
Optimizing Data Intensive Window-based Image
Processing on Reconfigurable Hardware Boards

Haiqian Yu
Northeastern University

Boston, MA 02115
Email: hyu@ece.neu.edu

Miriam Leeser
Northeastern University

Boston, MA 02115
Email: mel@ece.neu.edu

Abstract— Most image processing applications are not only
computationally intensive, but also data intensive. Reconfigurable
hardware boards provide a convenient and flexible solution to
speed up these algorithms. To get a high performance design
without going through the time-consuming hardware design
process for each different algorithm, we present a simple design
flow for window-based image processing applications. By finding
the three upper bounds according to area constraints, memory
bandwidth constraints and on-chip memory constraints, the block
structure of the design which can fully utilized the available
resources on the board is determined. A new buffering method
is also discussed in this paper to build an efficient memory
hierarchy for this type of application.

I. I NTRODUCTION

A Field Programmable Gate Array (FPGA) based com-
puting board, working as a co-processor together with the
host, can be used to speed up computational intensive and
data intensive algorithms. Before actually implementing the
algorithm in hardware, designers usually want to know what
is the maximum speedup given the computing board and
the algorithm. Unfortunately, the quantitative estimate of the
speedup is dependent on the algorithm and the way it is
implemented. The design space for hardware implementation
for each algorithm is so huge that finding an optimal design
and the corresponding speedup would require great effort.
Defining a general rule to estimate the speedup for all the
algorithms given a FPGA board is too complex.

This paper concentrates on one class of applications called
Sliding Window Operation (SWO) based applications, which
are widely used in image processing and require much
computation and data manipulation. A common data access
pattern is generalized and a near optimal memory hierarchy
can be built using our block buffering method. By defining
three upper bounds according to the area constraints, memory
bandwidth constraints and on-chip memory size constraints,
we can provide a fast yet accurate estimate of the maximal
speedup. Moreover, once the tightest upper bound is selected,
a corresponding hardware block structure as well as a perfor-
mance estimate are determined. The design process presented
in this paper allows the design cycle to be shortened and an
estimate of the speedup to be obtained before circuit is actually
implemented.

The remainder of the paper is organized as follows. Sec-
tion II gives a brief introduction to SWO applications and

One Pixel

1st Window

Window Moving Direction

2nd Window

1st Window for 2nd row

3rd Window

Fig. 1. Example of Sliding Windowing Operation

FPGA boards. Related work is also discussed in this section.
Section III presents the details of the design method and
how to find the three upper bounds according to different
resource constraints. Section IV describes a simple experiment
to illustrate the design method. Section V concludes the paper
and closes with thoughts about future work.

II. BACKGROUND

Figure 1 shows an example of a3×4 SWO. In this example,
the window is moving in raster-scan order.

For most SWO applications, processing high resolution
images is both data intensive and computationally intensive.
Fortunately, SWOs are inherently highly parallelizable and
hardware implementations are favored in delay sensitive appli-
cations. An FPGA-based system can provide a fast and flexible
solution for these applications by combining both fine-grained
parallelism and coarse-grained parallelism to achieve a high
performance implementation.

The three basic elements of an FPGA are configurable logic
blocks (CLBs), I/O blocks and programmable routing [1].
Arbitrary logic functions can be implemented by appropri-
ately configuring these CLBs and connecting them through
programmable routing. In this paper, we consider CLBs, I/O
blocks, programmable routing and on-chip memory as our
available FPGA hardware resources.

Memory hierarchy management had not been considered
by FPGA designers until on-chip memory of FPGAs became
available. FPGA chips usually have connections with external
memory banks, but if the data needs to be read from or written
to external memory banks on every access, the performance of
the design is greatly degraded because accessing the external
memory is usually slow. In this case, using on-chip memory to

form an efficient memory hierarchy becomes very important.
The smaller but faster on-chip memory, if organized properly,
can be used as a buffer to store temporary or repeatedly used
data so that off-chip memory accesses are reduced. In our
research, we find that for most SWO based applications, there
exists a common data access pattern. Therefore, we present the
block buffering method which can build an efficient memory
architecture for this type of application.

