
AN FPGA IMPLEMENTATION OF INCREMENTAL

CLUSTERING FOR RADAR PULSE DEINTERLEAVING

By

Scott Bailie

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

AT

NORTHEASTERN UNIVERSITY

BOSTON, MASSACHUSETTS

APRIL 2010

c© Copyright by Scott Bailie, 2010

This work is sponsored by the Department of the Air Force under Air Force Contract FA8721-05-C-0002. The

Opinions, interpretations conclusions and recommendations are those of the author and are not necessarily endorsed

by the United States Government.

NORTHEASTERN UNIVERSITY

DEPARTMENT OF

GRADUATE SCHOOL OF ENGINEERING

The undersigned hereby certify that they have read and recommend

to the Faculty of Graduate Studies for acceptance a thesis entitled

“An FPGA Implementation of Incremental Clustering for

Radar Pulse Deinterleaving” by Scott Bailie in partial fulfillment

of the requirements for the degree of Master of Science.

Dated: April 2010

Supervisor:
Prof. Miriam Leeser

Readers:
Prof. Jennifer Dy

Dr. Brie Howley

ii

NORTHEASTERN UNIVERSITY

Date: April 2010

Author: Scott Bailie

Title: An FPGA Implementation of Incremental

Clustering for Radar Pulse Deinterleaving

Department: Graduate School of Engineering

Degree: M.Sc. Convocation: May Year: 2010

Permission is herewith granted to Northeastern University to circulate
and to have copied for non-commercial purposes, at its discretion, the above
title upon the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY
BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE
IS CLEARLY ACKNOWLEDGED.

iii

Acknowledgements

This thesis would not have been possible without the help of countless people. First,

I’d like to express my sincere thanks to my advisor, Prof. Miriam Leeser. I am

grateful for her technical guidance, tremendous enthusiasm, and constant support in

both my undergraduate and graduate careers. Second, I’d like to thank Prof. Jennifer

Dy whose expertise in clustering served as an invaluable resource.

I’d also like to thank my colleagues at MIT Lincoln Laboratory for their support.

In particular Dr. Brie Howley, who was always available to share his vast knowledge

of radar systems and signal processing.

Finally I would like to thank my family, especially my wife, Katherine, and my

daughter Elizabeth. I could not have completed this degree without their love, pa-

tience, never ending encouragement.

iv

Abstract

Incremental clustering is the unsupervised classification of dynamic streaming data

samples into related groups called clusters. The process considers each data point only

once so it is applicable to real-time problems requiring low latency solutions. One such

application is the deinterleaving of radar pulse streams in an electronic warfare (EW)

systems. Given a single stream of combined radar signals deinterleaving attempts to

identify individual radar emitters based on characteristics of the received signal.

This thesis focuses on implementing an incremental clustering algorithm on a field-

programmable gate array (FPGA) for the purposes of radar pulse deinterleaving. We

introduce ICED, an algorithm for the I ncremental C lustering of Evolving Data, and

discuss the details of implementing it in an FPGA. Experimental results show the

applicability of the algorithm to the real-time requirements of EW pulse deinterleav-

ing. The resulting design provides a 16 cluster implementation that consumes 70% of

a Xilinx Virtex-5 SX95T FPGA and requires a processing latency of 420ns, resulting

in a 39x speedup over software.

v

Contents

List of Tables ix

List of Figures x

1 Introduction 1

2 Background 3

2.1 EW Systems . 3

2.1.1 Pulse Deinterleaving . 4

2.1.2 Pulse Descriptor Words . 6

2.2 Deinterleaving Methods . 8

2.2.1 Time Difference of Arrival Methods 8

2.2.2 Multi-Parameter Methods . 9

2.2.3 Latency Requirements . 11

2.3 Clustering . 14

2.3.1 Types of Clustering . 14

2.3.2 Incremental Clustering . 16

2.4 Related Work . 19

2.4.1 Pulse Deinterleaving . 19

2.4.2 FPGA implementations of Classification Algorithms 20

2.5 Conclusions . 22

vi

3 ICED Algorithm 23

3.1 System I/O . 23

3.2 Algorithm Parameters . 25

3.2.1 Hard vs. Fuzzy . 26

3.2.2 Initialization . 26

3.2.3 Distance Metric . 27

3.2.4 Updating Cluster Coordinates 29

3.2.5 Cluster Weights . 29

3.3 Algorithm Details . 30

3.3.1 Pseudocode . 30

3.3.2 New Cluster Creation . 32

3.4 Conclusions . 33

4 FPGA Implementation 35

4.1 Implementation Goals . 35

4.1.1 Parallelism . 35

4.1.2 Modularity . 37

4.1.3 Configurability . 37

4.2 Board Overview . 38

4.3 Major Components . 40

4.3.1 Normalization and Fade Modules 40

4.3.2 Clusters Module . 42

4.3.3 Normalization Undo . 45

4.4 Conclusions . 45

5 Results 47

5.1 Experimental Setup . 47

5.1.1 Test Data . 47

5.1.2 Verification . 49

5.2 Results . 50

vii

5.2.1 Clustering Quality . 50

5.2.2 FPGA Resource Consumption 60

5.2.3 Performance . 61

5.3 Conclusions . 63

6 Conclusion and Future Work 64

6.1 Conclusion . 64

6.2 Future Work . 65

6.3 Summary . 66

A List of Acronyms 67

Bibliography 69

viii

List of Tables

2.1 A Possible PDW Format [1] . 8

2.2 Typical X-Band PRFs [2] . 12

3.1 Resolutions based on 16-bit PDW Parameters 24

5.1 Test Cases for Gaussian Distribution 53

5.2 Case I: Two Emitters With Overlapping Pulses 54

5.3 Case II: Frequency Hopper . 57

5.4 FPGA Utilization . 60

5.5 Cluster center Module Utilization . 61

ix

List of Figures

2.1 ES Block Diagram . 4

2.2 Deinterleaved Example [3] . 5

2.3 RF Pulse Parameters . 6

2.4 CDIF for 1st and 2nd differences [4] 9

2.5 PW / RF Plot For Three Emitters 10

2.6 Interleaved Overlapped Pulses . 11

2.7 Min Processing Latency vs. Number of Emitters 13

2.8 Min Processing Latency vs. Number of Emitters - High PRF 14

4.1 X5-400M Module [5] . 38

4.2 X5-400M Block Diagram [5] . 39

4.3 ICED - Top-level block diagram . 40

4.4 2-D normalization module . 41

4.5 Cluster center block diagram . 43

5.1 PDW Generation Sequence . 48

5.2 Gaussian Distribution (µ = 8000, σ2 = 10) 52

5.3 Outlying Cluster . 53

5.4 Case I Results . 56

5.5 Case II Results . 58

5.6 Case III Results . 59

5.7 FPGA Utilization . 61

5.8 Module Processing Latencies . 62

x

Chapter 1

Introduction

Electronic warfare (EW) is defined as military action involving the use of electromag-

netic and directed energy to control the electromagnetic spectrum or to attack the

enemy [6]. One possible task of an EW system is to sort and classify received pulses

from a dense environment of hostile radars so that the pulses can be processed; this

process is known as pulse deinterleaving. The deinterleaving process needs to be com-

pleted with very low latency to support timely decision making required in modern

EW environments. One method for deinterleaving streams of incoming radar pulses

is incremental clustering.

Clustering is the unsupervised partitioning of similar data samples into groups

called clusters. The goal is to create clusters in which members of a particular cluster

are as similar as possible to one another, and as different as possible from members of

other clusters. Many clustering algorithms require a complete dataset to be present a

priori and require multiple passes through the data in order to produce a result. Such

algorithms are referred to as non-incremental. On the other hand, an incremental

clustering algorithm considers each input data point only once, at which point it

assigns it to a cluster. Such a technique allows streaming data, such as radar pulse

descriptor words (PDWs), to be clustered in real-time.

This thesis discusses the implementation of an incremental clustering algorithm on

1

2

a field-programmable gate array (FPGA) for the purposes of radar pulse deinterleav-

ing and emitter identification. Building on previous clustering research we present

ICED, an algorithm for the I ncremental C lustering of Evolving Data. This algorithm

is a hybrid of existing clustering approaches and was developed to suit the particular

needs of our deinterleaving application. In addition to the benefits of reconfigurability

and cost, the high performance of current FPGA technology lends itself well to the

low-latency real-time requirements of deinterleaving in modern EW systems. We’ll

discuss the steps of implementing the algorithm in hardware and present results for

simulated radar data.

The rest of this thesis is arranged as follows. Chapter 2 motivates the need for

low-latency pulse deinterleaving, presents some possible solutions, and provides an

overview of incremental clustering. Additionally, it presents related work on both

deinterleaving and FPGA implementations of classification algorithms. Chapter 3

introduces ICED and discusses its application to the deinterleaving problem. Chapter

4 discusses the details of implementing the ICED algorithm in an FPGA. Chapter

5 presents experimental results including performance metrics. Chapter 6 concludes

with a summary and a discussion of future work. A complete list of acronyms is

provided in Appendix A.

Chapter 2

Background

This chapter motivates our research by presenting relevant background information.

We start by covering the basics of EW and discuss the importance of pulse deinter-

leaving. Next we look at a several different deinterleaving approaches and provide

an overview of incremental clustering. Finally we present related work in both pulse

deinterleaving and FPGA implementations of classification algorithms.

2.1 EW Systems

An EW system can be broken down into three major components, electronic support

(ES), electronic attack (EA), and electronic protection (EP) [7]. ES is responsible for

receiving incoming signals and collecting information about the EW environment, EA

is responsible for disrupting or jamming adversary’s EW systems, and EP is respon-

sible for protecting against adversary’s EA [1]. These three components, however,

are not independent. Instead, a modern EW system is composed of ES, EA, and EP

components which must work together in order to perform their individual tasks. For

example, ES data can be used to queue EA and EP systems, and EP may use forms

of EA in order to protect itself [8].

A simplified block diagram of an ES system is shown in Figure 2.1. A typical

system is composed of a passive antenna and a receiver which down converts the

3

4

high frequency RF signal received by the antenna to a lower intermediate frequency

(IF) which can be processed more easily. The IF signal is then brought into the

digital domain using an A/D converter. Operating on the digital samples the pulse

measurement block produces PDWs which are a collection of measurements that

describe the characteristics of the signal. The PDWs are fed to the ES processing

block whose job is to sort received signals and identify the number and types of radars

in its signal environment. Doing so provides situational awareness to ES applications

and aids in response selection, such as the appropriate jamming technique, in EA and

EP applications [1]. A typical environment consists of both uncooperative hostile

and cooperative friendly radar emitters. Unlike a communication receiver which is

aware of the signals it receives, an EW receiver has the added complication of not

necessarily knowing the characteristics of incoming uncooperative radar signals [1].

Early EW receivers used a man-in-the-loop to help identify and track radar emitters

but modern environments are far too complex and therefore require some form of

automation for these tasks. The next section will discuss details of the first step in

ES processing, pulse deinterleaving.

RF
Receiver

Pulse
Measurement

Deinterleaver Waveform ID
PDWsRF IF

EA/EP
Processing

Clusters

RX
Antenna

ES Processor

PRI
Measurement

Emitter
Tracks

Figure 2.1: ES Block Diagram

2.1.1 Pulse Deinterleaving

An ES receiver is typically composed of either a single channel or a collection of chan-

nels covering a particular frequency band of interest. Since the signal environment

can contain many radars the EW receiver will receive a single stream of input corre-

sponding to the combination of all radars emitting at a particular time. In order to

make intelligent use of the received signals one of the first tasks of the ES system is to

5

separate the combined, or interleaved, signals into individual streams. This process

is known as pulse deinterleaving and is demonstrated in Figure 2.2. The top two

plots represent periodic pulse trains emitted from two individual radars. The center

plot shows how the interleaved signals will appear at the EW receiver. The bottom

plots represent the successful deinterleaving of the received signal, which in a perfect

scenario, should identically match the the top plots.

time time

Signal A Signal B

Received Signal

Pulse Train
Deinterleaver

time time

Signal A Signal B

time

Figure 2.2: Deinterleaved Example [3]

Radars transmit in one of two modes, continuous wave (CW) or pulsed. In CW

mode the radar constantly transmits an output signal while in pulsed mode the radar

alternates between transmit and receive operation. The radars we are concerned

with typically operate in pulsed mode. Generally speaking, an entire stream of pulses

from a particular radar will have similar characteristics. We can sort the received

pulses based on their characteristics, in turn deinterleaving a single receive stream

into individual streams, one for each emitter. The following section will discuss the

specific characteristics of radar pulses.

