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Abstract 

The results obtained from nonlinear fiber element analyses for concrete filled tubes 
(CFT) are discussed. The studies were aimed at assessing primarily the overall behavior 
and stability effects on these structural elements as a prelude to a large full-scale testing 
program. The study focuses on ultimate strength analyses for CFT composite columns 
with different stress-strain models for both concrete and steel. Fiber analyses using 
OpenSees are used to assess the impact on the ultimate strength based on the 
assumed stress-strain material curves, member slenderness, initial imperfections, and 
both material and geometric nonlinearities. Fiber analysis results are also compared with 
those obtained from AISC (2005). Fiber-based results show a compatible correlation 
with the expected element behavior, which is also captured in the current AISC (2005) 
Specifications. 

Introduction 

The use of composite columns in moment-resistance frame systems is increasing 
worldwide. Composite columns not only provide many advantages in construction speed 
and economy, but also result in a substantial improvement of mechanical properties of 
the member when compared to either steel or reinforced concrete columns. However, 
there still exist some knowledge gaps in their behavior in areas such as the effective 
stiffness under lateral forces, instability effects in slender beam-columns, and the 
secondary effects due to the steel-concrete contact interaction. Nonlinear fiber element 
analyses provide a very useful analytical tool to investigate some of these behavioral 
aspects of composite elements. Fiber elements offer an efficient approach as they can 
incorporate directly into the model flexural buckling, initial imperfection, geometric and 
material nonlinearity, and hardening effects. 

Fiber element analysis have been widely used to understand and predict the behavior of 
steel (i.e. White, 1986; Liew and Chen 2004; etc.), reinforced concrete (i.e. Taucer et al., 
1991; Izzudin et al., 1993; Spacone and Filippou, 1995; etc.) and composite steel-
concrete elements. Table 1 summarizes briefly a number of analytical studies that have 
looked at fiber analysis of composite elements; this table is not meant to be 
comprehensive, however it gives an idea of the maturity and breath of the approach. 



Table 1. Summary of analytical studies with fiber analysis in composite elements 
Reference Applied to: Brief comments 
Tomii and  

Sakino (1979) 
CCFT and RCFT 

cross-sections 
Calibrated fiber M-φ results with experimental results adjusting 
σ-ε curve in concrete, keeping steel as elastic-perfectly-plastic. 

 
Elnashai and 

Elghazouli (1993) 

 
SRC 

beam-columns 

Developed a non-linear model for SRC frame structures 
subjected to cyclic and dynamic loads, accounting for geometric 
nonlinearities, material inelasticity, confinement effects in 
concrete, and local buckling and cyclic degradation in the steel. 
The model is calibrated and compared with experimental data. 

Ricles and  
Paboojian (1994) 

SRC 
beam-columns 

Analyzed SRC beam-columns with fiber analysis, which 
accounted for strain compatibility, material nonlinearity, and 
confinement effects using the Mander model. 

 
Hajjar and  

Gourley (1996) 

 
RCFT 

cross-sections 

Developed a polynomial expression to represent a 3D axial-
bending interaction equation for square CFT cross-sections. 
This polynomial equation was fitted based on results from 
nonlinear fiber element analysis. 

 
El-Tawil and  

Dierlein (1999) 

 
SRC 

cross-sections 

Compared experimental and fiber-based results of monotonic 
M-φ curves. From the fiber-based model, interaction curves 
were obtained for 3 SRC cross-sections with different steel 
ratios, which were compared with the ACI and AISC strength. 

Lakshimi and 
Shanmugan (2000) 

CFT 
beam-columns 

Used fiber models to predict behavior of biaxially-loaded CFT 
beam-columns and axially-loaded slender CFT columns.  

Uy 
(2000) 

CFT 
columns 

Used fiber models in CFT columns with thin-walled steel tubes. 
Buckling and post-buckling behavior were incorporated through 
a finite strip method and an effective width approach. 

 
Aval et al. 

(2002) 

 
CCFT and RCFT 
beam-columns 

Developed a fiber element accounting for bond/slip interaction 
between concrete and steel (due to the difference between axial 
elongation and curvatures). The effect of semi- and perfect 
bond is investigated and compared with experiments. 

Fujimoto et al. 
(2004) 

RCFT 
cross-sections 

Used the empirical σ-ε curves developed by Nakahara-Sakino-
Inai in fiber analysis to predict monotonic M-φ curves. 