Two design metrics are important for FPGA based design:
time-to-market and performance. Lots of work has been done
to shorten the design cycle or to improve implementation
performance or both.

High Level Synthesis (HLS) tools provide a bridge between
the algorithm written in a high level language (Matlab, C,
C++, etc) and a lower level Hardware Description Language
(HDL). Handel-C [2], SA-C (Single Assignment C) [3],
Streams-C [4], The MATCH (MATlab Compiler for distributed
Heterogeneous computing systems) compiler project [5] and
DEFACTO (Design Environment For Adaptive Computing
TechnOlogy) [6] all belong to this category. All of these
design automation tools aim to raise the level of abstraction in
hardware design to simplify the design process and therefore
shorten the design cycle. The tools have to be general to deal
with different algorithms and different hardware targets. This
generalization leads to inefficiency of the design. Furthermore,
most design automation tools do not efficiently use the on-
chip memory of the FPGA and the performance is limited by
the external memory accesses for data intensive applications.
Diniz et. al. [7] and Weihardt et. al. [8] exploits the data reuse
to minimize the number of memory accesses. Again, due to
their generalization, the performance speedup over software
are not satisfying.

To improve the performance of the design, further applica-
tion specific optimization is needed. SWO based applications,
widely used for image processing, have a common data access
pattern and are suitable for further optimization. Guo et. al. [9]
presented a compiler algorithm to reuse data in widow-based
codes. However, hardware constraints are not considered and
maximal performance is not guaranteed. Liang et. al. [10], [11]
took memory access and data buffering into consideration,
which is essential for data intensive applications. But the
design space is very large especially when the size of the
window or the number of memory banks is large. Moreover,
their buffering method is not efficient when the available buffer
size is not large enough for full image row buffering.

III. D ESIGN TRADEOFFS

Our goal is to have an implementation which can fully
utilize the available resources for optimal performance. By
estimating the upper bounds of the parallelism according to
different constraints, we can decide which constraint is the
most critical one and then produce a design accordingly. For
FPGA based COTS coprocessor boards, we assume that the
FPGA chips and their connections to the external memory
banks have already been built on the board.

There are three constraints we consider. First, the number
of slices in the FPGA limits how many copies of processing
elements we can put on the chip. Second, memory bandwidth
defines the maximum data transfer speed between the FPGAs
and the external memory banks. Third, the size of the on-
chip memory that is used as buffers reduces redundant data
transfer. Since our goal is to maximize the usage of all the
available resources for maximum parallelism, we ignore timing
constraints for each pipeline stage; they can be optimized after
we determine the design structure. The following sections
go into the details of how these three constraints influence
our final implementation. Although most of our analysis is
based on a coprocessor board with a single FPGA chip, the
same analysis can hold for boards with multi-FPGA chips
because most COTS systems have a symmetrical layout of the
interconnection between FPGA chips and memory banks. We
can divided the problem into several equal sized sub-problems
by exploring coarse-grained parallelism. After finding solu-
tions for the sub-problems, we can combine these solutions
to achieve a final solution for the whole problem. Even if
the interconnection is different for different FPGA chips, we
can still use the same analysis process iteratively until we
get an optimal division of the problem and allocate the sub-
problems to different chips. The discussion that follows uses
the parameters defined in Table I.

TABLE I

PARAMETER DEFINITION

Parameter Symbol

Image size M ×N
Window size m× n
Pixel value of input image PIi,j

Pixel value of output image POi,j

Bits per input pixel Wpi

Bits per output pixel Wpo

No. of total memory bank k
No. of input memory bank kin

No. of output memory bank kout

Total available buffer size Btotal

Memory bit width Wm

Block buffer size (in pixels) p× q
Duplication factor under area constraints Da

Lower bound of duplication factor
under memory bandwidth constraints Dml

Upper bound of duplication factor
under memory bandwidth constraints Dmu

Duplication factor
under buffer size constraints Db

A. Area Availability

When we implement arbitrary logic in FPGAs, every func-
tion unit (FU), eg. adders, multipliers, registers etc., consumes
one or more slices of the FPGA. The number of slices in an
FPGA is proportional to the area in an ASIC and we use area
here for simplicity.