6

2.1.2 Pulse Descriptor Words

ES receivers measure pulse characteristics as each pulse is received. For every pulse

the measured parameters are packed into a structure called a pulse descriptor word

(PDW) and passed along for emitter identification processing. PDWs often contain

information on pulse amplitude (PA), carrier frequency (RF), pulse width (PW),

time of arrival (TOA), and angle of arrival (AOA). Although it can not be mea-

sured directly on an interleaved pulse train, another important characteristic useful

in correlating a pulse to a particular emitter is pulse repetition interval (PRI) or its

reciprocal, pulse repetition frequency (PRF). Figure 2.3 illustrates some of these

parameters.

PW

PRI

PA

RF

TOA

Figure 2.3: RF Pulse Parameters

Pulse Amplitude

Pulse amplitude is simply the strength of the received signal as seen by the receiver.

The PA can be heavily influenced by the signal environment and the transmitter /

receiver geometry.

Carrier Frequency

Carrier frequency is the sinusoidal frequency of a particular pulse. To complicate

matters some radars use frequency modulation in which they vary the frequency over

the duration of the pulse (intrapulse modulation) in an effort to improve range resolu-

tion through pulse compression [2]. Additionally, frequency agile radars periodically

7

hop between numerous frequencies in an effort to allude or confuse an enemy receiver

[2, 9]. For simplicity we focus most of our attention on fixed frequency emitters.

Pulse Width

Pulse width is the duration of time for which a pulse is being transmitted. Most radars

have fairly low duty-cycles in order keep the average output power significantly low

when compared with its peak output power [9].

Time of Arrival and Pulse Repetition Interval

Time of arrival is the system timestamp corresponding to the start of of a partic-

ular pulse. TOA is an important measurement required for determining the PRI,

or the time period between successive transmitted pulses from a particular radar.

PRI determines the maximum unambiguous range of the radar [9]. As with the RF

parameter, PRI need not remain constant for all time. Instead radars are capable

of transmitting staggered or jittered PRIs to improve range ambiguity or as an EP

technique [7].

Angle of Arrival

Angle of arrival is a measurement which determines the direction of the transmitter

with respect to the receiver. Though a highly reliable characteristic, it is one of the

most difficult to measure.

The range and resolution requirement of PDW parameters can vary greatly from

system to system based on expected application, performance requirements, and mea-

surement accuracy. Table 2.1 provides an example of maximum range, bit-width for

fixed point representation, and corresponding resolution for each parameter. The

ranges tend to represent worst case scenarios and typical systems would unlikely

require the maximum range for each parameter.

8

Table 2.1: A Possible PDW Format [1]
Parameter Range Bit Width
Frequency DC - 32 GHz 15 (1-MHz resolution)
Pulse Amplitude 0 - 128 dB 7 (1-dB resolution)
Pulse Width 0.05 204 µs 12 (0.05 µs resolution)
TOA 0 - 50 sec 30 (0.05 µs resolution)
AOA 360 degrees 9 (1 degree resolution)

2.2 Deinterleaving Methods

Though there are numerous methods for deinterleaving pulse trains, we focus on

techniques that operate on the measured PDW parameters of received signals as

this is the typical information available at the output of an EW receiver front-end.

Generally speaking, deinterleaving algorithms fall into one of two categories, time

difference of arrival techniques and multi-parameter methods [3]. These approaches

are compared and contrasted in the following two sections.

2.2.1 Time Difference of Arrival Methods

Time difference of arrival, or TOA methods for short, use only the measured TOA

parameter in the deinterleaving process. Popular methods include histogramming

approaches such as Cumulative difference (CDIF) histogramming [3] and Sequential

difference (SDIF) histogramming [10].

The CDIF algorithm is as follows. Assume a collection of N pulses is collected

over a particular time period. The difference between the TOA for adjacent pulses is

calculated resulting in N − 1 values. For example, the ith difference di is calculated

as

di = |TOAi − TOAi+1| (2.1)

A histogram of the difference values is constructed with a bin corresponding to each

unique calculated difference. Bins with counts exceeding a particular threshold are

determined to be due to a constant PRI emitter. Pulses contributing to this detected

emitter are removed from the interleaved sequence and the histogram is re-generated

9

for the remaining pulses. This process continues until no histogram bins exceed

the threshold. Next, the second differences are calculated. These are the distances

between a particular pulse and its neighbor two pulses away. These difference values

are cumulatively added to the previous histogram and constant PRI emitters are again

removed. Figure 2.4 illustrates the the CDIF algorithm up through two difference

measurements.

Figure 2.4: CDIF for 1st and 2nd differences [4]

While the CDIF algorithm cumulatively adds subsequent difference calculations

to the existing histogram, SDIF starts a new histogram for each difference. Building

on the TOA approach, similar algorithms such as the TOA folding algorithm and

sequence search algorithm, have been developed in order to provide better results for

staggered and jittered PRI emitters [10].

2.2.2 Multi-Parameter Methods

Multi-parameter methods seek to improve deinterleaving accuracy by using more than

just the TOA parameter. In addition to TOA they attempt to sort incoming pulses

with additional information provided by the PDW such as as RF, PW, and AOA.

We can think of each received pulse as a point in an m-dimensional space where m is

equal to the number of PDW parameters used to describe the input [3]. By plotting

10

the PDWs we can hope to detect groups or clusters of points, where each cluster

corresponds to a unique radar emitter. Figure 2.5 illustrates this point for m = 2

with a scatter plot of PW vs. RF for three emitters. The three distinct clusters

correspond to the three emitters and the cluster centers of mass are the assumed

actual RF and PW for each emitter. The clusters are clearly separated which is not

often the case in other clustering applications. Since a radar can receive transmissions

for other nearby radars in it’s environment, the radar characteristics will likely vary

from emitter to emitter in order to decrease interference. Therefore, the resulting

clusters should often have a clean separation between them. The clustering process

is used to both identify the radars based on their PDW characteristics and filter out

clusters formed due to noise or interference from those representing true emitters.

Figure 2.5: PW / RF Plot For Three Emitters

It would seem logical to use as many of the PDW parameters as possible in a multi-

parameter deinterleaving approach. The problem, however, is that the accuracy of

each parameter can vary greatly with respect to the others, and in actual EW systems

not all parameters will always be measured.

Since it is difficult to quickly change the location of a radar, AOA is the most

11

stable and valuable parameter [1]. However, AOA is the most difficult parameter to

measure because it requires multiple antennas. RF can be a useful parameter but

it can result in the assumption of multiple emitters in the case of a single frequency

hopping radar. Additionally, in cases where two or more pulses overlap in time at

the EW receiver, the measured RF may be a combination of the overlapping pulses.

Though relatively easy to measure, PW is a less valuable parameter for two reasons

[3]. First, as in the RF measurement, overlapping pulses will produce an erroneous

measurement. For example, when two pulses overlap at the receiver the individual

pulses can not be uniquely identified and will result in the detection of a single pulse

with a PW greater than either of the contributing pulses. Figure 2.6 shows an example

of overlapping pulses producing an incorrect PW measurement. Since the emitters

in A and B have different PRIs they will eventually coincide producing a single long

pulse. Secondly, the PA is not particularly useful in the case of deinterleaving since

the amplitude of a received signal can vary greatly due to the range from the emitter

to the EW receiver, fluctuations in the antenna pattern, and multipath effects.

Figure 2.6: Interleaved Overlapped Pulses

2.2.3 Latency Requirements

We have discussed the need for a low latency real-time deinterleaving process but

we have neglected to define what we mean by low latency. One way to determine

the acceptable processing latency is to consider the frequency of receipt of PDWs in

12

a typical emitter scenario. The overall processing latency is considered because an

incremental algorithm requires a serial rather than pipelined implementation. This

is true because each input must be fully processed in order to update clusters prior

to accepting the next input. Assuming a single serial stream of PDW inputs, the

maximum allowable processing latency will be a function of the PRFs of the con-

tributing emitters. Assuming n emitters with corresponding PRFs, {P0, . . . ,Pn−1},
the required latency r is defined as

r =
1∑n−1

i=0 Pi

(2.2)

PRF values are commonly classified into one of three categories: low, medium,

and high. The particular ranges can vary based on the operating conditions and

characteristics of the radar, Table 2.2 gives typical values for an X-Band radar (8 -

12 GHz).

Table 2.2: Typical X-Band PRFs [2]
PRF Category PRF Range (KHz)
Low 0.25 - 4
Medium 10 - 20
High 100 - 300

Let’s look at the required latency for each of these categories by choosing a par-

ticular PRF value in each range and varying the number of emitters. We’ll use 2KHz,

15KHz, and 200 KHz corresponding to low, medium, and high PRFs. If we assume

all n emitters operate at the same PRF, P , we can simply equation 2.2 to

r =
1

n ∗ P
(2.3)

Assume a scenario where a deinterleaver is part of a narrowband EW system

covering 250MHz of bandwidth. For such a system we’ll define low emitter density to

correspond to 1 - 4 emitters, medium density to correspond to 5 - 8 emitters, and high

density to correspond to 9 - 12 emitters. Using equation 2.2 the maximum allowable

13

latencies based on emitter density can be calculated. The results are shown in Figure

2.7 which plots latency versus number of emitters for high, medium, and low PRFs.

Figure 2.7: Min Processing Latency vs. Number of Emitters

As one would expect, the largest tolerable processing latency corresponds to low

PRF emitters (high PRI). This is simply because the time between adjacent pulses

of a low PRF emitter is is large. In even the densest low PRF scenario, consisting of

12 emitters, the maximum tolerable latency is approximately 40µs per pulse. On the

other hand the requirements for a high PRF scenario are much more stringent.

Figure 2.8 shows an enlarged view of the high PRF case. A single high PRF

emitter requires a maximum processing latency of 5µs, and the most dense scenario,

consisting of 12 emitters, requires approximately 500ns. It’s clear that if we are to

handle even a medium density of high PRF emitters our maximum processing latency

will have to be less than 1µs.

14

Figure 2.8: Min Processing Latency vs. Number of Emitters - High PRF

2.3 Clustering

Clustering is the unsupervised partitioning of similar data samples into groups called

clusters. While a supervised classification process attempts to assign new data to

predefined categories, an unsupervised approach determines the categories based on

the input data. Though all clustering algorithms have the same goal of categorizing

data based on similarities, there exist numerous approaches and countless algorithms.

2.3.1 Types of Clustering

There are many ways to characterize a particular clustering algorithm. Jain et al.

[11] present a comprehensive survey of clustering approaches. We discuss the details

of some of the most defining categories here. Keep in mind that the categories are

not mutually exclusive and quite often approaches will be composed of a combination

of techniques.

15

Hierarchical vs. Partitional

A hierarchical algorithm creates a tree structure of clusters in which each cluster

can be composed of a hierarchy of sub-clusters. Using an approach of splitting larger

clusters, or merging smaller ones, the root of the tree will contain all the data while the

leaf components will contain fewer pieces of data. The alternative, and more common

approach is partitional clustering. In partitional clustering, a single partition of the

data is created consisting of unique clusters in which each data point belongs to a

single cluster.

Agglomerate vs. Divisive

Agglomerate algorithms start with clusters each containing a single data point. Clus-

ters are then successively merged based on their similarity, creating larger clusters. A

divisive technique works in reverse. Here the goal is to successively split large clusters

into smaller clusters until a defined stopping criteria has been reached.

Hard vs. Soft

A hard clustering is one in which each data point is a member of a single cluster.

In soft clustering there is not a one-to-one mapping of objects to clusters. Instead

objects are allowed to belong to multiple clusters with varying strengths.

Non-incremental vs. Incremental

Clustering algorithms can be classified as non-incremental, meaning they require all

data to be present before learning takes place, or incremental, in which case they

process input data data one at a time never requiring old data to be revisited. In this

thesis, the focus is on incremental clustering.

16

2.3.2 Incremental Clustering

Because an incremental algorithm can operate without having to revisit old data it is

more applicable to situations with very large data sets that can not fit in memory, and

streaming data sets which are being produced for long periods of time. Additionally,

based on the incremental nature, these algorithms are better suited to data whose

characteristics might be evolving over time. For these reasons, incremental algorithms

are of particular interest to pulse deinterleaving and we explore them further in this

section.

One of the first incremental clustering algorithms was the leader algorithm de-

scribed by Hartigan[12]. This algorithm attempts to partition a set of data samples

into a number of disjoint clusters. The desired number of clusters is not specified a

priori but instead a distance metric and maximum threshold must be defined.

