1	Supplementary material published together with the article
2	"Implementation of dust emission and chemistry into the Community
3	Multiscale Air Quality modeling system and initial application to an Asian
4	dust storm episode"
5	K. Wang ¹ , Y. Zhang ^{1, 2} , A. Nenes ^{3, 4, 5} , and C. Fountoukis ⁵
6	¹ Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Campus Box 8208,
7	Raleigh, NC 27695, USA
8	² School of Environment, Tsinghua University, Beijing, China
9	³ Schools of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
10	⁴ Schools of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
11	⁵ Institute of Chemical Engineering and High Temperature Chemical Processes (ICE-HT), Foundation for
12	Research and Technology Hellas (FORTH), Patras, 26504, Greece
13	Correspondence to: Y. Zhang (yzhang9@ncsu.edu)

Pigure S-1. Spatial distribution of NMBS between observations and MMS simulation (left
panel) and WRF simulation (right panel) for temperature at 2 m (T2), water vapor mixing
ratio at 2 m (Q2), 24 h total precipitation (Precip.), and wind speed at 10 m (WS10) over

⁵ China for April 2001.

m (RH2), weekly total precipitation (Precip.), and wind speed at 10 m (WS10) over the U.S.

1 Figure S-3. The predicted monthly-mean (a)-(b) fine-mode dust and (c)-(d) coarse-mode dust

2 concentrations with E_F of 0.5 and 1.0 from the Zender scheme and (e)-(f) fine-mode and

3 coarse-mode dust with E_F of 0.5 from the Westphal scheme at surface in CMAQ-Dust.

1 Figure S-4. Spatial distribution of column variables (from left to right: CO, TOR, NO₂) from satellite observations (1st row), CMAQ

2 v4.4 (2nd row), DEFAULT CMAQ v4.7 simulation (3rd row) and DUST simulation (4th row) in April 2001.

1 Figure S-5 Spatial distribution of differences between simulations DUST and

2 CRUST_ONLY for surface layer HNO₃ in April 2001

- 2 Figure S-6. Spatial distribution of differences between simulations DUST and
- 3 BASELINE_NO_DUST (left panel) and between simulations DUST_HIGH_EF and
- 4 BASELINE_NO_DUST (right panel) at surface layer for PM_{2.5} and PM_{coarse} in April 2001.

- 1 Figure S-7. Spatial distribution of differences between simulations DUST and
- 2 BASELINE_NO_DUST (left panel) and between simulations DUST_HIGH_EF and
- 4 2001.