long Term LIAM with corosole
UAM-AEKO/L1	Ine Long Term OAW with aerosols
	Urban canopy
	United Nations
	The United Nations Population Fund
	Unpaired peak accuracy
URMIATM	Urban to Regional Multiscale – one Atmosphere
USAFAWS	The U.S. Air Force Air Weather Service
USDA-FS	U.S. Department of Agriculture - Forest Service
USWB	The U.S. Weather Bureau
USWRP	The U.S. Weather Research Program
VBS	Volatility basis-set
VOCs	Volatile Organic Compounds (typically excluding methane)
VSRM	Variable size resolution model
1 1/1/1	

Acronyms and Symbols	Definitions
WHO	The World Health Organization
WRF	The Weather Research and Forecast model
WS10	Wind speed at 10-m
WSI	The weighted success index
YSU	The Yonsei University scheme