The algorithm gets its name from the fact that cluster coordinates are set equal

to the input used to create the cluster. This input is known as the leader. Once

the cluster is established new members can be assigned to it, but its coordinates are

never adjusted from those of the leader. The decision to assign an input to an existing

cluster instead of creating a new cluster is made based on distance. If the current

input’s distance is within a threshold from an existing cluster then it is assigned to

that cluster, otherwise a new cluster is created. It should be noted that the algorithm

assigns inputs to the first cluster that satisfies the threshold requirement rather than

searching for the closest cluster.

The leader algorithm requires only one pass through the sample data so it has

a speed advantage over non-incremental techniques. A second advantage is that it

does not require prior knowledge of the number of expected clusters. A drawback,

however, is that the clustering is highly dependent on the order of the input samples.

This dependence exists because samples are assigned to the first cluster that meets

the threshold requirement rather than finding the nearest cluster.

Since the introduction of the leader algorithm, the emergence of the field of data

mining and in particular its application to streaming data has led to the development

17

of many different flavors of incremental clustering. Each algorithm attempts to im-

prove clustering accuracy by adjusting the algorithm to the specific characteristics

of the desired application. Though the overall flow of most incremental clustering

algorithms is similar, they differ in their initialization or their conditions for creation

or deletion of clusters. Let’s look at some possible choices for each of these decisions.

Initialization

In non-incremental approaches such as the K-Means algorithm, initialization of cluster

centers is often based either on a random selection of data points or a selection of

data points based on the statistics of the data set. For example, k centers may be

chosen uniformly from the distribution of given data points. These methods are not

possible for incremental algorithms used for clustering streaming data because the

entire data set is not available at initialization time. Incremental algorithms whose

number of clusters evolve over time, such as the leader algorithm [12] or ECM [13],

often start with just a single cluster defined by the first data point. Other algorithms,

such as GenIc [14], start by initializing m clusters using the first m data points.

Cluster Management

Many different techniques exist for creation of new clusters or adjusting or deleting

existing clusters. Methods like [12, 13] use a distance threshold for assigning new

data. They assign new data to an existing cluster when the distance between the new

data and the existing cluster is less than the threshold and they create a new cluster

when the distance is greater than the threshold. This technique can lead to large

number of clusters when the thresholds are too low, or when the maximum number

of centers is not capped.

Several options exist for updating cluster centers upon the addition of new data.

The leader algorithm does not update the center at all. A cluster center is defined by

the data sample used to create it, the leader, and although subsequent data can be

assigned to the cluster, the center is never moved. In ECM, the cluster centers are

18

allowed to grow and move based on a maximum allowable cluster radius. This radius

is defined as the distance from the cluster center to the furthest member point. A

cluster center is not adjusted when a new member falls within the current radius, but

only when the new member is between the current and maximum radius. Since not

all additions to a cluster result in an update, this method requires less processing at

the expense of cluster center accuracy. A final method, used in GenIc and discussed

in [15], is to adjust the cluster center for every new member. This approach results

in cluster centers that that represent an average of their members. Of course, the

penalty for this increased accuracy is processing time.

One may want to delete a cluster for several reasons. First, in the case of streaming

data, it is quite possible that the data characteristics will change over time [15, 16]

necessitating the need to remove old, or stale, clusters. Second, in cases where the

data contains outliers, it may be desirable to remove the clusters corresponding to

this spurious data; of course, one must first identify the clusters as such.

To handle outliers, GenIc periodically evaluates the strength of each cluster and

removes the weakest. The cluster strength corresponds to the weight, or the number

of members, of a particular cluster. After processing a fixed number of inputs, called

a generation, a probability of survival is calculated for each cluster based on the ratio

of its weight to the total weight of all clusters. A random threshold is generated

and all clusters with a probability of survival less than the threshold are killed off.

Though this procedure is effective at weeding out spurious outlying clusters, the GenIc

algorithm does not provide a method for deleting old clusters in the case of evolving

data.

Reyzin [15] proposes a method that solves both the outlier and evolving cases

simultaneously by fading clusters over time. Cluster weights are increased by one each

time a new member is added, and are decreased by one periodically at specified time

intervals. When a cluster weight reaches zero it is deleted. When the input stream

characteristics change, clusters that are no longer being assigned new members will

slowly fade to zero and be removed. The same is true for clusters that were created

19

due to spurius data since they’ll infrequently receive additions and will therefore fade

quickly.

2.4 Related Work

In this section we present a survey of prior work related to our research. We split the

related work into two categories, pulse deinterleaving and FPGA implementations of

classification algorithms, and discuss them independently.

2.4.1 Pulse Deinterleaving

It’s been established that pulse deinterleaving is an essential part of an EW system

and for that reason it has received a significant amount of attention. The earliest

deinterleaving methods involved histogramming of the TOA parameter and were pre-

sented by Mardia [17] and Milojevic and Popovic [4]. Popular algorithms include

CDIF, SDIF, TOA folding, and sequence search.

With the popularity of neural networks came new multi-parametric approaches.

In [18] Granger et al. compared four neural networks: Fuzzy Adaptive Resonance

Theory (FA), Fuzzy Min-Max Clustering (FMMC), Integrated Adaptive Fuzzy Clus-

tering (IAFC), and Self-Organizing Feature Mapping (SOFM), for the purpose of

deinterleaving radar pulse trains. They compared algorithms based on clustering

quality, convergence time, and computational complexity, and found SOFM and FA

to be the best candidates. SOFM provided the best quality but was considered com-

plex and required long convergence times. Though less accurate, the faster run times

of FA made it a good choice for lower latency cases like threat alert systems.

More recently, Ataa and Abdullah [10] proposed a deinterleaving system which

combines an FA clustering of RF and AOA followed by a PRF identification block

based on TOA folding and CDIF.

In [19] Liu et al. propose two clustering algorithms for deinterleaving. Both

cluster high-dimensional vectors representing the discretely sampled pulses. The first

20

algorithm assigns vectors to clusters based on a distance metric and periodically

chooses to split or merge clusters based on the Minimum Description Length (MDL)

criterion. The second algorithm is an online competitive learning approach which

attempts to determine adaptively inter- and intra- cluster threshold values using

training sequences of known truth data. Though these algorithms differ from the

research presented here in the fact that they do not use PDW data, they are mentioned

here for completeness.

2.4.2 FPGA implementations of Classification Algorithms

Though a large body of work exists in pulse deinterleaving, discussions of hardware

implementations are scarce. The majority of work proposes a method, describes

the algorithm, and presents results derived from a simulated software environment.

Therefore, we extend our scope and discuss relevant FPGA implementations of clas-

sification algorithms in general. The increasing popularity of data mining coupled

with the emergence of higher performance FPGA devices has led to a trend of FPGA

implementations of classification algorithms for real-time applications.

Though not an incremental clustering approach, there have been numerous hard-

ware implementations of the K-Means algorithm. Popular applications include image

processing [20, 21, 22] and document classification [23].

Additionally, there has been research in hardware implementations of neural net-

work algorithms. Sanchez-Solano et al. discuss a general architecture for rapid and

flexible development of embedded fuzzy controllers [24]. The design consists of their

generic processing blocks, called fuzzy inference modules (FIM), as well as a soft-core

Microblaze processor for control. Using a Xilinx Spartan-3 Development board, they

implemented a fuzzy controller for parking an autonomous robotic vehicle.

Arifin and Cheung [25] implemented a time adaptive clustering (TAC) algorithm

for logical story unit segmentation of digital video in a Xilinx Virtex-II Xc2V3000.

In order to exploit parallelism within the FPGA the design implements 10 clustering

blocks in parallel, each able to calculate the distance between itself and the current

21

input simulataneously. Running at 40 Mhz the FPGA implementation demonstrates

a 27x speedup over a 3.4 GHz Pentium 4 with 1 GB of RAM.

Baldanza et al. [26] implemented a 2-D cellular neural network for an on-line

clustering algorithm pertaining to high-energy physics. Juang and Tsao [27]describe

the implementation of a Type-2 Self-Organizing Neural Fuzzy System (T2SONFS) in

an FPGA where the rule generation portion of the fuzzy system is performed by an

on-line clustering algorithm. The proposed T2SONFS algorithm is implemented in a

Xilinx Virtex-4 running at 54 MHz.

In more recent work, Kyrkou and Theocharides [28] present SCoPE, a systolic

chain of processing elements for support vector machine (SVM) classification. They

provide a thorough discussion of the details of mapping the algorithm to a Xilinx

Virtex-5 FPGA. The final design ran at 100 MHz and chip area was the limiting

factor in the design as the implementation of 64 multipliers consumed 100% of the

FPGA’s DSP resources.

There has been some research concerning the difficulties in mapping clustering al-

gorithms to reconfigurable hardware platforms. Changbin and Wahab [29] proposed a

hardware implementation of a fuzzy clustering technique based on Discrete Incremen-

tal Clustering. They claim that the difficulties in mapping neural network algorithms

to FPGAs is mainly due to complex arithmetic such as multiplication and division and

note that for powers of 2 these operations can be replaced by simpler bit shifts. In an

attempt to reduce complexity and ease the hardware implementation they propose

a multiplier free architecture, however, they neglect to discuss the details. Estlick

et al. [30] discuss algorithmic tradeoffs in mapping the K-means algorithm to an

FPFA. They provide two alternatives to the Euclidean distance metric in an effort to

avoid costly multiplication operations and discuss the effects of fixed-width integer

arithmetic over a floating point implementation.

22

2.5 Conclusions

In this chapter we presented a background of EW systems and looked at various

methods for the deinterleaving of pulse trains. We provided an overview of clustering

and focused on incremental clustering algorithms in particular. Finally, we presented

related work in the areas of pulse deinterleaving as well as FPGA implementations

of classification algorithms. In the following chapter we present the details of our

proposed incremental clustering algorithm which we call ICED.

Chapter 3

ICED Algorithm

In the previous chapter we surveyed various methods for radar pulse deinterleaving

as well as several FPGA implementations of classification algorithms. Due to the

requirements of a real-time pulse deinterleaver we decided to implement a hybrid

incremental clustering approach based on a collection of existing algorithms. This

chapter will present our algorithm, ICED, and discuss the motivation for the algo-

rithmic choices we have made. To aid in the evaluation of tradeoffs along the way

and to alleviate the long process of testing each change in hardware, we created a

software model for design exploration. We start by looking at the requirements for

an effective incremental clustering deinterleaver.

3.1 System I/O

A pulse deinterleaver is a single block in a more complicated EW system. The deinter-

leaver inputs will be PDW parameters as measured by the EW receiver’s parameter

estimation block. In Section 2.1.2 we looked at the possible PDW parameters and dis-

cussed their individual properties. We have decided to cluster based on two of these

parameters, RF and PW. Although we indicated that PW is not the most reliable

parameter, it is easy to obtain and is generally available in all EW systems. For the

same reason we have decided against using AOA as it is more difficult to measure and

23

24

Table 3.1: Resolutions based on 16-bit PDW Parameters
Parameter System A System B
Frequency Bandwidth 32 GHz 250 MHz
Frequency Resolution 500 KHz 4 KHz
Pulse Width Resolution 1 ms 1ms
Time Resolution 15 ns 15ns

less likely to be available. Keep in mind, however, that the choice of these particular

parameters will not affect the details of our 2-D clustering algorithm and in fact it

would be trivial to swap the parameters on which we decide to cluster. In addition to

RF and PW, the deinterleaver will also be provided with TOA for each pulse. This

measurement will aid in the cluster fade operation.

For each input, the pulse deinterleaver will output the coordinates of the assigned

cluster as well as the cluster ID number. The cluster coordinates represent the running

average of its members and are useful in tasks such as keeping a down converter

appropriately tuned to a signal of interest. In an EA or EP scenario, the cluster ID

can serve as an index into a threat table, useful in decision making further down the

processing chain.

Typically, PDW parameters are represented in integer format and correspond to

a bin based on the quantized resolution of the measurement. We’ll assume 16-bit

RF and PW parameters and a 32-bit TOA parameter. Table 3.1 shows how these

selections correspond to two different implementations, a wide band system covering

a larger frequency spectrum and a narrow band system which could represent a single

module in a channelized architecture.

