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Phase field modeling 

The total free energy (F) of the inhomogeneous system is written as,

 

* *[ ( , , ) ( , ) ( , ) ( , )]ch i grad elec i elas ijV
F f c f f c f e dV            (Eq. S1) 

where chf , gradf , elecf , and elasf   represent the local energy density from chemical, gradient, 

electrostatic, and elastic contribution, respectively. 
*

0/i ic c c is a set of dimensionless 

concentration of species, (i.e., i = Li+, e-), where 0c is the standard bulk concentration. 𝜑 is the 

electrostatic potential. The chemical free energy density chf  is given by the summation of a local 

free energy density 0f  and the energy of ion mixing ionf . The  local free energy density is 

described as 
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, in which the energy coefficients 

(W ,W ) are set to be 0.25 and 1, which represent the barrier heights of the double wells3. We 

assume The energy of ion mixing can be represented as 

* *
ion 0 lni i

i

f c RT c c 
 in a diluted 

electrolyte where ic  (i = Li, Li+ and A-) denote the concentrations of the Li metal, cation and anion.  

The interfacial energy induced at the interfaces of the Li dendrite, solid electrolyte, and pores is 

accounted for by the gradient energy 
2 2( , ) ( ) ( )

2 2gradf   
        

, where the  and 



are the gradient coefficients associated with Li metal surface energy and pore surface energy. The 

anisotropy of surface energy will eventually leads to the Li dendritic morphology which is 

determined by 0[1 cos( )]     , where 0 is related to the average Li metal surface energy 

and the interface width,  δ and ω are the strength and mode of the anisotropy, and θ is the angle 

between the normal vector of the dendrite/electrolyte interface and the reference axis.  

 

The electrostatic energy density is given by ( , )elec i i if c z Fc  , where zi and F denote the 

charge number of the species ci and the Faraday’s constant, respectively. The elastic energy density 

( elasf ) is written as 
0 01 1
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, where ijklC  is the stiffness 

tensor. ij is the total strain and 
0
ij ij ijV  is the local eigenstrain (

0
ij ij ijV  ) where ijV  is the 

Vegard strain coefficients obtained in previous literatures[1].  

 

The transport of Li+ in the cell can be described by the Nernst-Planck equation, 

 

eff effLi
Li Li Li Li

c F
D c D c K

t RT t



   

           (Eq. S2) 

Here, ( ) (1 ( ))eff m e

Li Li Li
D D h D h      represents the diffusion coefficient of Li+, 

m

Li
D   and 

e

Li
D   are 

the diffusion coefficients of Li+ in the Li metal and the electrolyte, respectively. In the porous 

electrolyte, we assume that the diffusion coefficient of Li+ at the interface between the pore and 

the electrolyte surfD
is four orders of magnitude higher than in electrolyte itself 

e
bulkD , while it is zero 



inside the pore inD
. Li

c  the initial concentration of electrode. The accumulation/annihilation rate 

of Li+ due to the electrochemical reaction on the surface of the anode is proportional to the phase 

change rate t


  through the accumulation constant K. 

The electrostatic potential distribution can be expressed by, 

 
( )eff R

t

  
  

  (Eq. S3) 

Herein, ( ) (1 ( ))eff m eh h       is the effective electric conductivity, where 
m  and 

e

represent the electric conductivities of electrode and electrolyte, respectively.  

The mechanical equilibrium equation is given by, 

   0ijkl klC e   (Eq. S4) 

where  
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  
   is the stiffness tensor, kle denotes the 

elastic strain tensor. The elastic modulus ( ) (1 ( ))eff m eE E h E h    is contributed by the Li 

metal and the solid electrolyte (
m eE E   5 GPa). In the electrolyte, we assume that the Young’s 

modulus of pore is the same as air pressure ( E 
= 1×10-4 GPa). To better visualize the mechanical 

response, we use the hydrostatic pressure ( mP ) and strain ( vol ), which are evaluated by averaging 

the normal stress and strain component, i.e., 

1
( )

3m xx yy zzP     
 and 

1
( )

3vol xx yy zze e e   
. 



