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Abstract

Multi-computer platforms that incorporate FPGAs and other reconfigurable proces-

sors are emerging as powerful computing architectures capable of exploiting many

levels of parallelism for a range of applications. The novelty of this technology, com-

bined with the drastic differences between architectures, has resulted in a lack of

tools for developing applications and maintaining portability across different plat-

forms. This thesis presents a case study into the use of VForce, a framework that

leverages VSIPL++ to deliver high performance for reconfigurable applications while

maintaining portability across different multi-computer architectures. The case study

is a hardware/software implementation of an adaptive time-domain beamformer. The

computation required for adapting weights and reconstructing signals is split between

software and FPGA hardware, which operate concurrently. Run-time performance is

presented to show two orders of magnitude gain in performance over a software-only

system.
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Chapter 1

Introduction

Heterogeneous cluster-style multi-computers that integrate FPGAs and other recon-

figurable processing elements with microprocessors have recently emerged. While

some systems serve as reconfigurable supercomputers dedicated to accelerating com-

putationally prohibitive scientific algorithms, others exist as smaller embedded de-

vices designed for real-time signal processing. Regardless of the form factor and ar-

chitectural details that distinguish one platform from another, these systems provide

opportunities for applications to exploit fine-grained and coarse-grained parallelism.

These opportunities enable a level of performance that is not possible with software

alone for many applications.

Reconfigurable computing architectures, though powerful, are complex to pro-

gram and configure. Designing and developing an application that makes effective

use of a reconfigurable multi-computer requires an understanding of the hardware as

well as the computational requirements of the application. Due to the novelty of the

technology and the drastic architectural differences between platforms, developing

an application requires low-level programming and an in-depth knowledge of the re-
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configurable devices. Compilers and other tools used to program and configure these

systems are generally platform specific and lack support for application portability.

In this thesis, the VForce framework is presented. VForce is designed to maintain

application portability across reconfigurable multi-computer platforms. The frame-

work combines object oriented software that abstracts hardware details and maps

functions to different platforms with a resource manager that dynamically binds these

functions to available resources at run time. VForce sits on top of VSIPL++[22].

VSIPL++, the Vector Signal Image Processing Library, is an API to a list of com-

monly used signal and image processing functions. Implementations of VSIPL++

can be optimized for a specific platform to deliver high performance.

After introducing VForce, a case study is presented that demonstrates the ef-

fectiveness of using the framework for mapping functions of a coarser granularity

than those native to the VSIPL++ specification to reconfigurable supercomputing

platforms. For this case study, we chose to implement a time-domain adaptive beam-

former. Beamforming is a spatial filtering operation used to reconstruct signals prop-

agating in a direction of interest by combining signals received by an array of sensors.

The type of beamformer we implemented is complex yet modular. In our implementa-

tion, computation is split between software and reconfigurable hardware to showcase

VForce’s ability to facilitate concurrent processing. The beamformer was mapped

to a Mercury Computer Systems reconfigurable platform. Run-time performance is

presented to show two orders of magnitude performance gain over a software-only

implementation.
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The outline of the remainder of this thesis is as follows. Chapter 2 presents a

background of hardware/software co-design and some of the challenges involved with

integrating FPGAs and other special purpose processing elements into high perfor-

mance applications. Chapter 2 also includes a background of the algorithms, appli-

cations and previous implementations of beamformers. Chapter 3 introduces VForce,

the software library designed to maintain application portability across reconfigurable

supercomputing platforms. Chapter 4 presents a case study that evaluates the ef-

fectiveness of using VForce for functions at a granularity higher than the functions

native to the VSIPL++ specification. Chapter 5 presents the results and analysis

of the run-time performance of the beamformer described in the previous chapter.

Chapter 6 concludes and suggests potential future research directions.



Chapter 2

Background

The discussions that follow in this chapter and in the remainder of this thesis will be

divided into two orthogonal but related topic threads. The first will address issues

dealing with hardware/software co-design and making effective use of hardware other

than microprocessors for computation. More specifically, this thread will focus on the

challenge of designing applications which map algorithms to heterogeneous systems

for high performance. The second thread will deal with beamforming as an algorithm

and how it has been implemented in software, custom hardware and heterogeneous

systems.

2.1 Hardware/Software Co-design

As has been the case since the inception of the modern computer, applications are

limited by the functionality and speed of processors, as well as the size and speed of

the memory available to them. Today, the increasing demand for processing power

maintains a significant gap over what is currently available with state-of-the-art mi-

croprocessors and memory. Proof of this can be seen in the fact that billions of dollars
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are spent each year toward improving chip fabrication processes and developing new

processor architectures.