Each FPGA has a fixed area (fixed number of slices) when
it is manufactured; the area size is dependent on the model
of the FPGA. Designs implemented in a specific FPGA chip
are limited by the available area, which means the total area

Memory
Bank 1

Memory
and I/O

Interface
(A

IF
)

Memory
Bank 2

Host

Control Part
(Actrl)

Addr Generation

Function
Units

(AMPEs)

Addr Generation

Function
Units

(AMPEs)

Fig. 2. Block Diagram of an Commercial FPGA Computing Engine

of all the functional units and routing cannot exceed the total
area of that FPGA chip. It is extremely difficult to estimate
the routing area, so we reserve 20% of the total chip area for
routing purposes, which means about 80% of the total area
(Atotal) can be used for FUs.

SWOs involve a set of repeated operations at different image
locations. We define a Micro Processing Element (MPE) as a
set of pipelined function units which can process one SWO.
Once we build the MPE, we can sequentially feed the pixel
data from different windows into this pipeline and get the
outputs one by one. Since each window is independent, if we
haveDa duplicate copies of the same MPE, we can process
Da windows at different locations simultaneously and get a
speedup ofDa times. Given the total available area, we can
estimate the maximumDa based on the area consumed by the
MPEs and the overhead which coordinates these MPEs.

Maximizing Da requires an accurate area estimate of the
MPE, the control signals and the interfacing signals. We define
AMPEs as the sum of all function unit area for processing
one window, which includes the address generation for one
window. AIF and Actrl are the area overhead of interfacing
signals and control signals, respectively.AIF is easy to
determine because it will not change much when the design
changes. In most cases, the interface modules are pre-defined
and their area can be estimated before we start the design
process.Actrl is the sum of the area consumed by the control
part. The control part coordinates between MPEs so that they
can share the memory interface without any conflict. It is
very difficult to estimate the control signal area before it is
actually implemented. Here we simplify the estimate by adding
15∼20% of the area of an MPE, based on experience, as the
area consumed by the control part for one window processing.
This overhead may be too pessimistic in some cases, but with
current FPGA technology, it is affordable. Figure 2 shows the
block diagram of the area consumption for different blocks.
Equation 1 shows the constraint for maximizingDa.

Da× (AMPEs +20%×AMPEs)+AIF ≤ 80%×Atotal (1)

Once scheduling and binding of one MPE is fixed, the
area is determined. Getting an optimal scheduling and binding
scheme given area constraints is an NP-hard problem [12]. We
assume that the MPE has already been designed. We further
simplify our method by assuming there is sufficient area for
one window processing. This assumption is reasonable for

N+2 N+3 N+4 N+5 N+6

2N+2 2N+3 2N+4 2N+5 2N+6

3N+2 3N+3 3N+4 3N+5 3N+6

N+7

2N+7

3N+7

4N+2 4N+3 4N+4 4N+5 4N+6 4N+7

5N+2 5N+3 5N+4 5N+5 5N+6 5N+7

2 3 4 5 6 7

N N+1

2N 2N+1

3N 3N+1

4N 4N+1

5N 5N+1

0 1

2N-2

3N-2

4N-2

5N-2

6N-2

N-2

2N-1

3N-1

4N-1

5N-1

6N-1

N-1

current processing window

next processing window

Buffered
Pixels

Fig. 3. Using Line Buffering Scheme

small size window SWOs and current FPGA technology.Da

can be easily modified according to Equation 1 whenAMPE

changes because a different implementation is chosen.Da

gives us the number of parallel pipelines that fit in the available
hardware.

B. Memory Bandwidth Limitation

In section III-A, we only consider the area constraints of
the design. The feasibility of this implementation depends on
whether or not we can have all the data ready for the function
units. If memory bandwidth becomes a bottleneck, then even if
we haveDa MPEs on chip, some of them will be idle until the
data arrives. In this case, it is not necessary to haveDa copies
of MPEs. We derive another upper bound from the memory
bandwidth so that we can make sure all the copies of MPEs
are fully working at all times.