In this work, we ignore plastic deformation and assume that the Li metal and electrolyte are both 

treated as linear elastic materials for simplification. 

 

Supplementary Text II 

Finite element model 

The finite element model includes both the cell components (cathode, SE, and lithium metal) and 

the holder (PTFE tube and stainless-steel bars). Material models should be carefully selected to 

characterize the mechanical behaviors of each component[2].  

Lithium metal is typical metal material and a few groups have tested its bulk mechanical properties 

as a foil[3]. It deforms plastically with slight hardening under a high stress level, while creep 

dominates under a low stress level. In this work, the lithium metal undergoes relatively high stress 

compared to its yield stress, and therefore, we only consider the plastic flow with the classical von 

Mises yield criterion, which states that material begins to yield when the equivalent stress 𝜎 

reaches a critical value 𝜎௒. This critical value evolves with the accumulated equivalent plastic 

strain 𝜀௣ and describes the hardening behavior of a material. For materials with low hardening rate 

like lithium, the Voce hardening law  

𝜎௒ ൌ 𝜎଴ ൅ ሺ𝜎௦ െ 𝜎଴ሻ൫1 െ𝑒𝑥𝑝 𝑒𝑥𝑝 ൫െ𝛽𝜀௣൯ ൯, (Eq. S5) 

is commonly used[2-3], where 𝜎଴ (initial yield stress), 𝜎௦ (saturated yield stress), and 𝛽 (hardening 

rate) are the material constants to be calibrated.   

The cathode and SE are granular porous media; therefore, we adopted the Drucker-Prager/Cap 

(DPC) model, which is commonly used for geomaterials. The yield surface of DPC model has two 

branches, namely the shear failure (sliding) surface and consolidation surface. These two yield 



surfaces characterize the two main deformation mechanisms of granular materials, the inter-

granular sliding, and intra-granular consolidation, respectively. Fully calibrating this model 

requires a comprehensive set of tests, including uniaxial compression, Brazilian test (lateral 

compression), and confined compression. Zhu et al.[4] have calibrated the DPC model for NMC 

and graphite coatings in a liquid Li-ion cell. For SEs, a complete set of experimental data for 

calibration has not yet been reported. We have collected limited data in the literature[4] and 

estimated some material constants to calibrate the DPC model for SE.  

The PTFE tube is also characterized by the von Mises plasticity model and a linear plastic 

hardening behavior is assumed, 𝜎௒ ൌ 𝜎଴ ൅ 𝐻𝜀௣, where 𝐻  is the linear hardening rate. For 

stainless-steel bars, linear elasticity model is used since the yield stress of steel is higher than the 

applied pressure in this work and only elastic deformation will occur. The material constants of 

each component are listed in Table S3. The detailed description of material models and calibration 

process are provided in the following. 

von Mises plasticity model 

von Mises plasticity model states that a material begins to yield when the equivalent stress 𝜎 

reaches a critical value 𝜎௒. The equivalent stress 𝜎 is defined as  

𝜎 ൌ ටଵ

ଶ
ሾሺ𝜎ଵଵ െ 𝜎ଶଶሻଶ ൅ ሺ𝜎ଶଶ െ 𝜎ଷଷሻଶ ൅ ሺ𝜎ଷଷ െ 𝜎ଵଵሻଶ ൅ 6ሺ𝜎ଶଷ

ଶ ൅ 𝜎ଵଷ
ଶ ൅ 𝜎ଵଶ

ଶ ሻሿ, (Eq. S6) 

where 𝜎௜௝  ሺ𝑖, 𝑗 ൌ 1,2,3ሻ are the six independent components of a symmetric second-order stress 

tensor 𝜎, 

𝜎 ൌ ሾ𝜎ଵଵ 𝜎ଵଶ 𝜎ଵଷ 𝜎ଵଶ 𝜎ଶଶ 𝜎ଶଷ 𝜎ଵଷ 𝜎ଶଷ 𝜎ଷଷ ሿ. (Eq. S7) 

