HESTIA Program Review - Sept 21, 2023

4C2B: Century-scale Carbon-sequestration in Cross-laminated Timber Composite Bolted-steel Buildings Michelle Laboy and Matthew J. Eckelman, Northeastern University Jerome F. Hajjar, Principal Investigator, Northeastern University

Key Personnel

- Northeastern University (Lead institution)
 - Jerome F. Hajjar (PI)
 - Michael B. Kane
 - Matthew J. Eckelman
 - John "Jack" Lesko
 - Michelle Laboy
 - Nathan Post
 - SungKu Kang
- Simpson Gumpertz & Heger Inc.
 - Mark D. Webster
 - Norman F. Perkins
 - Ronald O. Hamburger
 - David J. Jacoby
- University of Massachusetts Amherst
 - Sanjay R. Arwade
 - Kara D. Peterman
- Swarthmore College
 - Fiona O'Donnell
- OPAL
 - Matthew O'Malia
 - Riley Pratt
 - Timothy Lock
 - Addison Godine
 - David Miller

Project Overview

- Project Overview
 - Develop and test steel+CLT hybrid building designs to store biogenic carbon
 - Leverage current AEC ecosystem for rapid market penetration

- Innovations
 - Design for deconstruction (DfD) and CLT reuse via novel connectors to reach century-scale carbon storage
 - Novel CLT layups minimizing carbon footprint and utilizing regional biomass resources
 - Use of short-cycle agricultural products into assemblies

- Deliverables
 - LCA results showing the value of the proposed works
 - Standards-based design guidelines of DfD Steel+CLT

CHANGING WHAT'S POSSIBLE

Project Impact

- Rapid Transformation Strategy
 - Can be designed and constructed with existing foundations
 - Standards-based design guidelines for practitioners
 - Light-weighted and faster construction compared to conventional concrete floors

- Technology Impact
 - 70% reduced carbon emission from steel structure via DfD
 - Multi-story zero-carbon buildings with century-scale storage
 - Efficient assessment of the residual life of materials
 - New market opportunity involving the reused steel and CLT

Recent Successes

Extensive testing of novel CLT species

Development of prototype building designs for local conditions

Database of bio-based non-structural materials

LCA trade-offs of structural patterns

Tech to Market Plan

- DfD Steel+CLT design guidelines
 - Codification via standards organizations (e.g., AISC)
 - Targeting design provisions

- Standardization of the proposed technologies
 - Connector designs for DfD Steel+CLT
 - Advanced manufacturing technology for novel CLT layups

- Enabling new markets without disrupting the industry
 - Testing and certification of reused Steel+CLT
 - DfD stockpiling and planning for the reuse