When an application requires more processing power than is available with state-

of-the-art microprocessors, designers turn to alternatives. Some alternatives include

Field Programmable Gate Arrays (FPGAs), Digital Signal Processors (DSPs), Ap-

plication Specific Integrated Circuits (ASICs), Graphics Processing Units (GPUs),

multi-core processors and hybrid architectures that combine microprocessors with

other specialized computing resources. These specialized alternatives are each tai-

lored for a subset of applications and are capable of outperforming microprocessors

by one to three orders of magnitude. Any processing alternative to a microprocessor

will be referred to as a special purpose processor (SPP) in the remainder of this

thesis.

Making effective use of SPPs is a challenging problem. Architecturally, SPPs

can be very different from microprocessors. These differences are why they are able

to outperform microprocessors, which are designed for general purpose processing.

Each SPP generally has its own set of design tools, programming paradigms and

compatibilities. For this reason, there is little or no support for application portability

across the different platforms.

Many issues need to be considered before moving an application to an SPP or a

hybrid system, which incorporates a microprocessor and one or more SPPs. Knowl-

edge of the underlying processing and memory access patterns in the application is

required for making an educated decision as to what type of SPPs should be targeted.
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It is often the case that a microprocessor is the best choice for a particular algorithm;

however, algorithms can sometimes be redesigned to match a given architecture to

deliver a gain in performance.

This section outlines the challenges facing application designers who employ SPPs

as coprocessors that work in cooperation with a microprocessor. This configuration

will be referred to as a hybrid system for the remainder of this thesis. Since the work

presented in this thesis focuses on FPGA design, one of many available SPPs, the

second part of this section will focus on the challenges in hardware/software co-design

specific to FPGA technology. The following two sections will discuss the flows for

the design and development of software and hardware for hybrid systems.

2.1.1 Software Development

Software compiled to run on a microprocessor that shares the computational work-

load of an application with an SPP coprocessor is generally much more complex than

software compiled to run on a microprocessor that executes the entire application

on its own. Software for a hybrid system needs to express the computation being

executed on the microprocessor as well as the interface to the SPP. This interface

usually includes considerations for synchronization, data movement and control. Ac-

cording to Amdahl’s law[2], we can only reduce the run-time of an application to the

length of time required for the slowest serial component of that application. In a

hybrid system, this component is usually the software. Since high performance is the

goal in using a hybrid system, it is important to make sure the software component
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is designed to maximize the speedup possible with SPP coprocessors. This means

that software for hybrid systems must be designed in a way that enables high SPP

performance while limiting its serial contribution to the run-time of the application.

Applications implemented with a hybrid system, or entirely with an SPP, usually

start as software source code written in a sequential programming language and com-

piled to target a microprocessor. Before the software can be redesigned to work with

an SPP coprocessor, the performance of the application on a microprocessor needs to

be evaluated in a way that exposes the opportunities for acceleration. Based on this,

and possibly additional evaluations, decisions must be made on which partitions of

the global application will be moved to SPPs, which SPPs will be targeted and how

the algorithms need to be redesigned to best exploit the architectures of the different

processing elements being used.

Challenges in the development of software for a hybrid system are closely related

to the architectural details of the SPP and the environment in which the micropro-

cessor and SPP are interconnected. It is often most efficient to program software

at a low level in order to target the strenghts of a given SPP. However, in order to

maintain portability, code should be written at a higher level of abstraction to target

more than just a specific SPP. Therefore, there is a tradeoff between the performance

possible with low level software design and application portability.



CHAPTER 2. BACKGROUND 20

Hardware/Software Partitioning

The first step in developing the software component of a hybrid system is determining

which parts of the application are in need of acceleration. Loops with high ranges are

often the source of extended run-times on microprocessors. These blocks of code need

to be responsible for a large percentage of the total run-time of the application in order

to warrant moving to an SPP. Again, Amdahl’s law dictates that the potential for

gain in performance from accelerating a partition of an application is limited by the

size of the partition with respect to the size of the overall application. For example,

consider a software partition that has been identified to be compute-intensive and

is accountable for 85% of the application’s run-time. If this partition is to be re-

implemented with an SPP, the run-time can be reduced by a maximum of 85% for a

speedup factor of 6.67. Therefore, in addition to finding the candidate partitions for

acceleration in a given application, a decision must also weigh the potential for gain

in performance with the costs involved in using an SPP.