The yield surface of von Mises model can be described by 



𝐹௩ ൌ 𝜎 െ 𝜎௒ ൌ 0. (Eq. S8) 

When 𝐹௩ ൏ 0 , there is only elastic deformation; when 𝐹௩ ൌ 0 , materials start to yield and 

accumulate plastic strain 𝜀௣ . Given the fact that the yield stress of most metal materials will 

increase as accumulating plastic strain, which is referred to as the strain-hardening behavior, 𝜎௒ is 

assumed to evolve with the equivalent plastic strain 𝜀௣. The Voce hardening law (Eq. S5) is used 

to characterize the low strain-hardening rate of lithium metal. The equivalent plastic strain 𝜀௣ is 

defined as 
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௣ ൯
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௣ ൯
ଶ
ቃ, 

(Eq. S9) 

where 𝜀௜௝
௣  are the components of the plastic strain tensor 𝜀௣.  The material constants can be 

calibrated by uniaxial tension tests, where 𝜎ଵଵ is the only none-zero stress component and only 

diagonal strain components are non-zero ( 𝜀ଶଶ
௣ ൌ 𝜀ଷଷ

௣ ൌ െ0.5𝜀ଵଵ
௣ ሻ. Substituting the uniaxial stress 

and strain components in Eq. S6 and Eq. S9, we get the hardening curve 𝜎௒൫𝜀௣൯ ൌ 𝜎ଵଵ൫𝜀ଵଵ
௣ ൯ and 

the material constraints can be determined by fitting 𝜎௒൫𝜀௣൯ with Eq S5. Calibration results in ref[2] 

are adopted for this study. For the PTFE tube, a linear plastic hardening behavior is assumed, 𝜎௒ ൌ

𝜎଴ ൅ 𝐻𝜀௣, where  𝜎଴  is the initial yield stress and 𝐻  is the linear hardening rate. They are 

determined with the information provided by the supplier.  

Drucker-Prager/Cap (DPC) model 

DPC model consists of two yield surfaces. The former one describes the inter-granular sliding and 

is governed by the Drucker-Prager model, 



𝐹௦ ൌ 𝑞 െ 𝑝 𝑡𝑎𝑛 𝑡𝑎𝑛 𝛽 െ 𝑐 ൌ 0, (Eq. S10) 

where 𝛽 is the friction angle and 𝑐 is the cohesion strength. 𝑝 and 𝑞 are the hydrostatic pressure 

and equivalent stress, defined as 

𝑝 ൌ െ
1
3
ሺ𝜎ଵଵ ൅ 𝜎ଶଶ ൅ 𝜎ଷଷሻ, (Eq. S11) 

𝑞 ൌ 𝜎. (Eq. S12) 

 The other yield surface describes the intra-granular consolidation, 

𝐹௖ ൌ ඥሺ𝑝 െ 𝑝௔ሻଶ ൅ ሺ𝑅𝑞ሻଶ െ 𝑅ሺ𝑐 ൅ 𝑝௔ 𝑡𝑎𝑛 𝑡𝑎𝑛 𝛽 ሻ ൌ 0, (Eq. S13) 

where 𝑅 is the eccentricity of the ellipse, and 𝑝௔ is the pressure at the intersection point of the 

sliding surface and the cap. Since the strength of granular media increases as being densified, the 

position of the consolidation yield surface (𝑝௔) is assumed to increase with the volumetric plastic 

strain. The DPC plasticity model can be fully calibrated with at least three different tests, i.e., 

uniaxial compression, Brazilian test (lateral compression), and confined compression. Interested 

readers can refer to ref[4] for more details of calibration.  

we simulated all the three steps that undergo mechanical loading, including 1) the SE 

manufacturing (compressing SE under 300 MPa pressure), 2) pre-compression (compressing the 

assembly with 10MPa pressure), and 3) charge process (expansion due to lithium plating). 