It is possible that in certain scenarios one may know that the RF or PW parame-

ters will occupy a range smaller than the full 16-bits. To account for this and improve

cluster separation we keep a 16-bits representation within the algorithm but provide

the ability to specify minimum and maximum expected values for each parameter. A

16-bit representation results in 65536 bins ranging from 0 - 65535. If we define the

minimum and maximum expected values as min and max, respectively, the equation

for finding the normalized value norm of a particular input is the following:

25

norm =

[
(input−min)

(max−min)

]
∗ 65535 (3.1)

The reverse process needs to be performed on the output side to the coordinates

corresponding to the assigned cluster. The equation for returning to the native value,

native, from the normalized value, norm, is the following:

native =
(max−min) ∗ norm

65535
(3.2)

3.2 Algorithm Parameters

Ataa and Abdullah [10] discuss the properties of an effective clustering algorithm in an

EW system. First they note that no prior knowledge of the number of characteristics

or categories should be required. Secondly, they state that because of the high data

rate of input streams, the algorithm should be able to cluster non-stationary inputs

sequentially, without requiring long-term storage. Finally, they propose that the

solution should lend itself well to a high-speed hardware realization. Robust low-

latency deinterleaving algorithms are necessary for ESM systems to reliably identify

and engage the correct targets [3]. If the ESM system does not work efficiently, radars

can be misidentified or false radars can be generated resulting in limited and valuable

EA/EP processing resources being wasted [31].

Taking these recommendations into account we have decided to implement an

incremental clustering algorithm in an FPGA. Our solution does not require prior

knowledge of the number of radar emitters, but it will use a fixed number of char-

acteristics and will assume general ranges of expected data for those characteristics.

Being an incremental algorithm, it contains no recursion over input data and requires

no long-term storage. Finally, the parallel nature coupled with the simple yet effective

approach of the algorithm make it an ideal candidate for a hardware implementation

in an FPGA. In the next few sections we address some of the major design decisions

with respect to the algorithmic options presented in Section 2.3.2.

26

3.2.1 Hard vs. Fuzzy

Our first decision was whether we wanted to pursue a hard- or fuzzy clustering

method. Many proposed techniques [3, 10, 18, 19] discussed in Section 2.2 were fuzzy-

based self-organizing neural networks (SONN). Though often proven to be effective

in a simulated environment, not one of these papers discussed the ramifications of a

hardware implementation. With the mindset of developing a simpler, and therefore

more easily implementable, solution we decided to target a hard clustering approach.

3.2.2 Initialization

In a hardware implementation there will be a fixed amount of processing and memory

resources. Therefore, in order to produce an implementable design there will exist

some maximum number of clusters, k, that can be supported. We do not define

that maximum at this point, as it will be a function of the FPGA device and the

complexity of the algorithm; however, we keep it in mind when making decisions

such as how to initialize cluster centers. In the previous chapter we presented several

options for algorithm initialization. The basic options were:

1. Initialize all clusters based on a sample of expected values

2. Initialize all clusters to correspond the the first k inputs

3. Initialize a single cluster corresponding to the first input, and introduce new

clusters based on distance thresholding.

The first option can lead to poor results if the assumption of expected values is

incorrect. Additionally, because we do not want to assume any prior information

regarding the characteristics or the number of clusters to be generated, we disregard

this option. The second option is appropriate because it seeds all clusters with actual

data. However, thinking in terms of our application this approach has two drawbacks.

First, typical measurements containing some measurement noise from a single emitter

will result in multiple clusters close to one another. Second, in an environment with a

27

mixture of high- and low PRF emitters, it is possible that at initialization all clusters

can be assigned to the high PRF emitter due to the much higher frequency of its

pulses. Such a situation would cause an initial bias towards the high PRF source.

The final option seems to make the most sense with respect to our application.

Since we have a general idea of the expected measurement jitter and typical separation

of emitters in an actual environment, we can set a threshold corresponding to the

maximum allowable cluster radius. The first input will create the first cluster. The

second input will be assigned to the first cluster if it falls within the radius threshold,

or will force the creation of a new cluster if it falls outside the threshold. This

approach is then continued for all subsequent pulses. Later, we discuss the situation

that occurs if all resources have been allocated and a new input requires the creation

of a new cluster.

3.2.3 Distance Metric

We must also decide on a distance metric for measuring similarity between inputs and

clusters. This is an important decision with respect to a hardware implementation

because substantial complexity can be added based on the particular metric chosen.

For example, the use of multipliers, and even more so, the use of dividers and square

root operators in an FPGA will result in both area and performance degradations.

The distance d between two points, x and y, according to the Lp norm is the following:

d =

(
n∑

i=1

|xi − yi|p
) 1

p

(3.3)

The most common distance metric is the L2 norm, also known as the Euclidean

distance:

d =

√√√√ n∑
i=1

|xi − yi|2 (3.4)

28

A popular alternative to the Euclidean distance is the squared Euclidean dis-

tance because it contains no square root operation and can therefore be more easily

implemented in hardware.

d =
n∑

i=1

|xi − yi|2 (3.5)

Estlick et. al [30] looked at two alternative distance metrics for an FPGA imple-

mentation of the K-means algorithm. The first was the L1 norm, commonly referred

to as the Manhattan distance:

d =
n∑

i=1

|xi − yi| (3.6)

And the second was the L∞ norm, also known as the Max distance:

d = max|xn − yn| (3.7)

Looking at the Manhattan distance we see that this calculation is simpler than

the squared Euclidean as it requires no multiplication. Such a metric would both

provide higher performance and result in less area consumption. The benefit of the

Max distance is that, for a fixed point representation, the number of bits remains

constant as n increases. Additionally Estlick investigated a linear combination of

their two alternatives. They found this method produced the best results but for

higher dimensions (n > 10), however, the Manhattan distance performed well enough

and was chosen based on it simpler hardware implementation.

The distance between members of the same cluster, or intra-cluster distance, is

primarily a function of source emitter jitter and receiver measurement error. The

distances between unique clusters, or inter-cluster distance, is a function of the op-

erating characteristics of the emitter radars, and are typically sufficiently separated

so as to not interfere with one another. Therefore, we expect inter-cluster distances

to be large compared to intra-cluster distances and the use of the Manhattan dis-

tance should be more than adequate even for our low 2-dimensional case. However,

29

to provide the most flexibility, the distance measurement will be self-contained in a

single module to allow an area/performance tradeoff to be made more easily at the

hardware level.

3.2.4 Updating Cluster Coordinates

We discussed three options for updating cluster centers:

1. Statically define the center based on the first assigned object (Leader algorithm)

2. Update only when the cluster radius increases.

3. Update for each assignment to a cluster.

Static cluster centers are defined by the first object assigned to it, and therefore

can exhibit a bias towards the initiating object. Take, for example, a typical case

in which the PDW parameters have some associated measurement noise. Using the

leader approach, a cluster for a particular emitter might be initiated with a noisy

sample, in turn creating a cluster center which contains some bias with respect to the

true emitter PDW characteristics. Updating only when the cluster radius increases

provides more accuracy at the expense of processing time. Because we are operating

in incremental mode and concerned with overall clustering latency for each new input,

an occasional processing savings when the center does not have to be adjusted is less

valuable. The most accurate approach, and the one we have chosen, is to update

the center upon each should converge to the true emitter values. Using a moving

average filter we can accomplish this without storing prior assigned members therefore

satisfying our requirements.

3.2.5 Cluster Weights

Our algorithm needs to handle evolving data as well as outliers caused by interference

or overlapping pulses. We decided to use the method proposed in [15] and fade clusters

30

over time by periodically decreasing their weights, and deleting clusters when their

weight reaches zero. We expect pulses from a particular emitter to arrive at a fixed

frequency based on the PRF of the radar so this approach is very applicable to our

problem. Based on typical PRF values we can set a fade period such that outliers

are removed and true emitters persist. Keeping a hardware implementation in mind,

we also have to set a maximum cluster weight and decide on a course of action when

the maximum is reached. More complicated scenarios can be explored, but for now

we reset the weight to half of the maximum. This will provide a compromise between

the accuracy of the cluster center based on prior statistics and ease of hardware

implementation which requires only a simple bit shift operation.

3.3 Algorithm Details

In this section we discuss the details of ICED based on the algorithmic parameters

just chosen.

3.3.1 Pseudocode

The algorithm is initialized by setting all cluster coordinates and weights to zero.

The initial cluster is created using the coordinates of the first input and a weight of

one. As subsequent inputs are received the following steps are performed. The whole

number and fractional fade cycle components are calculated based on the elapsed time

since the previous input. All cluster weights are decremented by the whole number of

fade cycles. The distance from the input to each cluster center is calculated and the

lightest (lowest weight) cluster is determined. If the distance to the nearest cluster is

less than the specified threshold, the input is assigned to that cluster and the cluster’s

coordinates and weight are updated. If the distance to the nearest cluster exceeds the

threshold, a new cluster is created by overwriting the lightest cluster. The algorithm

details are as follows:

31

Configurable Parameters

L: Fade cycle length

D: Distance threshold

Inputs

xi: ith input PDW

ti: ith input timestamp

Algorithm Variables (Initialized to zero)

i: Input index

j: Cluster index

fi: Fade cycles to implement prior to clustering the ith input

ri: Fade cycle remainder for the ith input

cj: Coordinates of the jth cluster

wj: Weight of the jth cluster

For each input, xi do the following:

1. Cluster Fade

a. Calculate fade cycles and remainder since the previous input

fi = ti − ti−1 + ri−1

L

ri = ti − (fi ∗ L)

b. Decrement all cluster weights

wj = wj − fi

2. Distance and Weight Measurements

a. Let n be the index of the nearest cluster

b. Let l be the index of the lightest cluster

c. If (wn < D) goto Step 3, else goto Step 4

32

3. Assign input xi to cluster n

a. Update cluster coordinates

cn = cn ∗ wn + xi

wn + 1

b. Increment cluster weight

wn = wn + 1

4. Create a new cluster from input xi

a. Overwrite the lightest cluster

cl = xi

b. Reset the weight

wl = 1

3.3.2 New Cluster Creation

We’d like to elaborate on Step 4, the creation of a new cluster, which is reached

when the distance from the current input to the nearest cluster exceeds the specified

threshold and a new cluster needs to be created. We must consider this situation

in two cases, the first when hardware resources exist to support a new cluster and

the second when all resources have been allocated. Such a consideration is relevant

because unlike a software solution where we can support a seemingly infinite number of

clusters, a hardware implementation will have a fixed amount of processing resources.

Ideally, there would exist enough resources to always have unallocated clusters in

reserve, but the particular application will drive this hardware requirement.

At any point one can consider the number of active clusters equal to the number

of clusters with a non-zero weight. Initially all cluster weights are set to zero and

there are no active clusters. Cluster weights increase as new members are added and

the weights of old clusters or outlying clusters will decrease as they are faded out,

eventually reaching zero, at which point they can be considered deleted or inactive.

By always selecting the lightest cluster for replacement with the newly formed cluster

we can solve both situations, the existence and absence of hardware resources. When

33

hardware resources are available, not all clusters are active, and we are guaranteed to

select an inactive cluster with zero weight. When all hardware resources are allocated,

all clusters have a non-zero weight, and we simply choose the lightest cluster.

Such a decision has advantages and disadvantages and can result in a correct or

incorrect decision based on the situation. Lets first look at cases where this will result

in the correct decision. In one situation we may be selecting an outlier whose weight

is very low with respect to the other established clusters representing true emitters.

Therefore, choosing the lightest cluster results in the correct decision by overwriting

an irrelevant cluster. A second case to consider is when the lightest cluster represents

an old emitter whose weight is being faded out but has not yet reached zero. Again,

choosing the lightest cluster results in the correct decision because we have overwritten

a cluster representing an emitter from which we are no longer receiving input.

It is possible, however, when choosing the lightest cluster to accidentally overwrite

a relevant cluster. Consider the following situation with two clusters, A and B. Cluster

A’s weight is decreasing due to fading but the weight is still quite large. Cluster B’s

weight is increasing but is comparatively small because it represents a new emitter.

In this case we’d overwrite the relevant active emitter, cluster B, instead of the older

emitter, cluster A. Eventually, as the weight of cluster A is reduced enough it would

be overwritten, but the timing of this is a function of its weight and the PRIs of the

active emitters.

There are other ways to choose which cluster to overwrite, and more complicated

methods can be implemented in the future. For now, we continue with overwriting

the lightest cluster and concentrate our effort on achieving a hardware realization.

3.4 Conclusions

In this chapter we discussed an incremental clustering algorithm we developed called

ICED. The algorithm uses a combination of approaches from existing algorithms

and was constructed with our specific pulse deinterleaving application in mind. We

34

presented the major algorithm parameters, discussed their relevance to deinterleaving,

and provided a step-by-step description of ICED. In the next chapter we discuss

implementing this algorithm in an FPGA.