Identifying candidate partitions for acceleration begins by assuming that a de-

signer will be able to achieve a speedup factor equal to the upper limit from Am-

dahl’s law. In many instances, this is not possible. Determining what is possible

requires an analysis of the application, the SPP, and how that SPP works with the

microprocessor in the hybrid system. A designer choosing which SPP architecture

to target needs to understand how partitions would be mapped to the different ar-

chitectures, each architecture’s proficiency in executing the operations required, the
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communication schemes possible with the different architectures, and how the differ-

ent processing elements are able to work together. Other factors must be considered

as well, including the cost in terms of hardware, the necessary design tools and the

design-time required.

Software Design

Software running on a microprocessor in a hybrid system needs to interface with

the SPPs in order to control their operation, move data and synchronize processing.

Usually, offloading portions of an application’s computation to an SPP results in the

addition of many lines of code.

The software component of a hybrid system differs from software written for a

microprocessor alone in that the relative execution times of operations become an

issue for the programmer. With a standalone microprocessor, the run-time of the

application is equal to the sum of the run-times of each operation. In hybrid sys-

tems, pipelining and parallel processing techniques are often employed to overlap

different stages of processing to improve performance. The run-time of a hybrid

application is not a sum. Optimizing for performance requires additional analysis.

It is important to make sure that operations are issued in a way that does not re-

sult in an unbalanced system. An unbalanced system is one in which one individual

component is dominating the run-time of the system to the point it leaves one or

more system resources underutilized. Avoiding an unbalanced system sometimes re-

quires programming techniques like latency hiding and multi-buffering, which are not
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usually employed when programming a single processor. To maximize performance,

software has to synchronize the processing on the SPPs and provide access to data

with enough throughput to keep up with execution on the SPP. At the same time,

software is usually responsible for part of the overall computation. Designing software

that maintains a balanced processing load and makes effective enough use of SPPs

to warrant their costs requires in-depth knowledge of the application and platform

architecture.

Software Portability

The previous section discussed the difficulties involved with exploiting the full ca-

pabilities of the available SPPs. For a given application and a given platform, the

most efficient implementation will usually be the result of low-level programming

and a system-level design specific to the target platform. This implementation rarely

maps as efficiently to other platforms as it does to the one for which it was designed.

Since performance is the primary goal in applications that make use of SPPs, effort

is generally spent minimizing the run-time of the application rather than designing

software that ensures portability across different platforms.

When portability is a priority, software design can be approached in two ways.

The first is to encapsulate a low-level implementation for every SPP the software

needs to support into one software program. This is essentially the same as design-

ing many non-portable software implementations and choosing the correct one at

compile-time. This method of designing for portability will ensure high performance
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on multiple systems; however, this performance comes at the cost of a lengthy de-

sign time. A software design cycle is required for every SPP supported. Upgrades

to hardware and functional changes require modification to each separate software

implementation.

The second way to design software for hybrid systems and remain portable across

platforms is to abstract the differences between platforms. Abstracting the platforms

and interposing a middleware layer allows for the design of common interfaces for

multiple SPPs. With common interfaces, a single software implementation can be

designed to target multiple hybrid systems. Upgrades and changes to hardware will

not affect individual application software as long as the interfaces remain unchanged.

Application portability with this method of design comes at the cost of the overhead

imposed by the middleware layer and whatever restrictions are created by forcing

software to adhere to a fixed interface.

There will always be a tradeoff between the performance possible with low-

level programming tailored to a given architecture and designing applications to be

portable across multiple platforms.

2.1.2 FPGA Application Development

FPGAs are just one of many types of SPPs available to application designers seeking

high performance alternatives to the microprocessor. FPGAs are generally an or-

der of magnitude more expensive than their microprocessor counterparts in terms of

chip cost and development platform cost. What makes FPGAs worth the additional
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design time, money and expertise required are their fine-grained massively paral-

lel processing architectures and their ability to be quickly reconfigured to perform

different tasks.