Step 1. The initial thickness of the SE is estimated by assuming an initial relative density of 30%, 

which is around 3.3mm. Given that the pressure was manually applied and might deviate from the 

desire pressure (300 MPa), instead of applying the pressure directly, we prescribed the 

displacement of the upper stainless-steel bar and compressed the SE to a thickness of 0.84mm as 

measured from the CT image. The deformed configuration matches well with the experimental 



observation. In addition, the pressure developed inside the cell is around 220 MPa. This is quite 

reasonable considering that the material inputs were estimated from the limited data in literature. 

Step 2. The deformed SE from previous step was imported and assembled with the lithium metal 

and anode. Similarly, we prescribed the displacement of the upper stainless-steel bar and 

compressed the cell assembly gradually until the edge of lithium metal deformed around 300 𝜇𝑚, 

as measured in Fig. 3. The pressure developed inside the cell (8MPa) is comparable to what we 

applied in experiment (~10Mpa). 

Step 3. We simulated the lithium plating process by introducing through-thickness thermal 

expansion of lithium metal. The thermal expansion coefficient is correlated to the lithium plating 

rate through a single-ion conduction model, a detailed description of which is given in the 

following. It is estimated that around 5 𝜇𝑚 thick lithium was plated in the experiment. Therefore, 

we simulated the expansion up to 5 𝜇𝑚. Both the upper and lower stainless-steel bars were fixed 

during this process. As a result, the lithium further deformed and flowed deeper into the gap. 

Single-ion conduction model for all-solid-state batteries 

A single-ion conduction model for all-solid-state batteries was used to capture the electrochemical 

response[5] (Fig. S17). In this model, a uniform Li-ion concentration across the solid electrolyte is 

assumed considering that Li-ion is the only charge carrier in the electrolyte and that 

electroneutrality holds true throughout the layer. Reaction is assumed to occur only at the 

interfaces and the electrodes are non-porous. The governing equations are summarized in Table 

S4, and the variables and physical constants in the model are listed in Table S5 and Table S6. 

Lithium plating rate 𝑅௣ (thickness change per unit time) is related to 𝑖௖/௘  by, 



𝑅௣ ൌ
𝑀୐୧

𝜌୐୧𝐹
𝑖௖/௘, (Eq. S14) 

where 𝑀୐୧ and 𝜌୐୧ are the molar mass and density of Lithium. We simulate this thickness change 

with thermal expansion by prescribing a linearly increasing temperature field with respect to time 

(𝑇 ൌ 𝑘𝑡). The equivalent thermal expansion coefficient is then determined by, 

𝛼௅ ൌ
𝑅
𝑘𝐿௔

ൌ
𝑀୐୧

𝑘𝜌୐୧𝐹𝐿௔
𝑖௖/௘. (Eq. S15) 

Note that the current density at any cross section of the cell equals to the applied current at any 

time. Therefore, under constant charge and discharge the expansion coefficient will be constant. 

Under other loading conditions, e.g., constant voltage, the expansion coefficient will vary 

depending on the current flow. In this work, we only consider the constant current charge. A 

simulation was performed to predict the cell potential and lithium-ion concentrations. The values 

of the physical constants used in the simulation are listed in Table S6. The 1D single-ion 

conduction model can capture the cell potential before the onset of soft circuit (Fig. S18a), as well 

as the trend of lithium concentration in solid electrolyte and cathode (Fig. S18b).  

 

 

 



 
 
Fig. S1. Photos of the neutron imaging set up in (a) 3D neutron tomography and (b) 2D operando 

neutron radiography. 

  



 

Fig. S2. Magnified 2D neutron radiograph image of the ASLMBs in the operando neutron 

imaging test. 

  



 

Fig. S3. Neutron transmission and derivative transmission to determine the interfaces between 

adjacent layers. 

  



 

Fig. S4. Galvanostatic charge profiles of the ASLMB with (a) normal cycle, (b) hard short, and 

(c) soft short. 