Chapter 4

FPGA Implementation

In Chapter 2 we discussed several alternatives for implementing a radar pulse deinter-

leaver and decided on using an incremental clustering approach. Chapter 3 introduced

ICED, an algorithm we developed in order to satisfy the particular needs of our ap-

plication. In this chapter we discuss the process of mapping ICED to hardware, and

in particular on to a Xilinx Virtex-5 FPGA. We start by presenting our goals for a

hardware implementation. Next, we provide details on the target board and FPGA.

Finally, we discuss the implementation details of the major design components.

4.1 Implementation Goals

Common goals in hardware design, and in particular FPGA implementations, are high

levels of parallelism, modularity and configurability, and this design is no different.

This section will discuss each of these goals independently.

4.1.1 Parallelism

One of the biggest motivators for a hardware implementation is performance. Quite

often the way to obtain speedup over a purely software solution is to exploit the paral-

lelism of an algorithm, and the highly regular architectures of FPGAs lend themselves

35

36

well to such an implementation. Two common types of parallelism are data paral-

lelism and task parallelism. Data parallelism occurs when the same operation needs

to be performed on different pieces of data and is often found in loop constructs. Al-

ternatively, task parallelism is the operation of different tasks on the same or different

data.

In our particular case there are several opportunities for parallelization. The first

and most obvious is the distance calculation which is an example of data parallelism.

For each new input we must measure the distance to each existing center in order to

find the nearest cluster. In software this is typically implemented by looping over all

clusters and calculating the distance from the input one by one. However, with enough

resources, a hardware implementation can perform each of the distance measurements

simultaneously. Following the parallel distance calculation we still need to find the

smallest distance. In software, this is an O(n) operation where each of the n cluster

distances would have to be visited once. By using a binary tree of comparators we can

parallelize the search for the smallest distance and decrease the problem to O(log n).

In addition to data parallelism, ICED has several opportunities for exploiting

task parallelism. As an example, two steps which must occur prior to the distance

measurement are input normalization and cluster fading. In software these are im-

plemented as order independent sequential tasks. In hardware they can be computed

simultaneously improving overall algorithm latency. Task parallelism can also be

achieved by allowing each cluster to calculate its updated position (the updated clus-

ter coordinates based on the assumption that it will be assigned the current input)

while determining the nearest cluster. Doing so can allow for a near instantaneous

cluster update once the nearest cluster is determined.

All examples of parallelism opportunities just described assume an adequate amount

of processing resources. If resources need to be time shared then the benefit of par-

allelization will be decreased. We examine some of these cases in greater detail in

Chapter 5.2 when we discuss performance / area tradeoffs.

37

4.1.2 Modularity

Modularity plays an important role in most designs and especially in FPGA designs

which are easily reconfigurable. A modular design is one that is composed of smaller

blocks, or modules, where each module is as independent and self-contained as possi-

ble. Such an approach allows easy integration of components developed by multiple

designers, but more importantly it also provides the ability to more easily compare

design tradeoffs. Take, for example, the decision of which distance metric to imple-

ment, squared Euclidean vs. Manhattan. Given a modular design, such a comparison

can be made by simply dropping the appropriate distance module into the design and

testing. On the other hand, a non-modular design might require a significant amount

of re-design in order to change the distance metric.

We aimed at making the design as modular as possible while at the same time

keeping overhead low and performance high. In a truly embedded design where the

same function will be performed for the life of the system, a less modular approach

can be afforded in order to obtain the best performance, power, and cost. In an EW

system it’s quite possible that system requirements may change over time requiring

retrofitting of components. Examples of modularity in our design include the careful

partitioning of tasks such as normalization, distance measurement, cluster coordi-

nate calculation, etc. into separate code modules. Additionally, we took advantage

of “generate statements” which auto-generate HDL code at compile time depending

on the design needs. Such statements were used to generate the appropriate struc-

tures based on the number of desired clusters, type of distance metric, and bit-width

requirements.

4.1.3 Configurability

While evolving design requirements tend to occur on a large time scale and necessitate

significant design changes, there are also cases where a situation might require a minor

change in a short period of time. Here a well thought out design with multiple modes

38

of operation or configurable parameters which can be changed in or as close to real-

time as possible is invaluable. There are several cases in our design were we focused

on configurability. For example, host accessible registers were provided for real-time

configurability of distance thresholds, parameter ranges for normalization, fade cycle

lengths, and maximum cluster weights.

We provide specific examples of our modularity and configurability efforts in Sec-

tion 4.3 when we present details on the major design components.

4.2 Board Overview

We have chosen the X5-400M XMC module [5] from Innovative Integration as our

implementation platform. A photo of the board is shown in Figure 4.1. The XMC

module plugs into a carrier card which can provide an array of host interfaces such

as PCI, PCI-X, or PCI-Express.

Table of Contents

X5-400M XMC Module

Introduction
The X5-400M is a member of the X5 XMC family that has two channels of 14-bit 400 MHz A/D conversion and 2 channels
of 16 bit D/A conversion at rates up to 500 MSPS. The A/D converter is a delta-sigma converter that has a usable dynamic
range of over 105dB, making it ideal for acoustic and vibration measurement applications.

A high performance computing core for signal processing, data buffering and system IO is built around a Xilinx Virtex-5
FPGA. Supporting peripherals include 512MBytes of DDR2 DRAM, 4MBytes of QDR2 SRAM, conversion timebase and
triggering circuitry, 33 bits of digital IO (Rev F), and a PCI Express interface. The module format is a single slot XMC and is
compatible with XMC.3 host sites.

Figure 19. X5-400M Module

X5-400M User's Manual 25

Figure 4.1: X5-400M Module [5]

The X5-400M, whose block diagram is shown in Figure 4.2, targets real-time

signal processing applications and features two 14-bit 400 MSPS A/D converters;

two 16-bit 500 MSPS D/A converters; 512MB of DDR2 DRAM; 4MB of QDR-II

SRAM; and both high-speed serial and general purpose I/O. At the heart of the board

39

is a Xilinx Virtex-5 SX-95T FPGA [32] providing significant processing resources

as well as access to the A/D and D/A channels, on-board memory, I/O, and the

host interface. Clocks sources available to the FPGA include onboard oscillators at

200MHz and 250MHz as well as a connector for providing an external clock.

Table of Contents

Custom application logic development for the X5-400M is supported by the FrameWork Logic system from Innovative using
VHDL and/or MATLAB Simulink. Signal processing, data analysis, and application-specific algorithms may be developed
for use in the X5-400M logic and integrated with the hardware using the FrameWork Logic.

Software support for the module includes host integration support including device drivers, XMC control and data flow and
support applets.

Figure 20. X5-400M Block Diagram

X5-400M User's Manual 26

Figure 4.2: X5-400M Block Diagram [5]

Provided with the board is a development kit containing template code for both

the FPGA interfaces as well as a board-level testbench. This code decreases the often

lengthy time required to get a design working on a new board for the first time.

Though our pulse deinterleaver is clustering pre-processed PDWs and does not

need access to the A/D or D/A converters, a fully integrated system could very well

perform the pulse measurements, deinterleaving, and response technique on the same

board requiring for such components. We focus entirely on the construction of the

deinterleaver with the understanding that our modular design can be easily integrated

into a complete EW system.

40

4.3 Major Components

As discussed in Section 4.1 one of our main design goals was modularity. Figure 4.3

shows a block diagram of the major top-level modules within ICED.

ICED
Clusters

Norm

Fade

Norm_undo

RF / PW

PDW

Cluster ID &
Coordinates

TOA

FIFO Min_dC0

Cluster
AssignmentC1

C2

Cn-1

Min_w

Assigned

Figure 4.3: ICED - Top-level block diagram

The following is a brief description of the general processing flow. As PDWs

are received they are placed in a FIFO to decouple the receipt and processing of

inputs. After reading a PDW from the FIFO, parameter normalization and fade

calculations are performed. These results are passed to the Clusters module which

measures the distance to all active clusters and decides to which cluster the input

should be assigned. Finally, the coordinates of the assigned cluster are converted

from normalized to native units and output along with a unique cluster ID. We now

take a closer look at each of these modules.

4.3.1 Normalization and Fade Modules

The PDW parameters are extracted from the output of the FIFO and the RF and

PW are passed to the normalization module (Norm) and the TOA is passed to the

41

fade cycle calculation module (Fade). Both Norm and Fade modules require division,

which is an expensive operation in an FPGA. In situations when the divisor is a power

of two the division operation can be replaced by a simple bit-shift and can often be

performed in a single clock cycle. However, for this case, the divisors are variable

and not powers of two. Because both the normalization and fade calculation are

independent of one another we can perform them in parallel in turn removing some

of the latency and decreasing the total computation time.

Normalization

To decrease latency even further, the normalization of RF and PW are parallelized

using two 1-D normalization modules, as shown in Figure 4.4. Both RF and PW

are normalized using the same Norm 1D module by supplying each with unique

normalization parameters (not shown in Figure 4.4).

Norm

Norm_1D

Norm_1D
PW

RF_normRF

PW_norm

From
Input
Fifo

To
Clusters
Module

Figure 4.4: 2-D normalization module

Recall from Section 3.1 the formula for normalization.

norm =

[
(input−min)

(max−min)

]
∗ 65535 (4.1)

Since we are normalizing to 16-bits we require a multiplication by 65535. With

an insignificant loss of precision we replace the multiplication by 65535 with a 16-bit

right shift, equivalent to a multiplication by 65536. This eliminates the need for a

multiplier freeing up FPGA resources and decreasing latency.

42

Fade

The Fade module is responsible for calculating the whole number of fade cycles since

the previous input. The calculated number is passed to the Clusters module and

subtracted from the weight of the cluster centers, also known as the fade operation.

If a whole number of cycles has not passed, the module outputs zero and retains

the residual for the next calculation. We considered using a free-running counter

but decided against it. Instead, by having the counter updated by each TOA value,

we can provide more accuracy in cases when several PDWs back up in the FIFO

preventing their immediate processing.

4.3.2 Clusters Module

Once RF and PW have been normalized and the number of fade cycles calculated,

the results are passed to the Clusters module. As shown in Figure 4.3 the Clusters

module can be broken down into three major components. First we have an array

of n Cluster center modules, C0 . . . Cn−1. Next, we have three binary trees, Min d,

Min w, and Assigned. Finally, we have the Cluster Assignment module.

Cluster Center Module

For an n-cluster implementation we require the instantiation of n independent Clus-

ter center modules. Using Verilog generate statements our code supports automatic

compile-time instantiation and interconnect of cluster centers. This allows the imple-

mented number of clusters to be varied by specifying a single parameter and without

re-writing any source code. The Cluster center modules are responsible for measuring

the distance to inputs and calculating and updating their center coordinates. Figure

4.5 shows the major modules within each cluster center.

The Cluster center module receives normalized RF and PW values from the Norm

module and the number of fade cycles from the Fade module. The RF ad PW are

sent to the Dist meas module which calculates the distance from the input to the

43

Cluster_center

Dist_meas

Calc_new_center

Coordinates

Update
Logic

RF / PW

fade_cycles

pend_update

pend_overwrite

current

RF / PW / weight

ID

type

distance

M
U
X

RF / PW / ID

coord_sel

Feedback From
Assign Module

To Min_d &
Min_w binary

trees

To Assigned
binary tree

From
Norm

Module

From
Fade

Module

Figure 4.5: Cluster center block diagram

current cluster center. Simultaneously the Calc new center module receives the RF,

PW, and number of fade cycles and performs two calculations. First, it decreases

the current cluster weight based on the number of fade cycles. Next, it determines

the pending cluster coordinates and weight for two cases. The first is if the current

input is added to the cluster (pend update), and the second is if the cluster needs to

be overwritten (pend overwrite) based on the requirement to start a new cluster.

The output of the Dist meas module from each cluster center is sent to the Min d

and Min w binary trees which determine the nearest and lightest clusters. Using the

nearest and lightest information the Cluster assignment module decides to which clus-

ter the current input should be assigned, and whether the cluster should be updated

or overwritten. This decision is fed back to each Cluster center module and used as

multiplexer control to select the current, pend update, or pend overwrite coordinates

and weight.

Finally, each Cluster center updates (if required) and outputs its coordinates to

the Assigned binary tree. This tree is responsible for determining the coordinates

44

and ID of the “winning cluster”. In addition to updating coordinates, every time

an input is assigned to a particular cluster the time difference of arrival between it

and the previous cluster is calculated and stored. This value provides a first order

estimate of the emitter PRI and can aid in further TOA processing.

