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Abstract—Most image processing applications are not only o MovIng g ection

computationally intensive, but also data intensive. Reconfigurable ey
hardware boards provide a convenient and flexible solution to L5 Window —»]
speed up these algorithms. To get a high performance design ond Window
without going through the time-consuming hardware design
process for each different algorithm, we present a simple design
flow for window-based image processing applications. By finding One Pixel
the three upper bounds according to area constraints, memory

bandwidth constraints and on-chip memory constraints, the block

structure of the design which can fully utilized the available Fig. 1. Example of Sliding Windowing Operation
resources on the board is determined. A new buffering method
is also discussed in this paper to build an efficient memory
hierarchy for this type of application.
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FPGA boards. Related work is also discussed in this section.
I. INTRODUCTION Section lll presents the details of the design method and

A Field Programmable Gate Array (FPGA) based comflow to find the three upper bounds according to different
puting board, working as a co-processor together with thgSource constraints. Section IV describes a simple experiment

host, can be used to speed up computational intensive dadilustrate the design method. Section V concludes the paper

data intensive algorithms. Before actually implementing tH¥'d closes with thoughts about future work.
algorithm in hardware, designers usually want to know what
is the maximum speedup given the computing board and
the algorithm. Unfortunately, the quantitative estimate of the Figure 1 shows an example oBa 4 SWO. In this example,
speedup is dependent on the algorithm and the way it ti¥®e window is moving in raster-scan order.
implemented. The design space for hardware implementatiorFor most SWO applications, processing high resolution
for each algorithm is so huge that finding an optimal desigmages is both data intensive and computationally intensive.
and the corresponding speedup would require great effdfortunately, SWOs are inherently highly parallelizable and
Defining a general rule to estimate the speedup for all therdware implementations are favored in delay sensitive appli-
algorithms given a FPGA board is too complex. cations. An FPGA-based system can provide a fast and flexible
This paper concentrates on one class of applications callution for these applications by combining both fine-grained
Sliding Window Operation (SWO) based applications, whicparallelism and coarse-grained parallelism to achieve a high
are widely used in image processing and require muglerformance implementation.
computation and data manipulation. A common data accesd he three basic elements of an FPGA are configurable logic
pattern is generalized and a near optimal memory hierarcbipcks (CLBs), 1/0O blocks and programmable routing [1].
can be built using our block buffering method. By definind\rbitrary logic functions can be implemented by appropri-
three upper bounds according to the area constraints, mematgly configuring these CLBs and connecting them through
bandwidth constraints and on-chip memory size constrainggpgrammable routing. In this paper, we consider CLBs, I/O
we can provide a fast yet accurate estimate of the maxinibcks, programmable routing and on-chip memory as our
speedup. Moreover, once the tightest upper bound is selecgilable FPGA hardware resources.
a corresponding hardware block structure as well as a perforMemory hierarchy management had not been considered
mance estimate are determined. The design process presebyeBPGA designers until on-chip memory of FPGAs became
in this paper allows the design cycle to be shortened and available. FPGA chips usually have connections with external
estimate of the speedup to be obtained before circuit is actuaiemory banks, but if the data needs to be read from or written
implemented. to external memory banks on every access, the performance of
The remainder of the paper is organized as follows. Setve design is greatly degraded because accessing the external
tion Il gives a brief introduction to SWO applications andnemory is usually slow. In this case, using on-chip memory to