  



 

Fig. S5. Nyquist plots of the ASLMB after (A) “hard short” and (B) “soft short”. 

  



 

 

Fig. S6. Neutron radiograph image of the ASLMB without normalization treatment. 

 

  



 

Fig. S7. Time stamped neutron radiography images during the battery test. 

 

  



 

 

Fig. S8. SEM images of the SE pellet in the top view at (A) low and (B) high resolution. 

  



 

Fig. S9. The magnified intensity mapping of the real-time transmission changes at the cathode 

side. The real-time Trt/Tr0 evolutions at four representative positions were plotted. 



 

Fig. S10. Galvanostatic charge profile of the cell for XCT test. 

 



 

Fig. S11 Schematic diagram of boundary conditions, initial state of the system. The blue color 

represents the air pores phase (porosity around 16.25%) 

 

 

Fig. S12 Phase-field simulation results of Li dendrite growth in a porous electrolyte under 

external pressure of 0, 5, and 10 MPa after 500 s of evolution. (A) the chemical driving force 

including chemical bulk energy and electrochemical energy. (B) the elastic driving force at the 

electrode-electrolyte interface. 

      



 

Fig. S13 Phase-field simulation results of the evolution of Li dendrite structure in a porous 

electrolyte under external pressure of 10 MPa. (A) dendrite morphology represented by η, where 

2 corresponds to Li metal, 1 to electrolyte, 0 to Li metal filling inside the pore, -1 to pores. (B) 

hydrostatic pressure Pm. (C) the chemical driving force including chemical bulk energy and 

electrochemical energy. (D) the elastic driving force at the electrode-electrolyte interface. 

      

  



 

Fig. S14. Neutron CT of the ASLMB. The inner region information was lost due to the neutron 

absorption from the stainless steel. 

  



 

Fig. S15. Neutron CT of the ASLMB after the electrochemical test. 

 

  



 

 

Fig. S16. Neutron CT image of the extracted Li metal. 

 

 

 

 

Fig.  S17. Illustration of single-ion conduction model for solid-state batteries 

 



 

Fig. S18. Simulation results of the single-ion conduction model. (a) Cell potential, (b) Lithium 

concentration 

  



 
Table. S1 Elemental neutron cross sections. 1fm=10-15 m, 1barn=10-24 cm2.[6] 
 

 
 
 
  



Table. S2 Parameters in mechanical-electrochemical phase-field model[3] 
 

Parameters Symbols Real Values Symbols Normalized Values 

Interfacial mobility  
 

2.22×10-6 m3/(J×s) 
0 0= t )L L E     （  

3333 

Reaction constant 
 

9×10-4 /s 
0tL L   

 
0.9 

Gradient energy 
coefficient.   

1.0×10-4  J/m 2
0 0 0 0/ ( )E l    

0.01 

Li+ diffusivity in the 
electrode 

mD  1×10-14 m2/s 2
0 0/ ( / t )m mD D l 

 
10-3 

Li+ diffusivity in the 
electrolyte  

𝐷௕௨௟௞
௘  1×10-11 m2/s 2

0 0/ ( / t )e eD D l 
 

1.0 

Li+ diffusivity in the 
pore surface 

𝐷௦௨௥௙
ఘ  1×10-7 m2/s  

104 

Li+ diffusivity 
inside the pore 

𝐷௜௡
ఘ  0 m2/s  

0 

Electric 
conductivity in the 
electrode 

m  
1.17×107 S/m 

2 2
0 0

0

/ ( )
t

m m l c F

RT
 


 

 

3×108 

Electric 
conductivity in the 
electrolyte  

e  
0.78 S/m 

2 2
0 0

0

/ ( )
t

e e l c F

RT
 


 

 