Minimum distance, Minimum Weight, and Assigned Binary Trees

Min d and Min w are responsible for finding the nearest and lightest clusters, respec-

tively. The Assigned tree selects the appropriate cluster coordinates and ID after an

assignment has been made by the Cluster Assignment module. These three blocks

are constructed as binary trees of two-input comparators (Min d and Min w) and

two-input multiplexers(Assigned), rather than a single design. By doing so. the trees

can be automatically generated at compile time based on the number of clusters.

This auto-generation not only instantiates the correct number of sub-blocks but also

performs the required interconnect among the sub-blocks as well as to the adjacent

modules. Another example of modularity and design-reuse is the parameterization of

the the bit widths of the two-input multiplexer module. Doing so allows use of the

same module in both the (Min d and Min w) trees.

Cluster Assignment

As discussed in Section 3.3, an input can either be assigned to an active cluster or

used to start a new cluster. If the distance from the nearest cluster is within a specified

threshold the Cluster assignment module outputs the ID of the corresponding cluster

which is fed back to all Cluster center modules. The “winning” cluster center then

updates its coordinates with pend update. If the distance from the nearest cluster

exceeds the threshold, a new cluster is started by overwriting the lightest cluster.

The ID of the lightest cluster is then fed back to all Cluster center modules and the

“winning” Cluster center then updates its coordinates with pend overwrite. All other

cluster centers retain their current coordinates.

To provide real-time configurability the threshold value is programmable through

45

a software accessible register. This allows threshold values to be easily selected based

on particular scenarios and expected emitter characteristics. Future work might in-

vestigate the implementation of adaptive thresholding techniques which can be set

based on the statistics of the input data.

4.3.3 Normalization Undo

The final step in the ICED algorithm is to output the assigned cluster ID and co-

ordinates. Before they are output, however, the coordinates are converted from nor-

malized values back to their original native units using the following equation

native =
(max−min) ∗ norm

65535
(4.2)

Similar to the optimization used in the Norm module, we can avoid a costly

division by using a right shift operation. This results in a negligible error but saves

FPGA resources and decreases processing latency. As a comparison, we created a 32-

bit by 16-bit divider using the Xilinx Divider Generator 3.0 [33]. A 32-bit numerator is

required based on the result of the multiplication of (max−min) and norm, both 16-

bits. The 16-bit denominator is a result of the maximum normalized value of 65535.

The latency of the resulting divider was 25 clock cycles, 24 clock cycles greater than

a single clock cycle shift operation. For typical clock frequencies of 100 Mhz and 200

Mhz this is a savings of 240 ns and 120 ns respectively.

4.4 Conclusions

This chapter presented three implementation goals: parallelism, modularity, and con-

figurability. After providing a brief overview of the board we covered details of the

FPGA design. We looked at the overall architecture as well as specifics of several

major modules. In doing so we discussing the relevance of our design decisions to

our goals stated at the onset. We briefly covered a few optimizations, but further

46

discussion will be left for the next chapter which will include performance and area

results for the FPGA.

Chapter 5

Results

This chapter presents the results of our FPGA implementation. We start by discussing

our experimental setup and verification process. We then present our experimental

results, focusing in particular on clustering quality, FPGA resource consumption, and

FPGA performance.

5.1 Experimental Setup

Our design flow consists of design entry using Verilog HDL, synthesis and implemen-

tation using Xilinx ISE v11.2, and simulation using Mentor Graphics ModelSim SE

6.4c. Hardware testing was performed on the Innovative Integration X5-400M mod-

ule running at 200MHz. Test data was generated using MATLAB which allowed full

control over test scenarios and produced a more controlled experimental setup with

fewer variables than in a real-world setup with measured data.

5.1.1 Test Data

In a typical EW system implementation, the pulse parameter measurements are per-

formed in hardware and the resulting PDWs are then passed along to the deinter-

leaver. The measurement module and deinterleaver may be co-located or can be

47

48

implemented on separate chips or even separate boards. Although we do not have a

pulse measurement module available in hardware, we do have access to a high-fidelity

MATLAB Simulink model. Since we are concerned with evaluating the deinterleaver

independently, an accurate pulse measurement model is more than adequate.

The model represents a channelized architecture consisting of six 32 MHz channels.

Each channel provides a 13-bit RF and 16-bit PW measurement corresponding to

resolutions of 4KHz and 16ns, respectively. Our algorithm normalized these values

to 16-bit representations based on the range of expected inputs, and for simplicity we

simulated emitters in a single 32-MHz channel.

The generation of PDWs is composed of several steps and is depicted in Figure

5.1. First, the signal environment is defined by specifying the characteristics of the

desired emitters. These characteristics include RF, PW, PRI, and time scheduling.

This environment definition is then used to render simulated analog signals for each

emitter. The individual signals are then interleaved in order to simulate their receipt

at a single receiver. Finally, the TOA, RF, and PW measurements are made for each

detected pulse and the PDWs are then stored to a file.

Emitter
Definition

Signal
Rendering

& Interleaving

Pulse
Measurements

File

Figure 5.1: PDW Generation Sequence

The PDW file is transferred to the hardware using a C program which accesses

the FPGA over the X5-400M’s PCI interface. In a real system a hardware module

would be responsible for supplying PDW inputs to the FIFO, but doing so via soft-

ware allows us to independently measure the effectiveness of the ICED module. In

addition to supplying the PDW inputs, the software allows real-time configuration

and status monitoring of the algorithm details. Parameters such as cluster threshold,

maximum cluster weight, and fade cycle length can be set from the host and cluster

characteristics such as coordinates and weights can be read back to the host.

49

5.1.2 Verification

Early in the design process we created a software model, written in C, to aid in the

exploration of algorithm parameters and evaluation of design tradeoffs. When the

design was transitioned to the FPGA this model served as our “golden” reference

allowing us to verify the output of the FPGA with a known good result. Therefore

initial verification focused solely on clustering accuracy of the software model.

We started by using simple datasets consisting of several interleaved emitters

with no overlapping pulses. We would expect such datasets to result in a cluster

being created for each emitter and the weight of the clusters to be a function of

both the emitter PRF and the fade cycle length. We logged the cluster assignments

for each input as well as the coordinates and weights of all clusters after each input

was processed. This gave us periodic snapshots of the cluster details allowing us to

keep track of position and growth/fade characteristics. Verification of simple, non-

overlapping cases was done by inspecting the log files by hand and verifying that the

cluster parameters correlated well with the known emitter characteristics.

The next step was to expand verification to include scenarios with overlapping

pulses. In this case some PDWs describe combined pulses and may not correlate well

to a particular emitter in the environment. In this scenario we expect the number of

clusters to exceed the number of known emitters. The extra clusters will correspond

to outliers generated by overlapped pulses and should have relatively low weights

based on the frequency of overlap. Furthermore, these outlying clusters may come

and go in cases when they are faded faster than they are incremented since new inputs

are not being added. Verifying such scenarios by hand is both tedious and difficult

so we decided to plot the results and inspect them visually.

Since we are logging the cluster assignments, coordinates, and weights after each

input we combined sequential plots to create movies depicting the evolution of the

clustering process. We color coded PDWs based on cluster assignment and plot only

those PDWs currently contributing to the cluster’s weight. Finally, we indicated the

location of each cluster by overlaying an X on the plot for each center. Using the

50

logged weights we were able to construct histograms showing the evolution of cluster

weights over time. For incremental clustering algorithms, the intermediate results

are no less important than the results at the end of a data set. These movies were

the ideal tool for viewing the clusters during the process and proved invaluable in

verification of more complicated scenarios.

By logging identical data in both the software model and actual FPGA imple-

mentation, the same verification tools can be shared enabling an easy comparison of

results both qualitatively from visual inspection and quantitatively through log files

of known “golden” results.

5.2 Results

This section presents the results of our experiments and implementation. First we

evaluate the clustering quality for several different input scenarios. Next, we look at

the FPGA resources required for our design. Finally, we discuss the performance of

the FPGA implementation and compare it to a software approach.

5.2.1 Clustering Quality

We examine the clustering quality using several specific datasets representing typical

emitter scenarios. But first, let’s look at a generic dataset consisting of a single

emitter with a Gaussian distribution of points. Clusters formed from actual emitter

PDWs may not result in Gaussian distributions, but studying the Gaussian case allows

us to evaluate more general performance characteristics of the ICED algorithm by

investigating the effects of varying cluster threshold and fade rate.

Evaluating clustering quality for an incremental algorithm is not straightforward.

With a non-incremental algorithm one can compare the final clustering to the known

input set and calculate the percentage of correct assignments. In an incremental case,

however, the performance must be continuously evaluated because the clustering at

any given point is just as important as the result at the end of a dataset. Because

51

the algorithm does not revisit data and can only assign inputs once, minor errors can

be tolerated along the way as long as the algorithm performs well on average.

For the generic case we represented a single emitter with a Gaussian distribu-

tion of points with a given mean, µ, and variance, σ2. With a single emitter we

would expect a perfect clustering to produce one cluster whose coordinates are the

means of each dimension (µrf , µpw) of the dataset. The coordinates may vary at

first but should stabilize over time as the cluster weight increases. We consider the

cluster with the greatest weight to represent the true emitter and any other clusters

to represent incorrect assignments. Using this scheme we can calculate the percent-

age of correct assignments, and the maximum number of predicted emitters at any

given point (number of active clusters). We evaluate performance based on these two

measurements as well as a visual inspection of the clustering over time.

Single Emitter - Gaussian Distribution

This case uses a single emitter whose RF and PW measurements have mean and vari-

ance values of 8000 and 10, respectively, and whose PRI is 2000. Although the par-

ticular values of these input parameters are not important, we are interested in their

relation to the selection of algorithm parameters such as maximum cluster threshold

and fade cycle length. Figure 5.2 shows a scatter plot of PW vs. RF for 500 sample

points. The plot on the left shows the raw values and the plot on the right shows the

values quantized to integers to conform with the algorithm input requirements.

Given this dataset we can now look at the clustering results using the Manhat-

tan distance metric and with varying threshold and fade values. We considered fade

values ranging from 2000 (1x PRI) to 10000 (5x PRI), and thresholds ranging from 7

(2x standard deviation) to 15 (1.5x variance). We found a general trend between the

performance and the relationship of the threshold and fade values. As the threshold

decreased more points fell outside the main cluster and in turn created more clus-

ters. According to our evaluation parameters, members assigned to these additional

clusters, which we’ll call outliers, are classified as incorrect assignments. For short

52

7985 7990 7995 8000 8005 8010 8015
7985

7990

7995

8000

8005

8010

8015
Emitter Detections

Center Frequency (KHz)

P
u

ls
e

W
id

th
 (

n
s)

(a) Original

7985 7990 7995 8000 8005 8010 8015
7985

7990

7995

8000

8005

8010

8015
Emitter Detections

Center Frequency (KHz)

P
u

ls
e

W
id

th
 (

n
s)

(b) Quantized

Figure 5.2: Gaussian Distribution (µ = 8000, σ2 = 10)

fade values the outliers weights are kept low and these clusters are therefore quickly

deleted. Short fade values close to the PRI, however, resulted in increased jitter in

the main cluster as the cluster weights were rapidly faded and the center could not

accumulate enough points to stabilize. As the fade value increased, the outliers ex-

isted for a longer period and therefore had more opportunity to “steal” inputs from

the main cluster. This happens because, although the outlying cluster is created with

a center outside of the radius of the main cluster, the resulting radius of the outlier

can overlap the main. Therefore, data points that fall in the overlap region, though

they are contained within the main cluster boundary, can actually be closer to the

outlier’s center.

An example of an outlying cluster stealing points from the main cluster is shown

in Figure 5.3. The cluster boundaries are in the shape of diamonds based on the

Manhattan distance metric. Notice that in Figure 5.3(a) the introduction of a point

outside of the main cluster threshold has forced the creation of a new cluster. Because

the new point is within twice the threshold of the main cluster, the two clusters will

partially overlap. Future points in the overlap region that are closer to the new cluster

53

can enable the new cluster to migrate towards the main cluster, as shown in Figure

5.3(b). Eventually we might see a bi-modal distribution of points between the two

clusters even though there is only a single emitter. This is an unwanted phenomenon

and can be remedied by increasing the threshold, decreasing the fade cycle length, or

both.