Il. BACKGROUND



form an efficient memory hierarchy becomes very important. There are three constraints we consider. First, the number
The smaller but faster on-chip memory, if organized properlgf slices in the FPGA limits how many copies of processing
can be used as a buffer to store temporary or repeatedly usézments we can put on the chip. Second, memory bandwidth
data so that off-chip memory accesses are reduced. In defines the maximum data transfer speed between the FPGAs
research, we find that for most SWO based applications, thared the external memory banks. Third, the size of the on-
exists a common data access pattern. Therefore, we presenttiip memory that is used as buffers reduces redundant data
block buffering method which can build an efficient memoryransfer. Since our goal is to maximize the usage of all the
architecture for this type of application. available resources for maximum parallelism, we ignore timing
Two design metrics are important for FPGA based desigeonstraints for each pipeline stage; they can be optimized after
time-to-market and performance. Lots of work has been dowe determine the design structure. The following sections
to shorten the design cycle or to improve implementatiogo into the details of how these three constraints influence
performance or both. our final implementation. Although most of our analysis is
High Level Synthesis (HLS) tools provide a bridge betweepased on a coprocessor board with a single FPGA chip, the
the algorithm written in a high level language (Matlab, C3ame analysis can hold for boards with multi-FPGA chips
C++, etc) and a lower level Hardware Description Languad¥cause most COTS systems have a symmetrical layout of the
(HDL). Handel-C [2], SA-C (Single Assignment C) [3],interconnection between FPGA chips and memory banks. We
Streams-C [4], The MATCH (MATlab Compiler for distributedcan divided the problem into several equal sized sub-problems
Heterogeneous computing systems) compiler project [5] ahd exploring coarse-grained parallelism. After finding solu-
DEFACTO (Design Environment For Adaptive Computingions for the sub-problems, we can combine these solutions
TechnOlogy) [6] all belong to this category. All of thesdo achieve a final solution for the whole problem. Even if
design automation tools aim to raise the level of abstractiontii¢ interconnection is different for different FPGA chips, we
hardware design to simplify the design process and theref@@ still use the same analysis process iteratively until we
shorten the design cycle. The tools have to be general to dgat an optimal division of the problem and allocate the sub-
with different algorithms and different hardware targets. Thigfroblems to different chips. The discussion that follows uses
generalization leads to inefficiency of the design. Furthermoig parameters defined in Table I.
most design automation tools do not efficiently use the on-

chip memory of the FPGA and the performance is limited by TABLE |

PARAMETER DEFINITION

the external memory accesses for data intensive applications.

. ) . P t Symbol
Diniz et. al. [7] and Weihardt et. al. [8] exploits the data reuse | arameer ymDo |
t inimize the number of memory accesses. Again, due to Image size M x N
0 mlnlmlze e y - Again, Window size mxn
their generalization, the performance speedup over software [ Pixel value of input image PI, ;
are not satisfying. Pixel value of output image PO; ;

To improve the performance of the design, further applica- Bits per input pixel Wi
. p_ - . p . . gn, ; pp_ Bits per output pixel Wpo
tion specific optimization is needed. SWO based applications, No. of total memory bank %
widely used for image processing, have a common data access | No. of input memory bank Kin
pattern and are suitable for further optimization. Guo et. al. [9] | _NO- of output memory bank Fout

d iler algorithm to reuse data in widow-based | oo avatable buffer size Brotal
presented a compiler algo _ : Memory bit width Wi
codes. However, hardware constraints are not considered and | Block buffer size (in pixels) pXq
maximal performance is not guaranteed. Liang et. al. [10], [11] Euplicabtion fdathocri unl_der_are? constraints Dq
: : H : ower bound of duplication factor
too.k memory access and da}ta bu_fferlng mto _conS|derat|on, under memory bandwidth constraints D,
which is essential for data intensive applications. But the Upper bound of duplication factor
design space is very large especially when the size of the | under memory bandwidth constraints D
window or the number of memory banks is large. Moreover, Duplication factor .
under buffer size constraints Dy,

their buffering method is not efficient when the available buffer
size is not large enough for full image row buffering.

Il1. DESIGN TRADEOFFS

A. Area Availability

When we implement arbitrary logic in FPGAs, every func-
Our goal is to have an implementation which can fullyion unit (FU), eg. adders, multipliers, registers etc., consumes
utilize the available resources for optimal performance. Byne or more slices of the FPGA. The number of slices in an
estimating the upper bounds of the parallelism according E6*GA is proportional to the area in an ASIC and we use area
different constraints, we can decide which constraint is theere for simplicity.
most critical one and then produce a design accordingly. ForEach FPGA has a fixed area (fixed number of slices) when
FPGA based COTS coprocessor boards, we assume thatithe manufactured; the area size is dependent on the model
FPGA chips and their connections to the external memoo§ the FPGA. Designs implemented in a specific FPGA chip
banks have already been built on the board. are limited by the available area, which means the total area
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Fig. 2. Block Diagram of an Commercial FPGA Computing Engine
next processing window

