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The PDMS transparent tubes were prepared according to a cure ratio of 11:1. The resulting

PDMS tubes had a wall thickness of 0.3 mm and an inner diameter of 1.0 mm.

Fig. S1. Mechanical as well as optical properties of PDMS transparent tubes.
(A) PDMS transparent tubes; (B) the bendability and crimp ability of PDMS tubes; (C) the
stretchability of PDMS tubes; (D) the bendability and crimp ability of PDMS tubes loaded

with HPC gel.
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Fig. S2. The alteration in the periodic structure of HPC under stretch or release.
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Fig. S3. Stress-strain curves of PDMS transparent tubes and HPC fiber.
The tensile tests reveal a Young’s modulus of approximately 14,052 Pa for PDMS tubes and
11,627 Pa for HPC fibers. The mechanical flexibility of the HPC fibers enables reliable
deformation and recovery during actuation cycles, supporting the durability of the

camouflage mechanism.
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Fig. S4. Stability and durability experiment of HPC fiber

(A) CD spectrum and (B) Wavelength shift value of red fiber (TO) to yellow fiber (T2); (C)
CD spectrum and (D) Wavelength shift value of red fiber (TO) to green fiber (T2); (E) CD
spectrum and (F) Wavelength shift value of the red fiber (TO) to blue fiber (T2); (G) CD
spectrum and (H) Wavelength shift value of green fiber (T0) to blue fiber (T2).
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Fig. S5. Pixel-wavelength distribution histograms of HPC fibers under different

background conditions in 25°C.



(A) histogram of red fiber (TO) in Figure 4A; (B) histogram of yellow fiber (T2) in Figure 4A,;
(C) histogram of red fiber (TO) in Figure 4B; (D) histogram of green fiber (T2) in Figure. 4B;
(E) histogram of the red fiber (TO) in Figure 4C; (F) histogram of blue fiber (T2) in Figure 4C;

(G) histogram of green fiber (TO) in Figure 4D; (H) histogram of the blue fiber (T2) in Figure
4D.
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Fig. S6. Pixel-wavelength distribution histograms of HPC fibers under different
background conditions.
(A) histogram of red fiber (TO) in Figure 5A; (B) histogram of yellow fiber (T2) in Figure 5A;

(C) histogram of green fiber (TO) in Figure 5B; (D) histogram of blue fiber (T2) in Figure. 5B.



Fig. S7. Arrangement of 2D patterned HPC gels for structural color modulation.

(A) Parallel alignment of HPC fibers with uniform coloration; (B) Parallel alignment of HPC
fibers with varying colors, showcasing gradient transitions; (C) Braided structure composed
of HPC fibers with different colors, forming a dynamic woven network; (D) Stacked HPC
membranes displaying distinct color variations at different layers; (E) Matrix-structured HPC

membranes, integrating multiple color blocks for pixelated camouflage applications.
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Fig. S8. Structure of the robot assembly.

(A) Mechanical components of the robot, and (B) Electrical/electronic parts of the robot.
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Table S1. Hue values as well as wavelength values for various background colors and

camouflaged fibers.

Background
Color Hue-min  Hue-max  Hue-ave WV-min WV-max WV-ave
) ) ) (nm) (nm) (nm)
Yellow  62.40 70.21 65.00 606.67 601.24 604.86

Green  114.39 127.20 123.31 570.56 561.67 564.37
Blue 208.92 239.04 230.22 504.92 484.00 490.12
Blue 208.19 239.04 230.23 504.42 484.00 490.12

HPC fiber
Color Hue-min  Hue-max  Hue-ave WWV-min WV-max WV-ave
) ) ) (nm) (nm) (nm)
Yellow 33.91 103.33 49.77 626.45 578.24 615.44

Green  100.00 220.00 139.35 580.56 497.22 553.23
Blue 165.71 216.00 202.18 534.92 500.00 509.60
Blue 184.21 213.75 199.04 522.08 501.56 511.78

Hue-min, Hue-max, and Hue-ave mean the minimum, maximum, and average values of the
hue for all pixel points in the valid picture for background and HPC fibers (T2 state),
respectively. WV-min, WV-max, and WV-ave mean the minimum, maximum, and average
values of the wavelength for all pixel points in the valid picture for background and HPC
fibers (T2 state), respectively. The error is obtained by dividing the difference between the
average wavelength of the HPC fiber and the background by the average wavelength of the

background.
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Table S2. Hue values and wavelength values of various background colors and

camouflage fibers at different temperatures.