As shown in Figure 1, each time them×n window moves
from left to right, m new data are needed from memory and
one output is generated. If there is no buffering, we discard
the m pixels which have moved out of the window. However,
of these discarded pixels,m−1 pixels will be reused when the
window moves to the next row. In this case, we load the pixels
redundantly and increase the memory bandwidth requirements.
If we have enough buffer space, we can keep them−1 pixels
in the buffer and discard only 1 pixel which will never be used
for the following windows. By this means we can minimize
the loading redundancy. Figure 3 shows a buffering method
which can achieve this goal [13]. These two cases (loading
m pixels per window and loading 1 pixel per window) can be
defined as the lower bound and upper bound of the parallelism
factor, Dml andDmu, respectively, according to the memory
bandwidth limitation.

• Lower BoundDml:

Dml × (m×Wpi + 1×Wpo) ≤
k∑

i=1

Wmi (2)

Dml is subject to the constraints shown in Equation 3
because input and output memory ports are allocated
separately.





Dml × (m×Wpi) ≤
∑kin

i=1 Wmi

Dml × (1×Wpo) ≤
∑kout

i=1 Wmi

kin + kout ≤ k

(3)

• Upper BoundDmu:

Dmu × (1×Wpi + 1×Wpo) ≤
k∑

i=1

Wmi (4)

Dmu is subject to the constraints shown in Equation 5
because input and output memory ports are allocated
separately.





Dmu × (1×Wpi) ≤
∑kin

i=1 Wmi

Dmu × (1×Wpo) ≤
∑kout

i=1 Wmi

kin + kout ≤ k

(5)

C. On-chip Memory Availability

Section III-B gives the upper bound and lower bound of
the duplication factor under memory bandwidth constraints.
To achieve the upper bound, Figure 3 shows the line buffer
method requiring the buffer size to be at least((m − 1) ∗
N + m) ∗Wpi bits. This may be larger than the buffer space
available. Buffer size may be the constraint for determining the
duplication factor. Our goal is to optimize the buffer size while
still keeping the number of external memory data accesses as
small as possible.

1) Block Buffering Method:We proposed a new method
we call the block buffering method. It can greatly reduce
buffer size while still keeping the data loading redundancy low.
Figure 4 gives an illustration of the block buffering method.
Before processing is begun, ap × q block of pixel data is
buffered, wherep ≥ m and q ≥ n. In this example the
window size ism = 3, n = 4 and the block size isp = 4,
q = 6. With a p × q block buffer, we can process a total of
(p−m + 1)× (q− n + 1) windows without loading any new
data. While we are processing the current block, we can at
the same time load the data for the nextp × q block buffer.
As shown in Figure 4, the total number of pixels needed to
be loaded from off-chip memory isp× (q− n + 1) when the
block moves horizontally. So the average number of off-chip
memory access for this type of move is p×(q−n+1)

(p−m+1)×(q−n+1) =
p

(p−m+1) pixels per window operation. This is a significant
saving when compared to off-chip memory access without
buffering, which requiresm pixels to be loaded per window
operation.

When the block moves to the next row block, the number
of pixels needed from off-chip memory to initiate the new
windowing processing isq × (p−m + 1). Thus the memory
access requirement is q

q−n+1 pixels per window operation.
Once we decide the values ofp and q, we can determine

the corresponding duplication factorDb subject to buffer
availability. Equation 6 shows how we can determine the value
of Db if we are only concerned about the memory requirement

N+2 N+3 N+4 N+5 N+6

2N+2 2N+3 2N+4 2N+5 2N+6

3N+2 3N+3 3N+4 3N+5 3N+6

N+7

2N+7

3N+7

4N+2 4N+3 4N+4 4N+5 4N+6 4N+7

5N+2 5N+3 5N+4 5N+5 5N+6 5N+7

2 3 4 5 6 7

N N+1

2N 2N+1

3N 3N+1

4N 4N+1

5N 5N+1

0 1

N+8

2N+8

3N+8

N+9

2N+9

3N+9

4N+8 4N+9

5N+8 5N+9

8 9

6N+2 6N+3 6N+4 6N+5 6N+6 6N+76N 6N+1 6N+8 6N+9

1st block buffer

next row
 block buffer

window

2nd block buffer

Fig. 4. Block Buffering Method Example

when blocks move from left to right.

