Experimental Investigation of Deconstructable Steel-Concrete Shear Connections in Sustainable Composite Beams

Lizhong Wang, Jerome F. Hajjar

Department of Civil and Environmental Engineering Northeastern University

Mark D. Webster

Simpson Gumpertz and Heger, Inc.

April 6, 2017

aboratory for Structural Testing of Resilient and Sustainable Systems

Engineering of Structures and Building Enclosures

Acknowledgements

Sponsors

- National Science Foundation
- American Institute of Steel Construction
- Northeastern University
- Simpson Gumpertz & Heger

In-Kind Support

- Benevento Companies
- Capone Iron Corporation
- Fastenal Company
- HALFEN
- Lindapter International
- Meadow Burke
- S&F Concrete
- Souza Concrete

Sustainable Building Systems

Image from US Energy Information Administration (2011)

Green buildings

- Material manufacture:
 - Environmentally friendly, renewable and low embodied energy materials
- Building use:
 - Efficient heating, ventilating and lighting systems
 - Adaptation or reconfiguration
- End of life
 - Minimum amount of waste and pollution
 - Reusable and recyclable materials

Material flow of current buildings:

Introduction	DfD Floor System	Pushout Tests	Beam Tests	Conclusions

End-of-life of Construction Materials

End-of-life of construction materials

Image from SteelConstruction.Info

Introduction	DfD Floor System	Pushout Tests	Beam Tests	Conclusions
--------------	------------------	---------------	------------	-------------

Composite Floor System

- Conventional composite floor systems are cost-effective solutions for multi-story buildings
- The integration of steel beams and concrete slab limits separation and reuse of the components
- Proposed DfD System: Clamp precast planks to steel beams/girders in a steel framing system
 - Both the steel members and the precast planks may be reused

a) Plank perpendicular to the steel beam

b) Plank parallel to the steel girder

Deconstructable composite beam prototype

Precast concrete plank cross section

			-	
Introduction	DfD Floor System	Pushout Tests	Beam Tests	Conclusions

Test Program

- Pushout tests: evaluate a wide range of parameters and formulate strength design equations for the clamping connectors
- Beam tests: study the clamp connector behavior and associated composite beam strength and stiffness for different levels of composite action

Pretension Test

Pretension Test

- Determine the number of turns needed for pretensioning the T bolts
- Round coupons are first tested to obtain the stress-strain curve of the bolt material

150

Fractured bolts

Two turns and 1.5 turns after a snug-tight condition are recommended for pretensioning

the M24 and M20 bolts, respectively.

Pushout Test Setup

Pushout Test Configuration

Pushout Test Parameters

Pushout Test Matrix

			Tes	st parameters	
Series	Specimen	Bolt	Number of	Reinforcement	Shim
		diameter	T bolts	configuration	SIIIII
М	2-M24-T4-RH	M24	4	Heavy	No
М	3-M24-T4-RH-S	M24	4	Heavy	Yes
М	4-M24-T6-RH	M24	6	Heavy	No
М	5-M20-T4-RH	M20	4	Heavy	No
С	6-C24-T4-RH	M24	4	Heavy	No
С	7-C24-T4-RL	M24	4	Light	No
С	8-C24-T4-RH-S	M24	4	Heavy	Yes
С	9-C24-T6-RH	M24	6	Heavy	No
С	10-C20-T4-RH	M20	4	Heavy	No

Three-channel specimen

Two-channel specimen with shims

Introduction	DfD Floor System	Pushout Tests	Beam Tests	Conclusions
muoddetion	DID 11001 Bystem	i usitout itsts	Deam rests	Conclusions

Pushout Test Parameters

Reinforcement pattern

• Light pattern: Contains reinforcement designed for gravity loading only

• Heavy pattern: Supplementary reinforcement bridges all potential concrete failure planes

Loading protocols

- Monotonic test: Displacement control
- Cyclic test:
 - Displacement control
 - Emulate AISC 341-10 K2.4b "Loading Sequences for Beam-to-Column Moment Connection"

Introduction	DfD Floor System	Pushout Tests	Beam Tests	Conclusions
--------------	------------------	----------------------	------------	-------------

Pushout Test Results

Monotonic Test Results

Slip (in.)