Field Programmable Gate Arrays

FPGAs are integrated circuits that can be customized for a specific function or appli-

cation within milliseconds. FPGAs are often chosen for signal and image processing

applications because of their massively parallel nature. Many signal and image pro-

cessing algorithms are inherently parallel and map to the parallel processing structure

of FPGAs in an intuitive way. FPGAs consist of large arrays of logic blocks for data

transformation and switches for routing and data movement. These arrays are con-

figured by setting bits of configuration SRAM local to each block of logic. Current

state-of-the-art FPGAs house tens of thousands of logic blocks on a chip. In addition

to standard blocks of logic, FPGA vendors also include dedicated resources that vary

from vendor to vendor and from chip to chip. Specialized hardware is available for

adjusting clock frequencies, interfacing with high speed communication channels and

reducing chip-to-chip skew. Also included are embedded block RAM, multipliers,

DSP blocks and microprocessors.

FPGA Coprocessor Hardware

For high performance applications, FPGAs are typically mounted on accelerator

boards. These boards serve as coprocessors that work in cooperation with a mi-

croprocessor in a hybrid system. Generally, peripheral components are mounted on
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Figure 2.1: The WildstarII Pro is a PCI accelerator board housing two Xilinx VirtexII
Pro FPGAs.[67]

accelerator boards with FPGAs. These peripherals often include banks of SRAM

and/or DRAM, high speed serial ports and a controller for the communication bus

that allows the microprocessor to control the functionality of the components on the

accelerator board. A typical configuration is an FPGA mounted on a printed circuit

board (PCB) with dedicated SRAM and DRAM that are accessed by means of a PCI

or VME interface. One example of such a system is the WildstarII Pro[67] sold by

Annapolis Microsystems. The WildstarII Pro, shown in figure 2.1, is a PCI board

that houses two Xilinx VirtexII Pro[71] FPGAs and six banks of SRAM dedicated

to each chip.

APIs are provided by manufacturers of accelerator boards so users can interface

with the board and make use of the FPGA and other on-board devices through

library calls made from software applications. For the research presented in this

thesis, we target a multi-computer from Mercury Computer Systems that supports

VME accelerator boards that house VirtexII Pro FPGAs.

Reconfigurable supercomputers are clusters of PCs modified to incorporate recon-

figurable hardware. Offering reconfigurable components in cluster-style supercom-
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puters is new to the supercomputing industry. Architectures are radically different

from vendor to vendor and each continues to drastically evolve from generation to

generation. While some systems still resemble cluster-style supercomputers, others

have undergone a significant redesign to make the best use of the reconfigurable

components available. In order to get the best performance possible, supercomputer

vendors often use proprietary technology for connecting the commercial off-the-shelf

processing elements. The Cray XD1[12] uses AMD’s HyperTransport[25]. The SGI

RASC[58] uses NUMAlink[50]. Mercury multi-computers like the one targeted in the

research presented in this thesis use Race++[53].

FPGA Design Flow

This section describes the standard flow of design required for developing FPGA

hardware. Once a circuit has been designed and programmed with a hardware de-

scription language, the source is compiled, simulated to test the expected run-time

behavior and then run through the design tool chain in order to create a bitstream,

which is used to configure the FPGA. High level compiler tools[6, 46] can help users

to skip stages in the design flow; however, the process outlined here enables custom

circuit design and is standard in industry.

The form of expression in code used to describe an FPGA circuit is much differ-

ent than the high level source code software engineers are accustomed to using for

targeting a microprocessor. The differences between the forms and levels of expres-

sion stem from the differences in the two architectures. Microprocessors have fixed
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processing pipelines which implement a fixed set of functions. FPGA fabric can be

configured in whichever way best matches the particular application. A hardware

description language must be used to express the processing elements that will be

formed within FPGA fabric, how those elements are going to be connected to one

another and how the whole circuit will be controlled.

Circuits can be programmed at different and mixed levels of expression with

hardware description languages. The higher level of expression is called behavioral

modeling. In behavioral modeling, the programmer describes the behavior of a cir-

cuit. The compiler and other tools generate an underlying circuit that operates to

produce the programmed behavior. The lower level of expression is called register

transfer. When programming at the register transfer level, the user must describe

the logic elements and how they connect to each other.