Background
Color Hue-min  Hue-max  Hue-ave WV-min WV-max WV-ave
) ) ) (nm) (nm) (nm)
Yellow  62.40 68.91 65.04 606.67 602.15 604.83
Blue 208.19 240.00 230.23 505.42 483.33 490.12
HPC fiber
Color Hue-min  Hue-max  Hue-ave WV-min WV-max WV-ave
) ) ") (nm) (nm) (nm)
Yellow  34.00 63.75 45.21 626.39 605.73 618.60

Blue 196.29 226.50 207.48 513.69 492.71 505.92

Hue-min, Hue-max, and Hue-ave mean the minimum, maximum, and average values of the
hue for all pixel points in the valid picture for background and HPC fibers (T2 state),
respectively. WV-min, WV-max, and WV-ave mean the minimum, maximum, and average
values of the wavelength for all pixel points in the valid picture for background and HPC
fibers (T2 state), respectively. The error is obtained by dividing the difference between the
average wavelength of the HPC fiber and the background by the average wavelength of the

background.

12



Table S3. Comparison of previous studies on chameleon-inspired robotic skin with our

work.
Ref Article title Materials Biodegradabilit
g y
Electrically Tunable o )
_ Liquid crystals and metallic
Ref.1! Chameleon-Inspired Non
nanostructures
Structural Colors
Soft Stretchable _
) ) ) Stretchable polymers with
Ref.22  Devices with Optical Non
o color-tunable layers
Color Shifting
Magnetically _ ) )
_ Magnetic nanoparticles in
Ref.33 Responsive Color- ) Non
o ) polymer matrices
Shifting Soft Materials
Bioinspired Soft
Actuators with Liquid crystal elastomers and
Ref.44 _ _ Non
Tunable Optical microcapsules
Properties
Thermochromic o
) Thermochromic pigments
Ref.5°  Polymers for Adaptive o Non
within polymer systems
Camouflage
Synthetic hydrogel with
Smart Hydrogel _ )
Ref.6° _ _ mechanical and optical Non
Materials for Robotics _
properties
Light-Driven Artificial ~ Photo-responsive polymers
Ref.7’ _ _ _ Non
Skin for Robotics and pigments
Nanostructured
_ Metal nanostructures
Ref.88 Materials for Color- ) Non
) ) embedded in elastomers
Changing Robotics
Photonic Crystal- ]
Gold nanorods and photonic
Ref.9° Based Structural Color Non
) crystals
Materials
This Force-Induced Color )
) Hydroxypropyl cellulose Highly degradable
work  Change Smart Textile
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Movie S1

Manual demonstration of reversible stretching of HPC fiber.

We provide supplementary HPC robot videos named in the format Movie S{num}-{letter},
where the number 2, 3, 4, 5, 6, and 7 denote different video segments for each experiment,
and the letter a, b, c, d, and e represent different components of the processed videos.

Movie S*-a (*: from 2 to 7)

HPC Fiber Reversible Stretching Demonstration: This video, captured directly by the
camera installed on the robot, shows the real-time status of the fiber as it undergoes stretching
by the motor.

Movie S*-b (*: from 2 to 7)

Ego-Robots & Environmental Background Pixel Segmentation Demonstration: This
video provides a segmentation map of the original camera-captured footage, splitting frame
pixels into fiber as the foreground and environment pixels as the background.

Movie S*-c (*: from 2 to 7)

Foreground Pixels: This segment demonstrates the dynamic segmentation of foreground
pixels, highlighting changes in fiber pixels during the stretching process.

Movie S*-d (*: from 2 to 7)

Traditional Approach Using a Predefined Bounding Box or Color Sensors: This video
compares our method with traditional approaches by segmenting a fixed area of pixels to
represent the limited reception field of color sensors, showing how they shift as the motor

operates.
14



Movie S*-e (*: from 2 to 7)

Background Pixels: This segment displays the segmented environmental background pixels
during the stretching process, highlighting changes in the background segmentation.

These supplementary videos provide a comprehensive view of the robotic fiber’s dynamic
behavior, illustrating how our segmentation and control methods outperform traditional

approaches.
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