- Smaller M20 clamps are prone to rotate and cannot hold their positions as stably as the M24 clamps
- It is recommended to reduce the rotation of the M20 clamps to maintain the bolt tension, which could be achieved by locking the clamp tails into the channels
- The strength degradation starts at a slip of 0.54 in., which is usually larger than the slip demand on shear connectors in composite beams

Introduction	DfD Floor System	Pushout Tests	Beam Tests	Conclusions

Pushout Test Results

Cyclic Test Results

Abrasion on steel flanges

- Strength reduction similar to shear studs which exhibit lower strength and ductility when subjected to cyclic loading (25% strength reduction in design)
- The peak load reduces due to lowering of frictional coefficients and release of bolt tension, but through pinching behavior at larger slips retains much of its strength
- Shear studs have limited slip capacity before fracture (~0.3 in.); clamps have the potential to connect composite diaphragms and collector beams and could be designed as inelastic components to dissipate energy

Introduction	DfD Floor System	Pushout Tests	Beam Tests	Conclusions
muodaetion			Douin rosts	Conclusions

Beam Test Setup

Composite Beam Test

Composite beam test setup

Composite beam #	Bolt size	# of channels per plank	Steel beam section	Reinforcement configuration	Number of bolts (clamps)	Percentage of composite action
1-M24-2C-RH	M24	2	W14x38	Heavy	56	82.7%
2-M24-1C-RL	M24	1	W14x38	Light	30	45.1%
3-M20-3C-RL	M20	3	W14x26	Light	90	164.5%
4-M20-1C-RL	M20	1	W14x26	Light	30	43.8%

Introduction	DfD Floor System	Pushout Tests	Beam Tests	Conclusions
masaaction	DID Hoor System	Tubilout Tests	Doum resus	Concrasions

Beam Test Results

Observed Beam Response

Concrete crushing

Contact between planks at ultimate deflection

Longitudinal cracking (parallel to the steel beam)

Deconstructed steel beam

^				
Introduction	DfD Floor System	Pushout Tests	Beam Tests	Conclusions

Beam Test Results

14

14

Conclusions

Load-Deflection Curves

Conclusions

- A new deconstructable composite floor system is proposed to promote sustainable design of composite floor systems within bolted steel building construction through comprehensive reuse of all key structural components.
- Pushout tests are conducted to evaluate the effects of different parameters and formulate strength design equations for the clamping system; composite beam tests are performed to investigate the strength, stiffness and ductility of the beams.
- 2 turns and 1.5 turns after a snug-tight condition are recommended for pretensioning the M24 and M20 bolts in the DfD plank system.
- The M24 clamps are highly robust under monotonic loading compared to shear studs that fracture at much smaller slips (~0.3 in.), the clamping connectors can retain almost 80% of the peak strength even at 5 in. slip under monotonic loading.
- The strength of the M20 clamps declines quickly because the clamps are prone to rotate as the beam moves. As such, the size of the clamp relative to the channel is an important design consideration. Also, the slip at which the strength starts to descend is much larger than the slip demand on the clamping connectors in composite beams.
- All the beams deflected to L/25 and behave in a ductile manner. The tested flexural strength of the beams is close to that predicted by the AISC design equations.

Introduction	DfD Floor System	Pushout Tests	Beam Tests	Conclusions
Introduction	DID Floor System	Fusilout Tests	Dealli Tests	Conclusions

Thank You

Laboratory for Structural Testing of Resilient and Sustainable System

Engineering of Structures and Building Enclosures

Pushout Test Results

Test Results

Bolt head fracture

Separation of shims from clamps

Introduction	DfD Floor System	Pushout Tests	Beam Tests	Conclusions
	J J			

Pushout Test Results

Test Results

Strut-and-tie model

Complete disengagement of clamps

Introduction	DfD Floor System	Pushout Tests	Beam Tests	Conclusions