Describing a circuit is just one part of the programming stage of the design pro-

cess. In addition, synchronization, control, memory management and communica-

tion have to be considered. Often, drivers for the off-chip peripherals such as SRAM,

DRAM and communication channels are provided by the board vendor in the form

of hardware description language source code or pre-built IP-blocks with which user

logic can interface. Even with pre-built drivers, incorporating state machines to

handle synchronization, data movement and communication can be difficult. These

aspects of an FPGA application are often thought of as overhead, but for many appli-

cations, how these aspects are designed can be on the critical path of the performance

of the entire system.
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After compilation and successful behavioral simulation of a circuit, the first step in

transforming the compiled description into an FPGA bitstream is synthesis. During

the synthesis stage of the design cycle, the logic derived from the compilation of the

HDL source code is transformed into an implementation of a circuit using blocks of

logic and the other resources native to a particular FPGA technology. What makes

synthesis complex is there are always many ways to implement a particular circuit

with a given FPGA technology. The synthesis tool needs to deliver an implementation

that is efficient in terms of speed and space. Most synthesis tools have the option

to constrain the circuit the tool produces with a minimum clock frequency. Other

options are sometimes available to adjust the levels of effort for optimizing the speed

and area of the circuit. The result of the synthesis processes is a netlist. A netlist

is a list of the FPGA structures used to implement the circuit, how those structures

are configured and how they are connected with one another.

Once synthesis is complete, the structures used to implement the circuit as de-

scribed in the netlist need to be mapped to the actual structures on a given target

FPGA. Each structure might be able to be placed in many different positions on the

chip. During the placement stage of the design process, it is the placement tool’s

responsibility to map each structure to a position on the FPGA. A routing tool is

responsible for connecting the FPGA structures as placed by the placement tool. The

placement of structures and the routing of the nets necessary to connect the struc-

tures is an iterative task. Once a circuit has been completely routed, it is checked to

see if the timing constraints were met. If the circuit is too slow or skewed in a way
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that would prevent correct operation, portions of the circuit need to be re-placed and

re-routed. This process continues until a circuit that meets all timing constraints is

discovered. Unfortunately, determining if there is a mapping of a given netlist to a

particular FPGA that meets a certain timing constraint is an NP-Complete prob-

lem. Tools use heuristics and other approximation algorithms in an effort to find an

efficient circuit.

Once a circuit that meets the necessary timing constraints is placed and routed,

a bitstream, which encodes the status of each structure on the FPGA is generated

and can be used to configure the chip.

For the design and development of the circuit presented in this thesis, we used

Mentor Graphics ModelSim 6.0c[47] for behavioral simulation, Synplicity Synplify

8.0 Pro[60] for synthesis and Xilinx ISE 8.0[70] for place-and-route.

FPGA Application Design

FPGA application designers have a multitude of responsibilities. They need to deter-

mine which instructions they want to implement, how many instructions can execute

in parallel, how many clock cycles each instruction should take to complete and

where the data is going to reside before and after computation. In FPGA design, the

time/space tradeoff is two-fold. Space is limited in terms of the amount of memory

available to an FPGA and the amount of area on chip to place and route logic. FPGA

application designers need to maximize performance with limited chip area, memory

on-chip, memory off-chip, bandwidth to memory and communication bandwidth.
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Efficient FPGA application design addresses the problem of how an FPGA can

make the best use of its bandwidth to memory and communication to maximize

the performance of the functions it has been allocated to execute. Maximizing the

parallel processing capabilities for a given function on a given FPGA is not enough.

The goal should be to maximize the data throughput given the parallel processing

capability of the FPGA, the bandwidth to and from memory and the communication

bandwidth.

FPGA applications usually begin as software source code that has been profiled

to identify a partition responsible for a significant portion of the overall run-time.

Generally, functions that are likely candidates for acceleration have processing and

data access patterns that are uniform and without data and control dependencies.

Determining the best way for a partition of code to be mapped to an FPGA and the

platform that houses it depends on the processing and data access patterns as well as

the possibilities for data movement on the given platform. The best opportunities for

gains in performance often come as a result of redesigning the functions to operate

in a streaming mode. Here, data is streamed on chip in an access pattern that has

been predetermined, processed and then streamed off the FPGA. Designing hardware

for a streaming mode of processing means placing enough logic in parallel to keep

up with the rate of data moving on and off the FPGA. When a streaming mode

of processing is not possible for a given application, input and intermediate data is

usually stored off-chip in DRAM or SRAM. In these scenarios, FPGA hardware needs

to be designed to control the off-chip banks of memory and process data at a rate
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that makes the most efficient use of the bandwidth to each of the banks. On-chip

memory can be used to buffer and cache data.

FPGA Application Portability

Designing an FPGA application to be portable in the same way that software is

portable across microprocessors is not possible. Standards exist for hardware de-

scription languages (HDLs) so compilers and design tools are able to process the

same source code. Even with the HDL standards in place, design tools provided

by FPGA vendors and third parties use their own extensions to languages so pro-

grammers can make better use of the features unique to each FPGA. Even more

problematic than the issues involved when portability from one FPGA vendor to an-

other are the issues involved with moving an application from one accelerator board

to another. Interfaces to off-chip peripherals will always be custom to the board for

which they are designed. Since any application that makes use of an FPGA needs

to interface with its pins at some level, facilitating portability means vendors would

have to adhere to standard interfaces.