of all the functional units and routing cannot exceed the total Fig. 3. Using Line Buffering Scheme
area of that FPGA chip. It is extremely difficult to estimate
the routing area, so we reserve 20% of the total chip area for

routing purposes, which means about 80% of the total arg&,|| size window SWOs and current FPGA technolaby.
(Atota) can be used for FUs. _ . ~ can be easily modified according to Equation 1 whenpg
SWOs involve a set of repeated operations a’tdn‘ferentmag,qangeS because a different implementation is choggn.

locations. We define a Micro Processing Element (MPE) asyRes us the number of parallel pipelines that fit in the available
set of pipelined function units which can process one SWQqware.

Once we build the MPE, we can sequentially feed the pixel
data from different windows into this pipeline and get th
outputs one by one. Since each window is independent, if we
have D,, duplicate copies of the same MPE, we can processin section Ill-A, we only consider the area constraints of
D, windows at different locations simultaneously and get tae design. The feasibility of this implementation depends on
speedup ofD, times. Given the total available area, we cawhether or not we can have all the data ready for the function
estimate the maximuny, based on the area consumed by thenits. If memory bandwidth becomes a bottleneck, then even if
MPEs and the overhead which coordinates these MPEs. we haveD, MPEs on chip, some of them will be idle until the
Maximizing D, requires an accurate area estimate of thfata arrives. In this case, it is not necessary to Hayeopies
MPE, the control signals and the interfacing signals. We defip¢ MPEs. We derive another upper bound from the memory
Anmprs @s the sum of all function unit area for processingandwidth so that we can make sure all the copies of MPEs
one window, which includes the address generation for oage fully working at all times.
window. A;r and A, are the area overhead of interfacing As shown in Figure 1, each time the x n window moves
signals and control signals, respectively,r is easy t0 from left to right, m new data are needed from memory and
determine because it will not change much when the desigRe output is generated. If there is no buffering, we discard
changes. In most cases, the interface modules are pre-defigid,, pixels which have moved out of the window. However,
and their area can be estimated before we start the desigfhese discarded pixels; —1 pixels will be reused when the
process.A.,; is the sum of the area consumed by the contrglindow moves to the next row. In this case, we load the pixels
part. The control part coordinates between MPEs so that th@undantly and increase the memory bandwidth requirements.
can share the memory interface without any conflict. It i$ we have enough buffer space, we can keeprthe 1 pixels
very difficult to estimate the control signal area before it iy the buffer and discard only 1 pixel which will never be used
actually implemented. Here we simplify the estimate by addingr the following windows. By this means we can minimize
15~20% of the area of an MPE, based on experience, as th@ |oading redundancy. Figure 3 shows a buffering method
area consumed by the control part for one window processiRghich can achieve this goal [13]. These two cases (loading
This overhead may be too pessimistic in some cases, but V%hpixels per window and loading 1 pixel per window) can be
current FPGA technology, it is affordable. Figure 2 shows thesfined as the lower bound and upper bound of the parallelism

block diagram of the area consumption for different blocksactor, D,,, and D,,.,, respectively, according to the memory
Equation 1 shows the constraint for maximiziay, . bandwidth limitation.

Memory Bandwidth Limitation

o Lower BoundD,,;:
Do x (Apmpes+20% X Avprs) +Arr < 80% X Atotar (1)

Once scheduling and binding of one MPE is fixed, the
area is determined. Getting an optimal scheduling and binding
scheme given area constraints is an NP-hard problem [12]. We
assume that the MPE has already been designed. We further D,,; is subject to the constraints shown in Equation 3
simplify our method by assuming there is sufficient area for because input and output memory ports are allocated
one window processing. This assumption is reasonable for separately.

