Objectives:
Develop new structural system concepts and establish comprehensive life-cycle assessment strategies for deconstructable steel and composite steel/concrete construction to facilitate DfD coupled with the use of recycled materials in sustainably optimized construction.

Challenge
According to the U.S. Department of Energy, construction and use of commercial and residential buildings accounted for nearly 45% of U.S. energy consumption in 2009. A new design approach known as Design for Deconstruction (DfD) has emerged to facilitate future reuse of materials.

Structural steel framing systems are particularly conducive to deconstruction at the end of a structure’s service life. However, the primary challenge of deconstructing steel buildings is addressing the monolithic construction of composite steel/concrete floor systems (Figure 1, at right). While these floor system components may be recycled, currently they cannot be easily refabricated and reused.

Solution
The proposed system (Figure 2, at left) maintains the efficiency benefits offered by composite action and steel construction, including reduced steel beam sizes, flexible floor framing patterns, and use of recycled materials, while directly addressing the need to reduce waste in the construction industry.

The research includes quantification of deconstructable composite connection behavior through full-scale testing of clamping connections and conducting full-scale tests and corroborating analyses of the proposed deconstructable floor system to validate its integrity.
Composite Beam Test #4

A series of full-scale composite beams were designed to validate the load-slip curves obtained from the pushout tests and investigate the behavior of the deconstructable composite system under gravity loading.

Figure 4 illustrates the load-deflection relationship of Specimen 4, which is a partially composite beam consisting of a W14x26 section and M20 clamps. The test was terminated after 14.8 in. of deflection. The initial stiffness of the beam is 34.7 kips/in., 40% larger than the AISC prediction using a lower bound moment of inertia of 25.3 kips/in. The peak strength of the beam is 53.7 kips, which corresponds to a bending moment of 351 ft-kips, 119% of the AISC prediction of 296 ft-kips. The maximum slip is 0.35 in. at the ends of the beam, while the maximum slip is 0.02 in. in the corresponding fully composite beam 3.

The bolt tension variation is plotted in Figure 5. After pretensioning, the tension of most bolts is above 31.6 kips, which is the minimum bolt pretension in Table J3.1M in AISC 360-10. Under service loads, the variation of the bolt tension was insignificant. As the beam deflected and the clamps started to slip, the shear force acting on the bolts increased, especially for those bolts at the ends of the beam, and thus the bolt tension declined gradually.

References