Db × (
p

p−m + 1
×Wpi + 1×Wpo) ≤

k∑

i=1

Wmi (6)

Again,Db is subject to the constraints shown in Equation 7,
because the input and the output memory ports are allocated
separately.





Db × (p
p−m+1 ×Wpi) ≤

∑kin

i=1 Wmi

Db × (1×Wpo) ≤
∑kout

i=1 Wmi

kin + kout ≤ k

(7)

2) Selectingp Andq: When we increase the value ofp, we
reduce the total number of external memory accesses fromm
to p

(p−m+1) when the block buffer moves from left to right. At
the same time increasing the value ofq can reduce the memory
access fromn to q

q−n+1 when the block buffer moves to the
next line. We wish to balance betweenp andq, wherep, q are
constrained by

p× q ×Wpi ≤ Btotal (8)

HereBtotal stands for the total on-chip memory to be used
for the block buffer. GivenM, N, m, n, we can determine
the total number of pixels need to be loaded from external
memory, Ltotal, as a function ofp, q (Equation (9)). Here,
p, q are subject to the constraint in Equation 8.

Ltotal = [(
N − q

q − n + 1
)× (

M − p

p−m + 1
+ 1)× (p(q − n + 1))]

︸ ︷︷ ︸
when block moves left to right

+ [(
M − p

p−m + 1
)× (q(p−m + 1))]

︸ ︷︷ ︸
when block moves top to bottom

(9)
Figure 5(a) plotsLtotal usingM = 1024, N = 1024, m =

3, n = 3, Btotal = 500 ∗ 8bits. Clearly, the total number of
external memory accesses mainly depends on the value ofp.
Moreover, from this figure, we can see that there exists apopt

for a specificq such that whenp > popt, the memory access
requirement won’t reduce much as we increasep. Our aim is
to find thispopt so that we can maximally reduce the external
memory access requirement given the limited amount of buffer
space.

(b)(a)

Fig. 5. (a)External Memory Access Requirement for Differentp and q
Values; (b)Decidingpopt according to∂Ltotal/∂p

Further analysis shows thatpopt is relatively independent
of q. By setting the value ofq to its minimum valuen, we
can get the total access number as a function ofp. Taking the
derivative of the function we can getpopt according to the
value of ∂Ltotal

∂p . Figure 5(b) shows the derivative when we
selectBtotal = 500 × 8bits, q = n and the other values are
the same as used for Figure 5. Oncepopt is found, we can
easily get the value ofq, q = Btotal

popt
.

In the actual implementation, we usually takeqopt = q
2 so

that we can overlap data processing and data loading time.
Clearly, if we putpopt × q pixels in the buffer, then when we
want to move the block to the next position, we have to make
sure the new data will not replace the old data before they are
completely processed. Extra control mechanisms are needed to
take care of the data conflict. But if we on use only half of the
buffer by loading the block sizepopt×qopt, then while we are
processing the current window, we can load the next block of
data in parallel. Figure 6 shows that instead of using one whole
block buffer, we can use two smaller buffers alternately and
greatly reduce the waiting time. This adjustment will result
in a small overhead of memory bandwidth requirement, but
compared to the performance it can achieve, this overhead is
negligible.

D. Summary

Once we get the three upper bounds according to different
constraints, the tightest duplication factor is selected. There-
fore, we can determine how many copies of MPEs will be
implemented in the FPGA chip and which buffering method
will be used. This information, combined with the delay and
throughput of the MPE, can be used to estimate how many
clock cycles are needed for loading and processing the data.
To summarize, we can quickly determine the hardware block
structure and the maximal performance by using our design
method.

IV. EXPERIMENT

To demonstrate our method, we present an example. We
assume:

• Input image size is1024× 1024, each pixel has 8 bits.
• The window applied to the image is a3 × 3 high pass

filter, as shown in Figure 7(a). Each output pixel also has
8 bits.