Inai  
et al. (2004) 

RCFT 
cross-sections 

Used the empirical σ-ε curves developed by Nakahara-Sakino-
Inai in fiber analysis to predict cyclic M-φ curves. 

 
Varma et al. 

(2004) 

 
RCFT 

beam-columns 

Adapted and implemented σ-ε curves for both high strength 
steel and concrete to predict the response of square CFT 
elements. These curves were adapted from results of 3D finite 
element analyses, which implicitly accounts for local buckling of 
the steel tube, transverse interaction between steel and 
concrete infill, and confinement of the concrete infill. 

Lu et al. 
(2006) 

RCFT 
cross-sections 

Obtained M-φ curves and interaction P-Mu diagrams, which 
accounted for residual stresses in the steel and confinement 
effects in concrete, as well as the material nonlinearity. 

Choi  
et al. (2006) 

RCFT 
cross-sections 

Developed a parametric study to determine the P-M interaction 
diagram varying with the b/t and fc’/Fy ratios. 

Kim and  
Kim (2006) 

RCFT 
beam-columns 

Compared fiber-based cyclic M-φ and force-displacement (F-∆) 
curves with those obtained experimentally. 

 
Liang 
(2008) 

 

 
RCFT 

cross-sections 

Determined P-M interaction diagrams for short CFT beam-
columns assuming material nonlinearity. Fiber element results 
are compared with experimental data and existing solutions. 
Evaluated the influence of steel ratios, fc’ and Fy. 

 

The results shown in this paper were aimed at assessing primarily the overall behavior 
and stability effects on composite CFT structural elements as a prelude to a large full-
scale testing program. Fiber analysis results were obtained with the software OpenSees 
(Makena and Fenves, 1999), which confinement effects, local buckling, member 
slenderness and instability effects are being predicted. 



An overview of nonlinear fiber element analysis 

Fiber element analysis is a numerical technique which models a structural element by 
dividing it into a number of two-end frame elements, and by linking each boundary to a 
discrete cross-section with a grid of fibers (Figure 1). The material stress-strain response 
in each fiber is integrated to get stress-resultant forces and rigidity terms, and from 
these, forces and rigidities over the length are obtained through finite element 
interpolation functions which must satisfy equilibrium and compatibility conditions. 

Integration points

Frame 
element

Fiber cross-section

 
Figure 1. Frame element with ends coupled to fiber cross-sections 

There are several advantages which justify the use of fiber analysis. Some of these 
advantages include but are not limited to their ability to handle: 

• Complex cross-sections. A fiber cross-section can have any general geometric 
configuration formed by subregions of simpler shapes; geometric properties of the 
more complex section are calculated through the numerical integration. 

• Tapered elements. Since the length of the fiber is not considered, the cross-section 
defined at each of the two ends can be different, and therefore, the response can 
be roughly estimated. Precision can be increased with more integration points. 

• Complex strength-strain behavior. Since each fiber can have any stress-strain 
response, this technique allows modeling nonlinear behavior in steel members 
(steel σ−ε and residual stresses), reinforced concrete members (unconfined and 
confined concrete σ−ε, and steel reinforced σ−ε), and composite members. 

• Accuracy and efficiency. Since each fiber is associated to a given uniaxial stress-
strain (σ−ε) material response, higher accuracy and more realistic behavior effects 
can be captured in a fiber-based model than in a frame-based model, and at less 
computing time than for a 3D finite-based model. 



As described previously, the uniaxial σ−ε curve can directly account for the material 
nonlinearity in monotonic or cyclic loads or displacements, and the residual stresses in 
the structural steel members. However, some researchers have calibrated, based on 
experimental or analytical 3D finite-based results (i.e. Varma et al., 2004; Tort and 
Hajjar, 2007), the uniaxial σ−ε to account for additional behavior effects like: 

• Confinement effects in the concrete due to either steel reinforcement (as in RC or 
SRC cross-sections) or a steel tube (as in CFT cross-sections). Concrete 
confinement in CFT elements remain meanwhile the steel-concrete contact is hold. 

• Local buckling in steel tubes through a degradation of the compressive σ−ε beyond 
the corresponding strain (εlb) when local buckling take place. Local buckling in CFT 
elements can be reached when the steel is highly stressed and the steel-concrete 
contact is lost. 