Individual components programmed with a HDL and free of vendor-specific lan-

guage semantics are portable to the extent that they can be incorporated into ap-

plications that are built with different design tools and target different FPGAs on

different accelerator board platforms. As soon as code is included that is specific to

a given FPGA architecture or off-chip peripheral, the component can not be easily

ported.
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2.1.3 Summary

This section has outlined the challenges facing application designers who target hy-

brid systems that incorporate FPGAs. Developing software and FPGA hardware

are two separate problems, each with their own forms of expression, programming

paradigms and design tools. Designing efficient ways for software to work in cooper-

ation with FPGA hardware is specific to the application. Portability across different

hybrid system platforms is an even more difficult problem.

2.2 Beamforming

Beamforming is a term that encompasses a family of techniques and algorithms used

for spatial filtering. The material in this section is taken from Van Veen’s original

presentation of the concept and techniques[63]. Beamforming is often useful for

focusing arrays sensors on a signal or collection of signals of interest. Beamformers

are advantageous because of their ability to null interference from propagating signals

not of interest, as well as to increase the signal to noise ratio for signals of focus.

Some algorithms also enable run-time adaptation so incoming data can improve signal

quality. Algorithm parameters are adjusted to cope with changing environments and

signal patterns.

2.2.1 Spatial filtering

A beamformer samples propagating wave fields in space. Signals received from sensors

at different points in space are delayed and combined linearly. This linear combina-
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tion produces an output equal to a weighted sum of signals that originated from a

particular direction in space. The output at time k, y(k), is given by a linear com-

bination of the data received at the n sensors at times dependent upon the direction

of the incoming wave of interest and the relative location of each sensor:

y(k) =
n∑

i=1

wi ∗ xi(k − di) (2.1)

where wi is the weight applied to signal data received at sensor i, xi(k) is the signal

received by sensor i at time k and di is the time it takes for the wave of interest to

propagate from the center of the sensor array to sensor i in the direction of interest.

Figure 2.2 shows how a propagating wave front affects an array of sensors. By

delaying the signals received at each sensor, energy emitted by a point source at a

specific moment in time can be recombined.

Equation 2.1 shows how a beamformer is used to reconstruct a signal originating

from a specific direction by sampling at different points in space. One sample from

each sensor is multiplied by the corresponding weight and summed to produce the

output, y(k) for a given step in time, k. This formula is effective for reconstructing

signals with a specific frequency or a narrow band of frequencies. When a broad

band of frequency signals are of interest, beamformers sample in both space and

time. Since the beamformer system presented in this thesis samples in space only,

the remainder of the background discussion will focus on purely spatially sampling

beamformers. Figure 2.3 shows a signal processing diagram of a spatial filtering

beamformer.
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Figure 2.2: As waves propagate, signals cross each sensor in an array at different
points in time. Delaying the signals received from each sensor will aim the array in
a particular direction of interest.
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Figure 2.3: Spatial filtering beamformer. One sample from each sensor contributes
to the output of the beamformer at each step in time.[63]

Both forms of beamforming can be performed in the time or frequency domain.

The discussion throughout this thesis focuses on time domain beamforming that

sample solely in space. Extending the discussion to examine how concepts would

translate in the frequency domain and for beamformers that sample in time and

space is straightforward.

2.2.2 Weights

The previous section described how beamformers are spatial filters. Adjusting the

delay elements for each sensor will hone a sensor array in a particular direction of

interest. After a sensor array is pointed in a desired direction, weights are chosen

to form the desired beam pattern and null interference. Interference from jammers

and other conflicting signals with similar frequencies will reduce the signal to noise

ratio in the output of a beamformer. Weights correctly adjusted have the ability to

cancel the effects of some interference and restore the ratio of the signal of interest
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to noise and other forms of interference. Generating weights to form the desired

beam pattern and cancel unwanted interference can be accomplished with a number

of algorithms and methods discussed in books specific to beamforming and wireless

communication[19, 33, 37]. For the beamformer presented in this thesis, weights are

generated by solving a linear system of equations. A reference signal is used to find

the initial set of weights. During operation, a feedback system is used to adapt the

weights to changes in the environment.