7985 7990 7995 8000 8005 8010 8015
7985

7990

7995

8000

8005

8010

8015
Descriptor Scatter Plot

Frequency Bin

P
W

 B
in

Overlap Region

Initial Outlier

(a) Creation of outlying cluster (t = 0)

7985 7990 7995 8000 8005 8010 8015
7985

7990

7995

8000

8005

8010

8015
Descriptor Scatter Plot

Frequency Bin

P
W

 B
in

(b) Migration towards main (t > 0)

Figure 5.3: Outlying Cluster

Let’s look at the results for three specific sets of algorithm parameters. For each

case three different input datasets with the same Gaussian distribution parameters

were tested. The results were averaged and are shown in Table 5.1.

Table 5.1: Test Cases for Gaussian Distribution
Trial Threshold Fade Length Correct Assignment Max Clusters

A 7 10000 46% 5
B 7 5000 62% 3.7
C 10 5000 90% 3

In Trial A, which used a small threshold and a long fade cycle, outliers quickly

developed and often resulted in two or more clusters being assigned the majority of

the inputs. In trial B we kept the same threshold but decreased the fade length.

54

This change resulted in outliers being killed off faster and fewer inputs being stolen

from the main cluster. Finally, in trial C, we increased the threshold in an effort to

limit the number of outliers. This worked well, and even though there were at most

2 outliers at any time, their weights remained low due to the short fade length, and

were therefore quickly deleted. In the end, this resulted in 90% of the inputs being

assigned to the main cluster. With respect to the properties of the input, this case

used a threshold equal to the emitter PDW variance and a fade length equal to 2.5x

the emitter PRI. Even better performance can be achieved by further increasing the

threshold at the expense of ability to distinguish between neighboring emitters.

Building on what was learned from the Gaussian test, we move on to cases with

more realistic emitter data. The algorithm parameters for these cases is based on

experimentation and is selected with prior knowledge of the expected signal charac-

teristics. In a realistic scenario one may have some prior information regarding the

general characteristics of expected signals, ranges of probable RF, PW, and PRI, for

example, but it is unlikely that this information will be as accurate as in a test setup.

Although the ICED algorithm performs well in these cases, we motivate the need for

adaptive configuration of algorithm parameters in order to ensure high performance

without prior knowledge of signal characteristics or real-time user intervention.

Case I: Two Emitters, Overlapping Pulses

Here we use two emitters whose characteristics are shown in Table 5.2. The RF

values are offsets from the center of the single 32MHz channel. The offset is the

time at which the emitter starts producing pulses. Based on the PW and PRI of

the emitters the interleaved pulses will occasionally overlap producing a PDW whose

measurements do not correlate with either of the two emitters.

Table 5.2: Case I: Two Emitters With Overlapping Pulses
Case I RF (MHz) PW (µs) PRI (µs) Offset (µs)

Emitter 1 -5.0 1.0 20 1
Emitter 2 +5.0 0.8 6 500

55

The threshold value for this case was selected based on the accuracy of the mea-

surement module. The accuracy was determined experimentally by providing PDWs

with known RF and PW values and recording the measurement module outputs in

terms of normalized values. The results showed maximum measurement errors of ap-

proximately 25 for both RF and PW. Using Manhattan distance these errors would

result in a distance of 50. In order to provide a cushion we decided to use a threshold

of 100, equal to twice the largest expected error. Considering the 16 ns time resolu-

tion of the measurement module the largest PRI in this case, 20 µs, corresponds to

a value of 1250. To more aggressively combat outliers we chose a fade cycle length of

3000, slightly under the 2.5x used in the Gaussian case. With these parameters we

can successfully identify the two unique emitters and notice an occasional emergence

of a third emitter representing the overlapping pulses. The cluster corresponding to

the overlapping PDW is quickly faded based on the short fade cycle compared to it’s

infrequent occurrence. Figure 5.4 shows a snapshot of the clustering. The top plot

shows a total of three clusters, two representing the actual emitters and one repre-

senting the overlapped pulses. The lower left plot shows the current weight of each

cluster. We can see that the weights of the actual emitters is much higher than the

overlap weight. The right plot shows the estimated PRI based on the time differ-

ence of arrival of successive assignments to a particular cluster. Notice that there is

no PRI estimate for the overlap cluster because it had recently been faded out and

has not had the opportunity to measure the time difference of arrival between two

assignments.

The quality of this case is quite good because we can confidently identify two

emitters and one interferer. Basing the fade cycle parameter on the known PRI

values improved our results over a completely blind case. Although we do have real-

time control over parameters, we have not implemented any adaptive techniques. An

excellent future addition to this algorithm would be the implementation of adaptive

parameter thresholding based on the statistics of the current inputs. We leave further

discussion of this topic to the next chapter.

56

3500 4000 4500 5000
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Descriptor Scatter Plot

Frequency Bin

P
W

 B
in

0 5 10 15
0

10

20

30

40

50
Cluster Weight

Cluster Number

W
ei

gh
t

0 5 10 15
0

500

1000

1500

2000

2500
Cluster PRI

Cluster Number

P
er

io
d

Emitter 1
Emitter 2

Overlap

Figure 5.4: Case I Results

Case II: Single Frequency Hopper

This case will simulate a single emitter hopping over four frequencies each with the

same PW and PRI. The specific characteristics of the hopper are shown in Table 5.3.

The RF values are offsets from the center of the single 32 MHz channel. The duration

is the amount of time at which the emitter will remain on a particular frequency. Since

there is only a single emitter we have no overlap measurement interference but should

expect to see up to four clusters at a time depending on the fade cycle length.

Using the findings of Case I we use a threshold of 100. Knowing that we will have

no outliers to filter we extend the fade cycle length to 10000 so that we can maintain

a cluster for each of the four hops. Figure 5.5 shows a snapshot of the clustering for

57

Table 5.3: Case II: Frequency Hopper
Case II RF (MHz) PW (µs) PRI (µs) Duration (ms)
Hop 1 +11.0 1.2 40 1
Hop 2 +6.0 1.2 40 1
Hop 3 +14.0 1.2 40 1
Hop 4 +1.0 1.2 40 1

this case. Due to the selected fade cycle length and the duration of each hop, after

cycling through all hops we have maintained all four clusters. After moving to the

next frequency the prior cluster starts to fade, but is not faded out completely before

the hopper returns, enabling us to build on the prior statistics. We see that the PRI

estimate for each cluster is nearly identical, as would be expected given that each hop

has the same PRI value.

Keeping the clusters active until they are revisited is not necessarily a requirement

and may or may not be possible for other scenarios based on the combination of hop

duration and fade cycle length. Our algorithm identifies each hop as a separate

emitter even though all pulses are being generated from a single source. A later stage

in the EW system might group these hops and correlate them to an emitter with

specific hop characteristics. The integration of such functionality is beyond the scope

of our interleaver and is left for future work.

Case III: Fixed plus Hopper

We now investigate a more complicated scenario which is composed of a combination

of the previous two cases. We start with the two emitters from Case I which we know

will result in an additional cluster due to overlap. Additionally, as a third emitter,

we introduce the single hopper from Case II. We see overlapping pulses between the

hopper and the first two emitters individually, as well as cases with overlapped pulses

from all three emitters. Due to the PW and PRI relationships of the emitters this

scenario will stress our algorithm with a large number of false clusters representing

the overlapping pulses.

58

4500 5000 5500 6000 6500 7000 7500 8000
0

500

1000

1500

2000

2500

3000

3500

4000
Descriptor Scatter Plot

Frequency Bin

P
W

 B
in

0 5 10 15
0

5

10

15

20

25
Cluster Weight

Cluster Number

W
ei

gh
t

0 5 10 15
0

1000

2000

3000

4000

5000
Cluster PRI

Cluster Number

P
er

io
d

4 2 31

Figure 5.5: Case II Results

Based on the prior experiments we retain a threshold of 100. Through experimen-

tation a fade cycle length of 7500 was chosen in order to stress the algorithm with

a large number of outlying clusters. Figure 5.6 shows a snapshot of the clustering

soon after the hopper has moved to its fourth frequency. The plot shows the two

fixed emitters, Emitter 1 and Emitter 2, as well as the third and fourth locations of

the hopper. The other four clusters represent false emitter locations. The cluster

weights can help filter out the false locations from the true emitters. For example,

in the plot a weight threshold of two would remove three of the four false emitters.

Using a threshold as a filter, however, will increase the number of pulses required to

be received before identifying a true emitter. Low thresholds can be used if the false

clusters are faded frequently enough to keep their weights relatively low.

59

3000 4000 5000 6000 7000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Descriptor Scatter Plot

Frequency Bin

P
W

 B
in

0 5 10 15
0

2

4

6

8

10
Cluster Weight Histogram

Cluster Number

W
ei

gh
t

0 5 10 15
0

2000

4000

6000
Cluster Period Histogram

Cluster Number

P
er

io
d

Emitter 2 Emitter 1

Hop 4 Hop 3

Figure 5.6: Case III Results

With this case we have shown moderate performance for an input data stream

containing a significant number of measurements corresponding to overlapping pulses.

We expect the ability to filter out some of the false emitters, however, not much can be

done when the input is quite noisy. For example, if just as many PDWs are received

for a false emitter as a true emitter it is nearly impossible to distinguish them. A

possible upgrade would be to improve the measurement module enabling it to identify

possible overlap cases and mark these PDWs with a flag. The deinterleaver can then

filter out clusters formed with a large number of flagged PDWs.

60

5.2.2 FPGA Resource Consumption

This section will discuss the FPGA resources consumed by our algorithm. In addi-

tion to the ICED module some logic is required for general operation such as clock

generation and the PCI Express interface controller. When evaluating resource con-

sumption we lump these components into a single category which we consider required

overhead. This allows us to concentrate specifically on ICED and its sub-modules.

Table 5.4 shows the consumption of resources for implementations of 2, 4, 8,

and 16 cluster centers. It should be noted that the number of occupied slices is not

always a good indication of resource availability because the implementation tools

often spread the logic in order to improve timing. The utilization percentages for

these implementations is plotted in Figure 5.7. Additionally, we have fit a line to

each resource category and as expected see a linear relationship between consumption

and the number of implemented clusters. By extending the lines back to zero clusters

we get a good estimate of the utilization of the overhead logic (clock generation,

PCI Express controller) and the clustering logic shared by all clusters (normalization,

normalization undo, etc).

Table 5.4: FPGA Utilization
Slices Slice Registers LUTs BRAM DSP48E

Available 14720 58880 58880 244 640
2 Clusters 5989 (41%) 15121 (26%) 11719 (20%) 17 (7%) 80 (13%)
4 Clusters 6950 (47%) 18834 (32%) 15166 (26%) 21 (9%) 120 (19%)
8 Clusters 9221 (63%) 26267 (45%) 22087 (38%) 29 (12%) 200 (31%)
16 Clusters 12972 (88%) 41146 (70%) 37500 (64%) 44 (18%) 360 (56%)

The limiting factor in increasing the number of clusters is the number of slice

registers, but the number of LUTs and DSP48Es are not far behind. Projecting past

16 clusters we note that the theoretical limit would be 25 clusters based on near

100% utilization of LUTs. Increasing the number of clusters requires the addition of

cluster center modules (utilization for a single center is broken down in Table 5.5),

as well as the expansion of the binary trees used to find the nearest, lightest, and

61

Figure 5.7: FPGA Utilization

assigned clusters. Based on the current design there are not enough resources to

double the number of clusters from 16 to 32. Although there is not a requirement to

increase clusters in powers of two this method is convenient based on the construction

of the binary trees.

Table 5.5: Cluster center Module Utilization
Slices Slice Registers LUTs BRAM DSP48E

Available 14720 58880 58880 244 640
Cluster center 936 (6%) 1791 (3%) 1545 (3%) 1 (<1%) 20 (3%)

5.2.3 Performance

Now that we have evaluated the accuracy of the algorithm and the resource con-

sumption, let’s look at the performance of the FPGA implementation. We do so by

measuring the overall processing latency of the 16 cluster implementation.

62

In Section 2.2.3 we investigated various emitter scenarios in order to define the

required maximum allowable processing latency. We found that to handle moderately

stressing cases we could tolerate a 1µs latency but to keep up with the most stressing

case the latency must be no greater than 500 ns. The clock frequency used by the

ICED module is 200 MHz, which has a period of 5 ns and would require a latency no

greater than 100 clock cycles.

In order to gain better insight into the individual latencies we have created a time

line, shown in Figure 5.8, consisting of the major processing steps. Stacked boxes

represent operations which are performed in parallel and therefore hide some latency

over a serial implementation of such tasks. The 16 cluster implementation requires 84

clocks to complete, which corresponds to 420 ns, modestly exceeding even the most

stressing scenario.