Stability effects through geometric nonlinearity and initial imperfections can be captured 
directly with the frame-based analysis. In turn, slip between concrete and steel have 
been modeled in the frame-based formulation by adding degrees-of-freedom (i.e. Hajjar 
et al., 1998, Aval et al., 2002; Tort and Hajjar, 2007). 

Stress-strain modeling 

Fiber analyses are obviously sensitive to the assumptions in the stress-strain curves. 
Consequently, several research studies have been conducted on this topic to predict 
more “realistic” responses. 

The current AISC (2005) specification allows the use of strain compatibility and fully-
plastic stress distribution methods to calculate the cross-section strength. The plastic 
distribution method (Roik and Bergmann, 1992) basically assumes that each component 
in cross-section has reached the maximum plastic stress (Figure 2). 
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a) Encased SRC b) Rectangular CFT 

Figure 2. Fully-plastic stress distribution in composite cross-sections 

While very useful and accurate for design purposes, the plastic distribution approach can 
only match the ultimate strength of the cross-section. When the entire moment-curvature 
(or load-deformation) behavior is of interests, more complex uniaxial stress-strain curves 
are needed. These include strain compatibility approaches to model reinforced concrete 
(i.e. Kent and Park, 1971; Mander et. al., 1988), steel (i.e. Menegotto and Pinto, 1973), 
CFT (i.e. Collins and Mitchell, 1990; Sakino and Sun, 1994; Chang and Mander, 1994; 
Nakahara and Sakino, 1998; Susantha et al., 2001), and SRC members (similar to those 
used for RC and steel). 

The concrete model proposed by Kent and Park (1971) is defined by a curve up to the 
peak strength (Equation 1) followed by a descending line and finally constant beyond 



some residual stress (fcr) and strain (εcr); the values fc’ and εc=2fc’/Ec used in this 
equation for plain concrete are replaced by fcc’ and εcc in confined concrete (Figure 3.a). 

( )






















−=

2
2

'
cc

cf ε
ε

ε
εεσ  (1) 

The concrete model proposed by Popovics (1973) is a continuous σ−ε curve in terms of 
the peak strength and a empirical coefficient n=Ec/(Ec-fc/εc). Based on this equation, 
Mander et al. (1988) proposed an approach to estimate the confinement parameters fcc’, 
εcc, εcu that best fit the σ−ε response of rectangular and circular reinforced concreted 
columns confined by stirrups and spirals (Equation 2, Figure 3.b). 
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a) Kent-Park model b) Popovics model 

Figure 3. σ−ε curves in plain and confined concrete 

Based on empirical data and its calibration with an analytical study, Sakino and Sun 
(1994) proposed uniaxial σ−ε models for both concrete (Equation 3, Figure 4) and steel 
(Figure 5) for circular and rectangular CFT elements that account for confinement, local 
buckling and biaxial stresses. Equation 3 describes the σ−ε curve for concrete proposed 
by Sakino and Sun (1994), which is in terms of the effective hoop stresses (σre) and the 
peak concrete strength. 
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And the effective hoop stresses (σre) and the peak strength values are defined by: 
For circular CFTs: For rectangular CFTs: 
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Figure 4 shows σ−ε curves obtained with the Sakino and Sun model in a 5 ksi strength 
concrete that is confined by circular and rectangular steel tubes with 50 and 100 width-
to-thickness ratios (D/t, b/t). As shown in this figure, confinement improves strength and 
ductility in circular CFTs and just ductility in rectangular CFTs. 
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a) Circular CFT b) Rectangular CFT 
Figure 4. Stress-strain (σ−ε) curves obtained from the Sakino and Sun model for a 5 ksi 
strength concrete confined by a steel tube with different width-to-thickness ratios. 

Conversely, steel tubes can be modeled through an unsymmetrical σ−ε curve to satisfy 
the Von Misses yield criteria with biaxial stresses. Depending on the b/t ratio, local 
buckling in rectangular tubes can be handled by a descending branch of the σ−ε curve at 
a critical strain (εlb). A careful calibration of the experimental data is needed to obtain the 
strain εlb when local buckling takes place. This model postulates that εlb in circular tubes 
is reached at high values of strain, and therefore, local buckling effects can be 
neglected; this approach is tied to the Japanese design requirements for b/t ratios which 
basically preclude this failure mode. 
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 a) Circular CFT b) Rectangular CFT 

Figure 5. Stress-strain (σ−ε) for the steel tubes used with the Sakino and Sun’s model 

Fiber analysis 

As originally described, this study intends to obtain the best prediction in the strength 
and ductility of a set of large full-scale circular and rectangular CFT beam-columns. The 
results shown in this section correspond to the following specimens. 