2.2.3 Beamformer Categorization

Algorithmically, the process of forming a beam can be broken into two disjoint pro-

cesses: beam formation and weight computation. Beam formation is the process of

applying weights to sensor data and accumulating results specific to a certain direc-

tion in space. Weight computation is the process of updating the weights used for

beam formation. Weights can be pre-computed and accessed as tables or generated

on the fly from a number of algorithms. The degree to which the two processes, beam

formation and weight computation, depend on one another is conditional upon the

type of beamformer that is implemented.

A beamformer is data independent if the signals received by the sensors are not

used to compute the weights required in beam formation. Data independent beam-

formers rely on sets of weights that have been previously generated. Statistically

optimum beamformers adjust weights based on incoming sensor data. Within the

category of statistically optimum beamformers, partially adaptive algorithms adjust
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a subset of the weights at once and fully adaptive algorithms adjust all of the weights.

Algorithms that update a subset of all the weights are often faster and less demanding

computationally. Adaptive algorithms can either adjust continuously or periodically

with block adaptation. The tradeoffs between a fast run-time and maintaining an

accurate set of weights should be considered when deciding which methods to use for

weight computation. Block updates and partial adaptation are efficient but may not

deliver an accurate set of weights in noisy environments, whereas continuous updates

and full adaptation will guarantee an optimal set of weights, but slow the rate at

which a beamformer is able to process data.

2.2.4 Current Research

Beamformers are used for a multitude of applications in acoustic, optical, RF and

other domains. Both new techniques and ways to use old ones are topics of cur-

rent research[23, 34, 72, 8, 28, 65]. Perhaps the most common application of these

techniques is for radar[15, 56] and sonar[9, 36] processing. Beamforming is also used

in medical imaging applications[32, 68, 38] for tumor detection as well as in var-

ious speech recognition systems[48, 57, 18, 30] and for communication in wireless

networks[7, 35, 55].

2.2.5 Summary

This section has presented a brief background on beamforming. Beamforming is a

method of spatial filtering used to focus an array of sensors in a desired direction while

canceling unwanted interference. Different types of beamformers can be implemented
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with varying degrees of accuracy and run-time performance.

2.3 Related Work

This section summarizes the work related to the research presented in this thesis. Re-

search into methods for hardware/software co-design is broad even when restricted to

microprocessor-FPGA systems. Most techniques assign tasks to available processing

elements at design time or at compile time. Our method is centered on run-time

assignment of tasks to available processing elements. Thus, the discussion of re-

lated work specific to hardware/software co-design is confined to systems that use

a scheme for run-time resource allocation. Beamformers implemented with reconfig-

urable hardware are outlined in addition to research pertaining to floating point and

multiply-accumulate operations in FPGA hardware.

2.3.1 Hardware/Software Co-design

The increase in availability of architectures and systems that contain reconfigurable

hardware has led to an increase in interest in run-time support for these architectures.

These projects have the same goals as our approach, which are to maintain portability

of application code and ease the task for programmers to make use of reconfigurable

hardware. All these projects are aimed at a run-time execution model and not

on compiling high level software to reconfigurable hardware, which is a related but

distinct area of research.

Several researchers treat the hardware as a separate execution thread that runs
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concurrently with software. Researchers at the University of Kansas have developed

hthreads for specifying application threads running within a hybrid microprocessor-

FPGA system[4, 3, 51]. Their system supports a master slave/model with one mi-

croprocessor tied to an FPGA. The support for hardware threads requires part of the

system to run in hardware on the FPGA, and requires a fair amount of overhead.

Elements of the operating system that handle context switching and semaphores are

implemented on FPGA fabric. This reduces the time required for switching context

from one thread to another and communicating from one thread to another. This

comes at the cost of a distributed operating system and area on the FPGA that

cannot be used for implementing a circuit to accelerate an execution thread.

A similar project[66] uses threads both in master/slave mode and in a more gen-

eral network with FPGAs acting as processing elements. Their approach uses threads,

and is based on an abstraction layer that uses a virtual memory model. A virtual

memory handler must run in FPGA hardware to resolve accesses not in local memory.

Similar to hthreads, this requires a fair amount of overhead. Like the hthreads sys-

tem, operating system components are moved to FPGA fabric to create a distributed

operating system, complicating the system and consuming FPGA resources. In the

more general network approach, the hardware must include a communication agent

that handles communication over the network as well as resolving memory accesses.