Figure 5.8: Module Processing Latencies

Seeing that we have met our worst case latency requirement let’s now calculate

the performance gain over a software implementation. As a software benchmark we

used the C model developed for investigating algorithm tradeoffs. The model was

configured with the same parameters as the implemented hardware. To provide a fair

comparison between hardware and software implementations we did not include the

time required by the software to load inputs or store results to and from disk.

The software was run on a single core of a 3.00 GHz Intel Xeon 5160 with 4GB of

RAM. The required run time for 80,000 inputs was 13.0s, corresponding to 16.25µs

per input. The resulting FPGA speedup over software is 39x. A typical implementa-

tion should show even greater speedup because an actual system would require that

63

the inputs, be it discrete samples or further processed PDWs, be transferred from

hardware to the local machine for software clustering. We have decided to ignore

such added latencies in order to provide a more clear cut comparison of the clustering

implementation itself.

5.3 Conclusions

This chapter presented the results of our hardware implementation including cluster-

ing quality, FPGA resource consumption, and speedup over a software implementa-

tion. We demonstrated effective clustering of a Gaussian distribution enabling us to

compare results for varying algorithmic parameters. Next, we moved on to simulated

emitter environments including cases with frequency hopping and overlapped pulses.

We showed that for even heavy overlap cases, outlying clusters can be filtered out

using an appropriate cluster weight threshold. We provided detailed resource con-

sumption for 2, 4, 8, and 16 clusters, and estimated that the maximum number of

implementable clusters would be 25 for this particular chip. Finally, in evaluating

the hardware processing latency we showed that our implementation, which provides

a 39x speedup over software, can keep up with even the most dense emitter environ-

ments.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

A major component of an EW system is the pulse deinterleaver. A deinterleaver sep-

arates combined streams of radar pulses into individual streams, each corresponding

to a particular radar emitter. This process is crucial for effective EA and EP pro-

cessing. One demanding requirement of deinterleaving is that it must be performed

with low latency in order to handle dense emitter environments and provide timely

identification to subsequent processing blocks.

This thesis presents ICED, an incremental clustering algorithm suited to deinter-

leave streams of PDWs. A major benefit of incremental clustering is that it is an

“on-line” method. This means that it can operate on streaming data without having

to revisit past inputs. This characteristic makes incremental clustering algorithms

attractive to real-time problems such as pulse deinterleaving.

The algorithmic decisions for ICED are based on the particular characteristics

of radar deinterleaving as well as the target FPGA implementation. Choosing a

Manhattan distance metric decreases arithmetic complexity in the FPGA without

sacrificing clustering performance. A fade mechanism places less importance on older

data and provides greater agility and therefore more accurate results in cases with

evolving data streams.

64

65

The final design is mapped to a Xilinx Virtex-5 SX95T FPGA. This implementa-

tion provides a maximum of 16 simultaneous clusters while occupying approximately

70% of the chip’s resources. Running at 200 MHz, the processing latency for a single

input is 420 ns resulting in a 39x speedup over a software implementation.

6.2 Future Work

Our implementation provides real-time configuration of algorithm parameters such as

cluster boundaries and fade cycle length but does not implement any particular logic

to adapt them on the fly. Adaptive thresholding based on statistics of current clusters

can provide improved results especially for dynamic situations. Additionally, adaptive

thresholding can lead to a better embedded solution requiring fewer assumptions

about the working environment.

Using cluster fading, ICED attempts to filter clusters created by overlapping

pulses that do not correlate to actual radar emitters. In cases where the number

of PDWs corresponding to these false emitters is high it is very difficult to eliminate

these clusters as their statistics closely resemble true emitters. A possible solution

would be to more closely integrate the module performing the pulse measurements

with the deinterleaver. Taking more frequency and amplitude measurements over

the course of each pulse can lead to identification of overlapping cases. In simple

cases, such as an overlap of only two pulses, it is possible to resolve the individual

contributions [1]. If this is not possible it might be beneficial to at least label the

corresponding PDW with a flag indicating a confidence level for the measurements.

Special treatment of the PDWs with low confidence ratings may allow the deinter-

leaver to improve its performance.

Another opportunity for future work is to re-evaluate the chosen implementation

architecture. Since processing latency easily exceeded our target goal, we might

benefit from decreasing the amount of parallelism in the design. Sharing computation

resources amongst several clusters can lead to decreased FPGA utilization and can

66

allow for growth beyond 16 clusters or the integration of additional system blocks

into the same FPGA. Such integration can provide savings in both size and cost.

6.3 Summary

We have shown promising results for an FPGA pulse deinterleaver based on an incre-

mental clustering algorithm. Future implementations may improve performance with

adaptive configuration of algorithm parameters.

Appendix A

List of Acronyms

AOA Angle of Arrival

CDIF Cumulative Difference

CW Continuous Wave

EA Electronic Attack

EP Electronic Protection

ES Electronic Support

EW Electronic Warfare

FA Fuzzy Adaptive Resonance Theory

FIM Fuzzy Inference Modules

FMMC Fuzzy Min-Max Clustering

FPGA Field Programmable Gate Array

IAFC Integrated Adaptive Fuzzy Clustering

ICED Incremental Clustering of Evolving Data

67

68

MDL Minimum Description Length

PA Pulse Amplitude

PDW Pulse Descriptor Word

PRF Pulse Repetition Frequency

PRI Pulse Repetition Interval

PW Pulse Width

RF Radio Frequency or Frequency

SDIF Sequential Difference

SNR Signal to Noise Ratio

SOFM Self-Organizing Feature Mapping

SONN Self-Organizing Neural Networks

SVM Support Vector Machine

TAC Time Adaptive Clustering

TOA Time of Arrival

Bibliography

[1] J. Tsui, Digital Techniques for Wideband Receivers, 2nd ed. Raleigh, NC:

SciTech Publishing, Inc, 2004.

[2] G. W. Stimson, Introduction to Airborne Radar, 2nd ed. Raleigh, NC: SciTech

Publishing, 1988.

[3] S. Lin, M. Thompson, S. Davezac, and J. C. S. Jr., “Comparison of time of arrival

vs. multiple parameter based radar pulse train deinterleavers,” in Proceedings of

SPIE Vol. 6235. Signal Processing, Sensor Fusion, and Target Recognition XV,

2006.

[4] D. Milojevic and B. Popovic, “Improved algorithm for the deinterleaving of radar

pulses,” in Radar and Signal Processing, IEE Proceedings F, vol. 139, Feb. 1992,

pp. 98–104.

[5] Innovative Integration. (2010, Feb.) X5-400m user’s manual. [Online]. Available:

http://www.innovative-dsp.com/support/manuals/X5-400M.pdf

[6] USAF Air University. (2010, Mar.). [Online]. Available:

http://www.au.af.mil/info-ops/ew.htm

[7] D. Adamy, EW 101 A First Course in Electronic Warfare. Norwood, MA:

Artech House, 2001.

[8] A. E. Spezio, “Electronic warfare systems,” IEEE Transactions on Microwave

Theory and Techniques, vol. 50, pp. 633–644, Mar. 2002.

69

70

[9] D. Adamy, EW 102 A Second Course in Electronic Warfare. Norwood, MA:

Artech House, 2004.

[10] A. Ataa and S. Abdullah, “Deinterleaving of radar signals and prf identification

algorithms,” vol. 1, Oct. 2007, pp. 340–347.

[11] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A Review,” in ACM

Computing Surveys (CSUR), v.31 n.3, Sep. 1999, pp. 264–323.

[12] J. A. Hartigan, Clustering Algorithms. New York: John Wiley and Sons, 1975.

[13] Q. Song and N. Kasabov, “ECM, A Novel On-line, Evolving Clustering Method

and its Applications,” in Proceedings of the Fifth Biannual Conference on Arti-

ficial Neural Networks and Expert Systems (ANNES2001), 2001, pp. 87–92.

[14] C. Gupta and R. Grossman, “GenIc: A Single Pass Generalized Incremental Al-

gorithm for Clustering,” in Proceedings of the Fourth SIAM International Con-

ference on Data Mining, 2004, pp. 147–153.

[15] L. Reyzin, “Online Clustering of Linguistic Data,” BSE Junior Independent

Work, Princeton University, 2005.

[16] D. Barbara, “Requirements for Clustering Data Streams,” in SIGKDD Explo-

rations, vol. 3, 2002, pp. 23–27.

[17] H. Mardia, “New techniques for the deinterleaving of repetitive sequences,” in

Radar and Signal Processing, IEE Proceedings F, vol. 136, Aug. 1989, pp. 149–

154.

[18] E. Granger, Y. Savaria, P. Lavoie, and M.-A. Cantin, “A comparison of self-

organizing neural networks for fast clustering of radar pulses,” in Signal Process-

ing, vol. 64, 1998, pp. 249–269.

71

[19] J. Liu, J. P. Lee, L. Li, Z.-Q. Luo, and K. M. Wong, “Online clustering algo-

rithms for radar emitter classification,” in IEEE TRANSACTIONS ON PAT-

TERN ANALYSIS AND MACHINE INTELLIGENCE, vol. 27, Aug. 2005, pp.

1185–1196.

[20] M. Leeser, P. Belanov, M. Estlick, M. Gokhale, J. Szymanski, and J. Theiler,

“Applying reconfigurable hardware to the analysis of multispectral and hyper-

spectral imagery,” in Proceedings of SPIE, vol. 4480, 2001, pp. 100–107.

[21] T. Saegusa and T. Maruyama, “An fpga implementation of k-means clustering

for color images based on kd-tree,” in 16th Annual Conference on Field Pro-

grammable Logic and Applications (FPL 2006), 2006, pp. 411–417.

[22] A. G. da S. Filho, A. C. Frery, C. C. de Araujo, H. Alice, J. Cerqueira, J. A.

Loureiro, M. E. de Lima, M. das Gracas S. Oliveira, and M. M. Horta, “Hyper-

spectral images clustering on reconfigurable hardware using the k-means algo-

rithm,” in Proceedings of the 16th Symposium on Integrated Circuits and Systems

Design, 2003.

[23] G. A. Covington, “Architecture for document clustering in reconfigurable hard-

ware,” Master’s Thesis, Department of Computer Science & Engineering, Wash-

ington University in St. Louis, 2006.

[24] S. Sanchez-Solano, A. J. Cabrera, I. Baturone, F. J. Moreno-Velo, , and M. Brox,

“Fpga implementation of embedded fuzzy controllers for robotic applications,”

in IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 54, 2007.

[25] S. Arifin and P. Y. K. Cheung, “A novel fpga-based implementation of time

adaptive clustering for logical story unit segmentation,” in Proceedings of the

conference on Design, automation and test in Europe, 2006, pp. 227–232.

72

[26] C.Baldanza, F.Bisi, M.Bruschi, I.D’Antone, S.Meneghini, M.Rizzi, and M. Zufa,

“A cellular neural network for peak finding in high-energy physics,” in Proceed-

ings of the 6th IEEE International Workshop on Cellular Neural Networks and

Their Applications, 2000, pp. 443–448.

[27] C.-F. J. nd Yu-Wei Tsao, “A type-2 self-organizing neural fuzzy system and its

fpga implementation,” in IEEE TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICSPART B: CYBERNETICS, vol. 36, 2008, pp. 1537–1548.

[28] C. Kyrkou and T. Theocharides, “Scope: Towards a systolic array for svm object

detection,” in IEEE EMBEDDED SYSTEMS LETTERS, vol. 1, 2009, pp. 46–

49.

[29] Y. Changbin and A. Wahab, “On the impelmentation of a fuzzy cmac,” in Pro-

ceedings of the Eighth Australian and New Zealand Intelligent Information Sys-

tems Conference (ANZIIS 2003), 2003, pp. 265–270.

[30] M. Estlick, M. Leeser, J. Theiler, and J. J. Szymanski, “Algorithmic transforma-

tions in the implementation of k-means clustering on reconfigurable hardware,” in

Proceedings of the 2001 ACM/SIGDA Ninth International Symposium on Field

Programmable Gate Arrays, 2001, pp. 103–110.

[31] H. Hassan, “Joint deinterleaving/recognition of radar pulses,” in Proceedings of

the International Conference on Radar, Sep. 2003, pp. 177–181.

[32] Xilinx. (2010, Feb.) Virtex-5 family overview. [Online]. Available:

http://www.xilinx.com/support/documentation/data sheets/ds100.pdf

[33] ——. (2010, Feb.) Divider generator v3.0. [Online]. Available:

http://www.xilinx.com/support/documentation/ip documentation/div gends530.pdf