1) CCFT20x0.25-5ksi, which is a circular CFT cross section integrated by an 
HSS20x0.25 steel tube (A500 Gr. B, Ry=1.4, Fy=42ksi, Ru=1.3, Fu=58ksi) filled with 5 ksi 
strength concrete. The D/t ratio of this section is 86.0, which is approaching the limit 
permitted for design in the 2005 AISC specification and 2005 AISC seismic provisions 
(D/t=0.15Es/Fy=103.6), and well beyond that proposed for the 2010 AISC seismic 
provisions (D/t=0.075Es/Fy=51.8). 

2) RCFT20x12x0.3125-5ksi, which is a rectangular CFT cross section integrated by an 
HSS20x12x0.3125 steel tube (A500 Gr. B, Ry=1.4, Fy=46ksi, Ru=1.3, Fu=58ksi) filled with 
5 ksi strength concrete. Similarly, the section b/t ratio is 65.7, which is higher than the 
limits in the 2005 AISC specification (b/t=2.26√(Es/Fy)=56.7) and the one proposed for 
the 2005 AISC seismic provisions (b/t=√(2Es/Fy)=35.5). 

The uniaxial σ−ε models used for concrete in the fiber analysis technique are show in 
the Figure 6 and summarized in the Table 2 and Table 3. The confined concrete strength 
(fcc’) provided by the tubes were obtained with the equation stated in 3.b. 

Table 2. Concrete parameters used in the CCFT20x0.25-5ksi specimen 
 Peak strength Ultimate strength 
Model Stress Strain  Stress Strain 
EPP-0.95fc’ 0.95fc’=4.75 ksi 0.95fc’/Ec=0.0012 0.95fc’=4.75 ksi NA 
Kent-Park fcc’=6.1 ksi εcc=0.0054 fcr=0.6fcc’=3.6 ksi εcr=9εcc=0.049 
Popovics fcc’=6.1 ksi εcc=0.0054 NA εcu=9εcc=0.049 
Sakino-Sun fcc’=6.1 ksi εcc=0.0053 NA NA 
EPP-0.95fcc’ 0.95fcc’=5.78 ksi 0.95fcc’/Ec=0.0015 0.95fcc’=5.78 ksi NA 
 



Table 3. Concrete parameters used in the RCFT20x12x0.3125-5ksi specimen 

 Peak strength Ultimate strength 

Model Stress Strain  Stress Strain 

EPP-0.85fc’ 0.85fc’=4.25 ksi 0.85fc’/Ec=0.0011 0.85fc’=4.25 ksi NA 

Kent-Park fc’=5.0 ksi εc=2fc’/Ec=0.0026 fcr=0.4fcc’=2.0 ksi εcr=9εc=0.0234 

Popovics fc’=5.0 ksi εc=2fc’/Ec=0.0026 NA εcu=9εc=0.0234 

Sakino-Sun fc’=5.0 ksi εc=2fc’/Ec=0.0026 NA NA 
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a) CCFT20x0.25-5ksi b) RCFT20x12x0.3125-5ksi 
Figure 6. Uniaxial σ−ε models used in the concrete fibers 

On the other hand, the steel was modeled with an unsymmetrical elastoplastic σ−ε with 
hardening effects (EPH) as described in Figure 5, except when the concrete was 
assumed elastic-perfectly-plastic (EPP) in which the steel was assumed as well 
symmetric EPP (Table 4). The overstrength ratios of the nominal yield stress (Ry=1.4) 
and ultimate stress (Ru=1.3) were adopted from the AISC seismic provisions (2005). 
Note that in the elastoplastic with hardening model (EPH) for the RCFTs, a local 
buckling strain (εlb) was assumed equal to 25 times de compressive yielding strain (εyc); 
this assumption will be validated and calibrated experimentally in the future. 