-1 -1 -1

-1 8 -1

-1 -1 -1

jiP, jiP ,1−1,1 −− jiP 1, −jiP1,1 +− jiP 1,1 −+ jiP1, +jiP 1,1 ++ jiPjiP ,1+

9

1

8

×
9
1

(a) (b)

Highpass Filter Mask

Fig. 7. (a)Highpass Filter Example; (b)Sequencing Graph for the High Pass
Filter

• The board we have only contains one FPGA chip with
12,288 slices, 10,000 bits of on-chip memory.

• 4 memory banks are connected to this FPGA chip, with
data widths of 32, 32, 64 and 64 respectively.

• We assume the processing clock is the same as the
memory read/write clock so that we do not have to
consider cross clock boundary issues. Extra buffers and
converting the data transfer rate into bits/processing cycle
are needed if these two clocks are different.

Figure 7(b) shows a schedule using the ASAP scheduling
algorithm [12] for our high pass filter example. The dotted
horizontal lines correspond to clock cycle boundaries. We
assume the multipliers and the adders have the same unit
delay; this assumption can be modified depending on the
library binding.

Table II shows the area usage for different function units,
memory interfaces and control parts. We use 20% of one MPEs
area as the estimate for controller area.

TABLE II

AREA USAGE OFHIGH PASS FILTER BLOCKS

Blocks Slices Consumed

Memory Interfaces 1768
MPEs Multiplier 69

Adders 42
Registers 52
Address Generators 24
Total 187

Control (20% of MPEs total) 38

According to Equation 1 and the data we get from Table II,
we can derive the value ofDa as follows:

1768 + Da × (187 + 38) ≤ 80%× 12288

Solving this equation, we get the maximum valueDa = 35.
If we only consider area constraints, we can have at most 35
copies of one MPE and thus have 35 windows being processed
simultaneously.

To process these parallel 35 windows continuously, we need
to feed the input data and store the output data through the
memory interface. According to our assumptions, we only
have(64+64+32+32)bits/cycle memory bandwidth, which
cannot meet the data transfer requirement. Obviously, area is
not the critical constraint of the design and we have to consider
the upper bound and lower bound of the duplication factor
subject to the memory bandwidth constraint.

qpopt ×

optopt qp ×

1st Block Data Loading

1st Block Data Processing

2nd Block Data LoadingWaiting

Waiting Waiting 2nd Block Data Processing

1st Block Data Loading 2nd Block Data Loading

1st Block Data
Processing

3rd Block Data Loading

Waiting 2nd Block Data
Processing Waiting

4th Block Data Loading

3rd Block Data
Processing Waiting

Waiting

5th Block Data Loading

4th Block Data
Processing Waiting

6th Block Data Loading

5th Block Data
Processing WaitingWaiting

Block size =

Block size =

Loading

Loading

Processing

Processing

Time

Fig. 6. Overlapping the Loading and Processing Time by Selectingqopt = q/2

Based on the fact that the number of memory portsk is
not large, we can enumerate all the input/output memory port
allocation possibilities to obtain the maximumDml andDmu.
In this example, the optimal allocation would be to assign the
two 64 bit width memory ports as input memory while the two
32 bit width memory ports are output memory forDml. By
substituting these the numerical values into Equations 2 and 3
we getDml = 5, which is much smaller thanDa = 35. Using
a similar strategy to calculateDmu, we find that allocating one
64 bit and one 32 bit wide memory as input memories and the
others as output memories, we can get the maximum value of
Dmu = 12 under the constraints of Equation 5.

The number of simultaneously processed windows also
depends on the size of the buffer. According the our analysis,
we know thatDb satisfies the following condition:

Dml ≤ Db ≤ Dmu

and the value ofDb depends on the buffer size. In this
experiment, we have a total of 10,000 bits of on-chip memory
which can be used as the buffer. The line buffering method
requires(n − 1) × N + m pixels to be buffered, larger than
the available on-chip memory size. In this case, we need to
use the block buffering method instead.

Our computation shows givenBtotal = 10, 000 (in pixels),
the value ofpopt is 23. We select 24 as an optimalp value
because it is much easier for hardware implementation. The
correspondingqopt value is 26. By allocating one 64 bit and
one 32 bit width memory ports as input memory, the other 64
and 32 bit ports as output memory, we getDb = 11, which
doubles the duplication factorDml and is close toDmu. The
resulting optimal design has 11 copies of one SWO processing
running in parallel. The block buffering method with block
size ofp = 24, q = 26 is selected for the best performance.

