

Behavior of Deconstructable Steel-Concrete Shear Connection in Composite Beams

Lizhong Wang, Jerome F. Hajjar

Department of Civil and Environmental Engineering Northeastern University

Mark D. Webster

Simpson Gumpertz and Heger, Inc.

April 24, 2015

and Building Enclosures

Northeastern University

Introduction

Image from US Energy Information Administration (2011)

Green buildings

- Material manufacture
 - Environmentally friendly, renewable and low embodied energy materials
- Use phase
 - Efficient heating, ventilating and lighting systems
 - Adaptation or reconfiguration
- End of life
 - Minimum amount of waste and pollution
 - Reusable and recyclable materials

Material flow of current buildings

Introduction DfD Floor System	Clamp Connector Behavior	Conclusions
-------------------------------	--------------------------	-------------

End-of-life of Construction Materials

End-of-life of construction materials Image from SteelConstruction.Info

Introduction	DfD Floor System	Clamp Connector Behavior	Conclusions
--------------	------------------	--------------------------	-------------

Composite Floor System

- Conventional composite floor systems are cost-effective solutions for multi-story buildings
- The integration of steel beams and concrete slab limits separation and reuse of the components
- Proposed DfD System: Clamp precast planks to steel beams/girders in a steel framing system
 - Both the steel members and the precast planks may be reused

DfD Floor System

Aim: Achieve nearly 100% direct reusability for composite floor systems within the context of bolted steel framing systems

ConXtech moment connection Image from ConXtech Website

Example of deconstructable bolted connection

Test Program

- Pushout tests: evaluate a wide range of parameters and formulate strength design equations for the clamping connectors
- Beam tests: study the clamp connector behavior and associated composite beam strength and stiffness for different levels of composite action
- Diaphragm tests: investigate the in-plane seismic behavior of the deconstructable composite floor system

Pushout Test Setup

Specimen components

- Precast concrete plank
 - Dimension: 6 in. x 2 ft. x 4 ft.
- Reaction angle: L8x6x1
 - Provide realistic compressive stress distributions within the concrete
- Steel beam: WT5x30 and WT4x15.5
 - Smaller WT requires shims between the clamp and steel flange
- Overturning of the system is restrained vertically

Northeastern University

Steel Reinforcement Patterns for Pushout Specimens

- Light reinforcement pattern:
 - Contains reinforcement designed for gravity loading only
- Heavy reinforcement pattern:
 - Supplementary reinforcement bridges all potential concrete failure planes
 - Pattern is slightly changed when three channels are used in the concrete specimen to achieve a high level of composite action
- Reinforcement:
 - No.4 bars are selected for the longitudinal reinforcement designed for plank flexure under gravity loading
 - Transverse and supplementary reinforcement use No.3 bars

Light reinforcement pattern

Pushout Test Matrix

	Test parameters											
Name	BoltNumber ofdiameterchannels		Rebar configuration		Loading		Pretension		Shim			
	1"	3⁄4"	2	3	Light	Heavy	Monotonic	Cyclic	Small	Large	Yes	No
1-2-RH-PL-SN	\checkmark		\checkmark			\checkmark				\checkmark		\checkmark
2-2-RL-LM-PS-SN	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark			~
3-2-RH-LM-PS-SN	\checkmark		\checkmark			\checkmark	\checkmark		\checkmark			\checkmark
4-2-RH-LM-PS-SY	\checkmark		\checkmark			\checkmark	\checkmark		\checkmark		\checkmark	
5-2-RH-LC-PS-SN	\checkmark		\checkmark			\checkmark		\checkmark	\checkmark			\checkmark
6-2-RH-LC-PS-SY	\checkmark		\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	
7-3-RH-LM-PS-SN	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark			\checkmark
8-3-RH-LC-PS-SN	\checkmark			\checkmark		\checkmark		\checkmark	\checkmark			\checkmark
9-2-RH-LM-PS-SN		\checkmark	\checkmark			\checkmark	\checkmark		\checkmark			\checkmark
10-2-RH-LC-PS-SN		\checkmark	\checkmark			\checkmark		\checkmark	\checkmark			\checkmark

Introduction	DfD Floor System	Clamp Connector Behavior	Conclusions
--------------	------------------	---------------------------------	-------------

Pushout Test Simulation

Boundary conditions and load application

Loading process

- Pretension in the bolt is obtained by assigning thermal coefficient to the shank and decreasing the temperature
- The steel beam is then loaded in the axial direction using displacement control Interaction between parts
- Contact frictional coefficient of steel beam to concrete slab and steel clamp to steel beam: 0.3
- Reinforcement: modeled explicitly and embedded in the concrete slab

Introduction	DfD Floor System	Clamp Connector Behavior	Conclusions
--------------	------------------	---------------------------------	-------------

Pushout Test Simulation

Material constitutive model

- Concrete damaged plasticity model
 - Failure mechanism: tensile cracking and compressive crushing
 - Capture stiffness recovery due to crack opening and closing under cyclic loading
- Steel beam, reinforcement and cast-in channels: elastic-perfectly-plastic material

Pushout Test Simulation

Computational models

Model	Loading	Usage of	Amount of bolt	Doinforcement nettern
Number	protocol	shim	pretension	Remforcement patient
1	Monotonic	No	Small	Heavy
2	Monotonic	No	Small	Light
3	Monotonic	No	Large	Heavy
4	Monotonic	Yes	Small	Heavy
5	Cyclic	No	Small	Heavy

Loading protocols

Limit States for Pushout Specimens

Slip of clamp and shim

Damage due to concrete cracking

Local yielding of channel lips

Bolt bearing against the channel

Simulation Results

Summary of the analysis results:

- Clamping connectors in the light reinforcement specimens yield almost the same strength as those in the heavy reinforcement specimen
- Using shims reduces the connector slip strength slightly
- The connectors retain 70% of their strength after significant cyclic loading

Introduction	DfD Floor System	Clamp Connector Behavior	Conclusions
--------------	------------------	---------------------------------	-------------

Conclusions

- A new deconstructable composite floor system, consisting of steel framing, precast concrete planks and clamping connectors, is proposed to promote sustainable design of composite floor systems within bolted steel building construction through comprehensive reuse of all key structural components.
- Pushout tests are designed to evaluate the effects of different parameters and formulate strength design equations for the clamping system. This research also includes composite beam tests and composite diaphragm tests to investigate the flexural and in-plane seismic behavior of the system.
- FE analysis results show that the clamping connectors have an ultimate strength comparable to that of headed stud anchors and behave in a ductile manner; therefore, they have the potential for being used in lieu of headed stud anchors in composite beams.
- The influence of different reinforcement patterns on the ultimate strength of the clamping connectors is negligible. The connector strength is reduced slightly when shims are used, and it decreases when cyclic loading is applied.

Questions?