k
Dy X (m X Wm' +1x Wpo) < Z Wini (2)
i=1
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D,,., is subject to the constraints shown in Equation 5

because input and output memory ports are allocated

separately. when blocks move from left to right.
k
Dy 5 (1 X W) < 3200 Wiy Dyx (— L W, 4 1x W) <S Wi (6)
Do % (1% Wpo) < S04 Wiy 5) p-m+1- 77 ’ _;
kin + kout < k Again, Dy, is subject to the constraints shown in Equation 7,
C. On-chip Memory Availability because the input and the output memory ports are allocated
separately.
Section 1lI-B gives the upper bound and lower bound of
the duplication factor under memory bandwidth constraints. Dy x (ﬁ X Wp;) < Zf;”l Wini
To achieve the upper bound, Figure 3 shows the line buffer Dy x (1 x W) < Z’?iiit Wi (7
method requiring the buffer size to be at ledéth — 1) * Ein + kour < k -

N 4+ m) = W, bits. This may be larger than the buffer space ) )
available. Buffer size may be the constraint for determining the2) Selecting Andg: When we increase the value pfwe
duplication factor. Our goal is to optimize the buffer size whiléeduce the total number of external memory accesses #nom

still keeping the number of external memory data accessest@g;=n+1; When the block buffer moves from left to right. At
small as possible. the same time increasing the valuegafan reduce the memory

1) Block Buffering Method:We proposed a new method@ccess frorn to —Z— when the block buffer moves to the

i i n+1
we call the block buffering method. It can greatly reducBext line. We wish to balance betwegrandg, wherep, g are
buffer size while still keeping the data loading redundancy lofgonstrained by
Figure 4 gives an illustration of the block buffering method. P X qx Wpi < Brotal (8)

Before processing is begun,ax ¢ block of pixel data is  Here B,,,,; stands for the total on-chip memory to be used
buffered, wherep > m and ¢ > n. In this example the for the block buffer. GivenM, N,m,n, we can determine
window size ism = 3, n = 4 and the block size ip = 4, the total number of pixels need to be loaded from external
q = 6. With apxgq block buffer, we can process a total Ofmemory' Liotal, @S a function Ofp,q (Equation (9)) Here,

(p—m+1) x (¢—n+1) windows without loading any new ;, ; are subject to the constraint in Equation 8.
data. While we are processing the current block, we can at

the same time load the data for the nexk ¢ block buffer. N—gq M—p

As shown in Figure 4, the total number of pixels needed tdototar = [( 1) X Tt 1) x (p(g —n+1))]
be loaded from off-chip memory is x (¢ — n + 1) when the g n+t p—m+

block moves horizontally. So the average number of off-chip when block moves left to right
memory access for this type of move@m% = I M—p ) % (g(p— m +1))]

m pixels per window operation. This is a significant p—m+1

saving when compared to off-chip memory access without when block moves top to bottom

buffering, which requiresn pixels to be loaded per window (9)
operation. Figure 5(a) plotslsoe USINgM = 1024, N = 1024, m =

When the block moves to the next row block, the number n = 3, B, = 500 * 8bits. Clearly, the total number of
of pixels needed from off-chip memory to initiate the nevexternal memory accesses mainly depends on the valpe of
windowing processing ig x (p —m + 1). Thus the memory Moreover, from this figure, we can see that there exists,a
access requirement lqulﬁ pixels per window operation.  for a specificg such that whem > p,,:, the memory access
Once we decide the values pfand ¢, we can determine requirement won’t reduce much as we increas®ur aim is
the corresponding duplication factdd, subject to buffer to find thisp,,: So that we can maximally reduce the external
availability. Equation 6 shows how we can determine the valmeemory access requirement given the limited amount of buffer
of D, if we are only concerned about the memory requiremespace.
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Fig. 5. (a)External Memory Access Requirement for Differenaind ¢  Filter

Values; (b)Decidingop: according todL;,tq:/0p

o The board we have only contains one FPGA chip with

Further analysis shows that,. is relatively independent 12,288 slices, 10,000 bits of on-chip memory.
of ¢q. By setting the value of to its minimum valuen, we « 4 memory banks are connected to this FPGA chip, with
can get the total access number as a functiop. daking the data widths of 32, 32, 64 and 64 respectively.

derivative of the function we can get,,; according to the o We assume the processing clock is the same as the
value of &zt Figure 5(b) shows the derivative when we  memory read/write clock so that we do not have to
select Biotar = 500 x 8bits, ¢ = n and the other values are  consider cross clock boundary issues. Extra buffers and
the same as used for Figure 5. Oneg; is found, we can converting the data transfer rate into bits/processing cycle
easily get the value of, ¢ = Bpf—;t’ are needed if these two clocks are different.