20 

Elastic modulus of 
the electrode 

mE  5 GPa 
0/m mE E E

 
3200 

Elastic modulus of 
the electrolyte  

e
bulkE  

5 GPa 
0/e e

bulk bulkE E E
 

3200 

Elastic modulus of 
the pores  E 

 1×10-4 GPa 
0/p pE E E  

0.07 

Poisson’s ratio ν 0.36  0.36 

Eigenstrain 
coefficients 11V  

30.866 10  
 30.866 10  

22V  
30.773 10  

 30.773 10  

33V  
30.529 10  

 30.773 10  
Charge transfer 
coefficients 

α, β 0.5  
0.5 

Accumulation 
constant 

K 1.8 mol/L 
 

1.8 

Current constant R 1.2×103 J/m3 
 

0.0008 

Spatially mobility 
( )M   

  
1.56×10-4 

Gradient energy 
coefficient   

  
1.56×10-4 

 

      
 
  



Table. S3 Material constants of each component used in the FEM simulations 

 

Materials Material models and constants 

 
Elasticity Drucker-Prager/Cap 

𝐸(GPa) 𝑣 (-)  𝛽 (°) 𝑐 (MPa) 𝑅 (-) 𝑝௔ (MPa) 

Cathode 5.0 0.1 65 1.0 0.8 Fig. 4E 

SE 5.0 0.1 65 4.0 0.8 Fig. 4E 

 Elasticity Plastic Hardening 

 𝐸(GPa) 𝑣 (-)  𝜎଴ (MPa) 𝜎௦ (MPa) 𝛽 (-)  

Lithium metal 7.8 0.33 1.024 1.389 22.27  

   𝜎଴ (MPa) 𝐻 (MPa)   

PTFE tube 0.42 0.33 20.0 133.3   

Stainless steel 21.0 0.33     

 
 
 
  



Table. S4 Governing equations and boundary conditions of the single-ion conduction model 
 

 Equation Boundary Condition 

Charge Transfer,  

Solid Electrolyte 
𝑖௘ ൌ െ𝜅௘

∂𝜙௘
∂𝑥

 
𝑖௘ሺ𝑥 ൌ 0ሻ ൌ 𝑖௔/௘ ,  

𝑖௘ሺ𝑥 ൌ 𝐿௘ሻ ൌ െ𝑖௘/௖ 

Charge Transfer,  

Cathode 
𝑖௖ ൌ െ𝜎௖

∂𝜙௖
∂𝑥

 
𝑖௖ሺ𝑥 ൌ 𝐿௘ሻ ൌ െ𝑖௘/௖ ,  

𝑖௘ሺ𝑥 ൌ 𝐿௘ ൅ 𝐿௖ሻ ൌ 𝑖ୟ୮୮ 

Mass Transport,  
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Table. S5  Variables in the single-ion conduction model 
 

Variable Physical meaning 

𝑖௘ , 𝑖௖ Current density in electrolyte and cathode 

𝜙௘ ,𝜙௖ Potential field in electrolyte and cathode 

𝑐 Lithium-ion concentration in cathode 

𝜂 Over-potential at interfaces, 𝜂 ൌ ሾ𝜙ሿ െ 𝑈୭ୡ୴, where ሾ𝜙ሿ is the potential 
jump at electrolyte/electrode interface and 𝑈୭ୡ୴ is the open circuit 
potential. 

 
 
 
 
 
Table. S6  Physical constants and the values used in the simulation 
 

Variable Physical meaning Value 

𝐿௘ , 𝐿௖ Thickness of electrolyte and 
cathode 

840 μm / 130 μm 

𝑘௘ Ion conductivity of solid 
electrolyte 

7.8 mS/cm 

𝜎௖ Electron conductivity of cathode 38 mS/cm 

𝐷௖ Ion diffusivity of cathode 8e-8 cmଶ/s 

𝛼  Anodic charge transfer number  0.5 

𝑘௔, 𝑘௖ Standard rate coefficient for 
anode/electrolyte and 
electrolyte/cathode interfaces 

4.56e-9 mol/ሺcmଶ ⋅ sሻ  

𝑖ୟ୮୮ Applied current density 0.4 mA/cmଶ 
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