Table 4. Steel parameters used in the fiber analysis 

Specimen � CCFT20x0.25-5ksi RCFT20x12x0.3125-5ksi 
Model � EPP EPH EPP EPH 

Tensile ultimate σu RuFu=75.4 ksi 1.08RuFu=81.4 ksi RuFu=75.4 ksi 1.08RuFu=81.4 ksi 

Tensile ultimate εu 100εy=0.20 100εy=0.22 100εy=0.22 100εy=0.24 

Tensile yield σy RyFy=58.8 ksi 1.08RyFy=63.5 ksi RyFy=64.4 ksi 1.08RyFy=69.6 ksi 

Tensile yield εy RyFy/Es=0.002 1.08RyFy/Es=0.0022 RyFy/Es=0.0022 1.08RyFy/Es=0.0024 

Comp. yield σyc RyFy=-58.8ksi 0.89RyFy=-52.3 ksi RyFy=-64.4 ksi 0.89RyFy=-57.3 ksi 

Comp. yield εyc RyFy/Es=-0.002 0.89RyFy/Es=-0.0018 RyFy/Es=-0.0022 0.89RyFy/Es=-0.002 

Local buckling strain NA NA NA εlb=80εyc=-0.16 

Comp. ultimate σuc RuFu=-75.4 ksi 0.89RuFu=-67.1 ksi RuFu=-75.4 ksi NA 

Comp. ultimate εuc 100εyc=-0.20 100εy=-0.18 100εy=-0.22 NA 

s 
s 



Moment-curvature of the cross-section 

Figure 7 shows, for the postulated uniaxial σ−ε models, the monotonic and cyclic 
moment-curvature (M/Mo vs. φ) results obtained for the circular CFT cross-section with 
an initial compression P=0.2Po. In this figure, Mo is the pure bending strength (point B in 
AISC-05), and Po is the pure compression strength (point A in AISC-05); As observed, 
there are low differences regarding the moment strength (EPP Mmax=1.24Mo vs. others 
Mmax=1.34Mo), but very different curvature ductility and both strength and stiffness 
degradation. Monotonic and envelope cyclic differences at high curvatures are caused 
by the degradation model proposed by Karsan and Jirsa (Makena and Fenves, 1999) 
that is implemented in the OpenSees software when unloading and reloading cyclically. 
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Figure 7. Monotonic (bolted) and cyclic (dashed) M-φ curves for the CCFT20x0.25-5ksi 
cross-section with constant compression force P=0.2Po. 



P-M interaction diagrams of the cross-section 

The P-M interaction diagram is, by definition, the curve or surface outlined by the axial 
load and bending moment associated to a desired target (strain, curvature, maximum 
strength, etc.). In reinforced concrete members, this target is generally defined in terms 
of the maximum concrete compressive strain, which is usually taken as εc=0.003 for 
unconfined concrete. This target intends in reality to capture the maximum cross-section 
strength, which can also be directly taken from the M-φ curves. 

Based on a maximum strength target from M-φ curves, Figure 9 shows the P-M 
interaction surfaces for both proposed CFT cross-sections. The strength obtained with 
the fully-plastic stress distribution equations (as stated in the AISC Design Examples, 
2005, points A to E), is also illustrated in this figure. As noticed in this figure, AISC 
equations (which are based on the fully-plastic stress distribution) have a good 
prediction of what is expected based on the strain distribution approach with complex 
uniaxial σ−ε models. 
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Figure 8. P-M interaction diagrams for the CFT cross-sections with different σ−ε models. 

Column curves 

Stability effects can be only captured modeling the length, initial imperfections, and a 
good discretization of the frame elements such that more integration points allow that 
both P-∆ and p-δ second order effects are considered. Figure 9 shows the results for 
columns with both circular and rectangular CFT cross-sections, and obtained from the 
fiber analyses and AISC-05. These curves highlight the benefits of composite columns, 
with an inelastic buckling range (λ<1.5) that includes columns with effective lengths (KL) 
up to 52.5 ft in the CCFT and 60 ft in the RCFT. Besides, note that fiber analysis results 
predicted Euler behavior (λ>1.5), which is reduced by a 0.877 factor in the AISC 
specifications to account for geometric imperfection effects. Small differences between 
AISC and fiber analysis with EPP are due to residual stresses in the structural steel, 
which are implicitly in AISC but neglected in the fiber-based results. 
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Figure 9. Column curves obtained with AISC (2005) and fiber analysis. 