V. CONCLUSION AND FUTURE WORK

In this paper, we determine the analytical representations of
the three upper bounds according to three different constraints
of the FPGA computing board. By selecting the tightest upper
bound, a hardware block structure as well as an estimation
in clock cycles is determined before we actually implement
the SWO algorithm in hardware. Our block buffering method
proves to be efficient and flexible for different on-chip memory
sizes. We are currently investigating an automated tool using

Integer Linear Programming (ILP) to automatically get the
upper bounds given the board constraints and the parameters of
the SWO applications. In the future, more SWO applications
with a wide range of window sizes will be investigated. The
results will be compared to previous hand-crafted designs to
verify the accuracy of the estimates using our method.

REFERENCES

[1] V. Betz, J. Rose, and A. Marquardt,Architecture and CAD for Deep-
Submicro FPGAs. USA: Kluwer Academic Publisher, February 1999.

[2] “Handel-C, Software-Compiled System Design,”
http://www.celoxica.com/methodology/handelc.asp, Last accessed
Dec 15, 2004.

[3] B. A. Draper, J. R. Beveridge, A. P. W. Bohm, C. Ross, and
M. Chawathe, “Accelerated Image Processing On FPGAs,”IEEE Trans-
actions on Image Processing, vol. 12, no. 12, pp. 1543–1551, December
2003.

[4] M. Gokhale, J. Stone, and J. Arnold, “Stream-Oriented FPGA Com-
puting in the Streams-C High Level Language,”FCCM’00, pp. 49–56,
April 2000.

[5] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann,
M. Haldar, P. Joisha, A. Jones, A. Kanhare, A. Nayak, S. Periyacheri,
M. Walkden, and D. Zaretsky, “A Matlab Compiler for Distributed,
Heterogeneous, Reconfigurable Computing Systems,”FCCM’00, pp.
39–48, April 2000.

[6] B. So, M. W. Hall, and P. C. Diniz, “A Compiler Approach to Design
Space Exploration in FPGA-Based Systems,”Proceedings of the ACM
Conference on Programming Language Design and Implementation, pp.
165–176, June 2002.

[7] P. Diniz and J. Park, “Automatic synthesis of data storage and control
structures for fpga-based computing engines,” inFCCM ’00: Proceed-
ings of the 2000 IEEE Symposium on Field-Programmable Custom
Computing Machines. Washington, DC, USA: IEEE Computer Society,
2000, p. 91.

[8] M. Weinhardt and W. Luk, “Memory access optimization and ram
inference for pipeline vectorization,” inFPL ’99: Proceedings of the 9th
International Workshop on Field-Programmable Logic and Applications.
London, UK: Springer-Verlag, 1999, pp. 61–70.

[9] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, “A Quantitative Analysis of
the Speedup Factors of FPGAs over Processors,”Proceeding of the 2004
ACM/SIGDA 12th International Symposium on Field Programmable
Gate Arrays, pp. 162–170, February 2004.

[10] X. Liang, J. Jean, and karen Tomko, “Data Buffering and Allocation in
Mapping Generalized Template Matching on Reconfigurable Systems,”
The Journal of Supercomputing, Special Issue on Engineering of Recon-
figurable Hardware/Software Objects, pp. 77–91, 2001.

[11] X. Liang and J. S.-N. Jean, “Mapping of Generalized Template Matching
onto Reconfigurable Computers,”IEEE Transactions on VLSI Systems,
vol. 11, no. 3, pp. 485–498, 2003.

[12] G. D. Micheli, Synthesis and Optimization of Digital Circuits, S. W.,
Ed. McGraw-Hill, Inc., 1994.

[13] X. Liang and J. Jean, “Memory Access Scheduling and Loop Pipelin-
ing,” IEEE Transactions on Very Large Scale Integration(VLSI) Systems,
vol. 11, no. 3, pp. 485–498, June 2003.

