
Objectives:
Develop new structural 
system concepts and 

establish comprehensive life-
cycle assessment strategies
for deconstructable steel and 

composite steel/concrete 
construction to facilitate DfD 

coupled with the use of 
recycled materials in 
sustainably optimized 

construction.

Challenge
According to the U.S. Department of Energy, construction
and use of commercial and residential buildings accounted
for nearly 45% of U.S. energy consumption in 2009. A new
design approach known as Design for Deconstruction
(DfD) has emerged to facilitate future reuse of materials.

Structural steel framing systems are particularly conducive
to deconstruction at the end of a structure’s service life.
However, the primary challenge of deconstructing steel
buildings is addressing the monolithic construction of
composite steel/concrete floor systems (Figure 1, at right).
While these floor system components may be recycled,
currently they cannot be easily refabricated and reused.
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Figure 1: Conventional composite
framing materials including steel mesh,
steel headed stud anchors, concrete,
and steel deck are not reusable; steel

headed stud anchors must be removed
prior to beam reuse.
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Solution
The proposed system (Figure 2, at left)
maintains the efficiency benefits offered
by composite action and steel
construction, including reduced steel
beam sizes, flexible floor framing
patterns, and use of recycled materials,
while directly addressing the need to
reduce waste in the construction
industry.

The research includes quantification of
deconstructable composite connection
behavior through full-scale testing of
clamping connections and conducting
full-scale tests and corroborating
analyses of the proposed deconstruc-
table floor system to validate its integrity.

Figure 2: Proposed deconstructable floor system, consisting of 
precast concrete panels with steel channels embedded on the 
underside and tongue and groove side joints. Headed bolts, 

part of a bar clamp assembly, would be inserted into the 
channels and clamped to the steel beam top flange.
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Composite Beam Test #2
A series of full-scale composite beams were designed to
validate the load-slip curves obtained from the pushout tests
and investigate the behavior of the deconstructable composite
system under gravity loading.

Figure 4 illustrates the load-deflection relationship of Specimen
2, which is a partially composite beam consisting of a W14x38
section and M24 clamps. The test was terminated after 13 in. of
deflection. The initial stiffness of the beam is 46.4 kips/in.,
slightly larger than the AISC prediction using a lower bound
moment of inertia of 43.1 kips/in. The peak strength of the beam
is 80 kips, which corresponds to a bending moment of 459 ft-
kips, 91% of the AISC prediction of 502 ft-kips. The maximum
slip is 0.32 in. at the ends of the beam, while the maximum slip
is 0.25 in. in the corresponding fully composite beam. The
service load in Figure 4 consists of a dead load of 92.5 psf and
a live load of 80 psf.

The bolt tension variation is plotted in Figure 5. After
pretensioning, the bolt forces are above 46.1 kips, which is the
minimum bolt pretension in Table J3.1M in AISC 360-10. Under
service loads, the variation of the bolt tension was insignificant.
As the beam deflected and the clamps started to slip, the shear
force acting on the bolts increased, especially for those bolts at
the ends of the beam, and thus the bolt tension declined
gradually.
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a) Beam test under deflection (Photo: SGH)

b) Concrete crushing at west interior loading point (plastic hinge region)

c) Longitudinal concrete cracks (parallel to the steel beam)

Figure 3: Deconstructable composite beam test 

Figure 4: Load-deflection curve of Specimen 2
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Figure 5: Bolt axial force variation
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