According with the CCFT results, Sakino-Sun model exhibits (due to the fcc’ parameter in 
CCFTs only) a higher strength for short columns (about λ<0.5, KL=17.5 ft, KL/D=10.5), 
which concurred somehow with the European EC-4-2004 (λ=0.5) and Japanese AIJ-
2001 (KL/D=12) code limits regarding the allowed overstrength due to confinement 
effects in circular CFT columns; AISC-05 uses the 0.95 factor in the concrete strength 
(0.95fc’) to account for this confinement effects.  

This overstrength is as well exhibited in experimental results. Figure 10 illustrates the 
maximum compression strength obtained experimentally (Pexp) in composite CFT 
columns, which is normalized with the pure compression strength (Po) and plotted vs. the 
slender parameter (λ) as specified in the 2005 AISC specification; The AISC-05 column 
curve is also plotted in this figure. These empirical results were obtained from databases 
collected by Aho and Leon (1997), Kim and Leon (2005), and Goode (2007). As 
observed in this figure, the overstrength is highly impacting short columns mainly in both 
circular and rectangular CFT columns, with high dispersion though. 
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Figure 10. Comparison between the AISC column curve and experimental results 
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P-M interaction diagrams of the beam-column elements 

Figure 11 illustrates the beam-column P-M interaction diagrams obtained with fiber 
analysis for the EPP and Sakino-Sun models. The postulated beam columns have the 
previously described circular and rectangular CFT cross sections, lengths of L=18 ft and 
L=26 ft, fixed-free boundary conditions (K=2), and L/500 initial out of plumbness. The 
corresponding AISC simplified bilinear P-M diagram (AISC An-Cn-B) proposed for 
slender beam-columns, as well as the cross-section strength based on fiber analysis and 
the 2005 AISC specification (AISC A-C-D-B) are also compared in this figure. 
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Figure 11. P-M interaction diagrams for the composite CFT beam columns 



According to these results, AISC simplified bilinear interaction surface is a conservative 
lower bound of the maximum expected flexural-compressive strength. Note again that 
confinement induces higher compressive and flexural strength at the cross-section level 
and short beam-columns (λ<0.5), but such compressive overstrength vanished for 
intermediate beam-columns (0.5<λ<1.5) and long beam-columns (λ>1.5). 

Lateral force-displacement curves 

Expected lateral force (F) vs. the lateral drift (∆/L) obtained from the fiber analysis using 
Sakino-Sun model on the postulated CFT beam-columns are shown in Figure 12; these 
beam-columns have an initial L/500 out-of-plumbness, 0.2Po constant axial compression 
force, and then they are subjected to cyclic lateral displacement (∆) with a 1% drift (∆/L) 
increment. As a consequence of the local buckling degradation beyond the strain εlb 
modeled in the RCFT tubes, the displacement ductility is lower than that obtained in the 
CCFT beam-columns. However, as mentioned before, the definition of the strain at local 
buckling was assumed without an experimental calibration and, since this parameter is 
very sensitive in the final ductility, this variable may change accordingly. 
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Conclusions 

The benefits on the fiber element analysis technique were briefly described. Based on 
this technique, some results were obtained and shown emphasizing some issues in the 
structural behavior of composite cross-sections and composite beam-column elements, 
such as the effects due to the compressive force, material nonlinearity (stress-strain 
model), concrete confinement, steel local buckling, triaxial stresses, initial imperfection 
and geometric nonlinearity effects. Fiber-based analytical results were also compared 
with those obtained with the AISC (2005) Specification. 

As described previously, fiber analysis is a very useful technique to predict the overall 
behavior of composite beam-column elements. However, the accuracy on the results is 
highly dependable on the stress-strain model coupled to the fiber cross-section. Simple 
stress-strain models predict reasonably the ultimate strength; however, more complex 
material models should be assumed to predict ductility and high displacements such that 
damage is considered. On the other hand, most of the nonlinearity sources (like 
strength/stiffness degradation, confinement, local buckling and triaxial stresses effects) 
have to be calibrated with experimental results and/or more complex analytical 
techniques in order to incorporate them later on in the uniaxial stress-strain used in the 
fiber-based model. 

More complex techniques, like 3D finite element analysis, can deal with these sources in 
a straightforward manner. Definition of contact surfaces between concrete and steel can 
consider a more realistic interaction within these materials; therefore, confinement, local 
buckling and triaxial stresses can be directly integrated in the behavior (with no influence 
on the material model). More computing resources and time will be required though. 
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