In the actual implementation, we usually takg: = ¢ so  Figure 7(b) shows a schedule using the ASAP scheduling
that we can overlap data processing and data loading tiraggorithm [12] for our high pass filter example. The dotted
Clearly, if we putp,,: x ¢ pixels in the buffer, then when we horizontal lines correspond to clock cycle boundaries. We
want to move the block to the next position, we have to makgsume the multipliers and the adders have the same unit
sure the new data will not replace the old data before they af€lay; this assumption can be modified depending on the
completely processed. Extra control mechanisms are needefidgary binding.
take care of the data conflict. But if we on use only half of the Table 1l shows the area usage for different function units,
buffer by loading the block sizg,,: x gopt, then while we are memory interfaces and control parts. We use 20% of one MPEs
processing the current window, we can load the next block afea as the estimate for controller area.
data in parallel. Figure 6 shows that instead of using one whole
block buffer, we can use two smaller buffers alternately and
greatly reduce the waiting time. This adjustment will result

TABLE Il
AREA USAGE OFHIGH PASSFILTER BLOCKS

in a small overhead of memory bandwidth requirement, but l ’\BA'OC"S — [ S"Ceslgggsumeq
H f . . emory Interfaces

com_pz_ired to the performance it can achieve, this overhead is MPEs | Multiplier =5
negligible. Adders 42
Registers 52
D. Summary Address Generators 24
Total 187
Once we get the three upper bounds according to different Control (20% of MPEs total) 38

constraints, the tightest duplication factor is selected. There-
fore, we can determine how many copies of MPEs will be . .
implemented in the FPGA chip and which buffering method Accordlng to Equation 1 and the data we get from Table II,
will be used. This information, combined with the delay and/€ can derive the value db, as follows:
throughput of the MPE, can be used to estimate how many 1768 + D, x (187 + 38) < 80% x 12288
clock cycles are needed for loading and processing the data. . . . .

lving this equation, we get the maximum valllg = 35.

To summarize, we can quickly determine the hardware blo ; )
we only consider area constraints, we can have at most 35

structure and the maximal performance by using our design . . .
method P y g opies of one MPE and thus have 35 windows being processed

simultaneously.
IV. EXPERIMENT To process these parallel 35 windows continuously, we need
to feed the input data and store the output data through the
To demonstrate our method, we present an example. YM@mory interface. According to our assumptions, we only
assume: have (64 + 64 + 32 + 32)bits/cycle memory bandwidth, which
« Input image size i9024 x 1024, each pixel has 8 bits. cannot meet the data transfer requirement. Obviously, area is
« The window applied to the image is3ax 3 high pass not the critical constraint of the design and we have to consider
filter, as shown in Figure 7(a). Each output pixel also hake upper bound and lower bound of the duplication factor
8 bits. subject to the memory bandwidth constraint.
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Based on the fact that the number of memory pérts Integer Linear Programming (ILP) to automatically get the
not large, we can enumerate all the input/output memory pampper bounds given the board constraints and the parameters of
allocation possibilities to obtain the maximubw,,; andD,,,,. the SWO applications. In the future, more SWO applications
In this example, the optimal allocation would be to assign theith a wide range of window sizes will be investigated. The
two 64 bit width memory ports as input memory while the twoesults will be compared to previous hand-crafted designs to
32 bit width memory ports are output memory fbr,,;. By verify the accuracy of the estimates using our method.
substituting these the numerical values into Equations 2 and 3
we getD,,,; = 5, which is much smaller tha, = 35. Using

a similar strategy to calculatB,,., we find that allocating one [1] V. Betz, J. Rose, and A. Marquardiychitecture and CAD for Deep-
Submicro FPGAs USA: Kluwer Academic Publisher, February 1999.
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