Researchers at the University of Florida have developed a system to provide run-

time services for systems that include heterogeneous hardware. Their system consists

of two parts, USURP (USURP’s Standard for Unified Reconfigurable Platforms)[21]
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and Carma (Comprehensible Approach to Reconfigurable Management Architecture)[13].

Their system supports general distributed systems where individual processors may

have an attached reconfigurable hardware accelerator. USURP is built on top of MPI

and is distributed, with a small manager running on every node. These researchers

propose a standard interface for hardware designers to use at design time in order to

support runtime portability and services. These services include performance mon-

itoring and debugging. Their API is lower level than ours, and requires that users

make calls to specify and download bitstreams, transfer data, etc. In our model,

these operations are hidden inside functions and not exposed to the programmer.

Auto-Pipe[16] is a tool developed at Washington University in St. Louis that aids

in the design, evaluation and implementation of pipelined applications distributed

across a set of heterogeneous devices such as microprocessors and FPGAs. Auto-

Pipe compiles high-level source code, partitions computation and maps components

to different processors in a pipelined fashion. The tool suite is broken into stages and

applications are designed and optimized in an iterative process. In the final design

stage, pipelines can be adjusted in response to run-time performance; however, this

tool focuses on binding functions to resources at design time.

In her PhD Dissertation[52], Heather Quinn presents Dynamo, a run-time system

designed to bind image processing components to hardware for efficient run-time

execution. Dynamo uses an array of optimization algorithms to solve the problem

of assigning functions to different pipeline stages. Detailed latency and overhead

estimations are used at run-time to evaluate the performance of pipelines before
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they are built and mapped. If Dynamo determines that a hardware pipeline is the

most efficient implementation of an algorithm given the compilation and synthesis

overhead required to build that pipeline, a circuit will be synthesized at run-time and

applied to the executing application.

Our approach differs from the above approaches in several important ways. First,

our application code does not change at all from an all software implementation

to a software/hardware implementation. Second, our approach does not require

any support on the reconfigurable hardware itself. This makes our approach more

flexible since it can make use of any vendor’s API. The vendor can specify all the

details of how the hardware is programmed. We do not change the way hardware is

implemented, only the way it is invoked by software. Finally, our approach is lighter

weight than other approaches, introducing minimal overhead.

2.3.2 Beamforming on FPGAs

The beamformer presented in this thesis is a hardware/software implementation that

uses an FPGA for the delay-and-sum multiply-accumulate operations required for

beam formation and a microprocessor for weight computation. The following is a

discussion of issues pertaining to floating point and multiply-accumulate trends and

methods for FPGAs and previous implementations of beamformers on FPGAs.

Floating Point

Underwood[61, 62] examined the trends of peak and sustainable single and double

precision floating point performance on FPGAs and showed that the performance
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gap between FPGAs and CPUs will likely continue to increase. This is due to the

fact that the increases in FPGA clock speeds and transistor densities will be greater

than CPU increases. Additionally, increases in the bitwidths of multipliers and other

dedicated resources will contribute to the viability of fully floating point pipelines on

FPGAs. Bitwidths will continue to be optimized and custom data formats will be

used to increase throughput and performance. Still, for applications with single and

double precision floating point requirements, advances in fabrication technology will

make FPGAs a viable resource. As FPGA transistor densities increase, instantiating

floats and doubles will require a smaller percentage of chip area. This will lead to

FPGA designs with more data types native to microprocessors. Being able to use the

same data structures in software and hardware will ease hardware/software design

and integration.

When designing an FPGA application, designers often try to minimize the format

for the data computed and stored. Minimizing the number of bits required for fixed

and floating point data types will often maximize the throughput and performance

of the application. The use of reduced floating point formats is the focus of an estab-

lished body of research[5, 59, 14]. In most cases, the potential gain in performance

by using a reduced format for data comes at the cost of reduced accuracy in results.

Today, fabrication technology is at the point where data types native to microproces-

sors can be implemented with FPGA fabric while still delivering significant gains in

performance. The beamformer presented in this thesis uses complex single precision

floating point data at every stage of the processing pipeline in software and in FPGA
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hardware. Results generated by the hybrid system presented in this thesis match

software results exactly. This style of design requires no analysis of accuracy and

eases the transition of data between hardware and software. One goal of the case

study presented in chapter 4 is to evaluate what impact the precision we chose has

on the run-time performance of the system.

Multiply-Accumulate

The beam formation process implemented with FPGA hardware in the hybrid sys-

tem presented in this thesis is a parallel pipeline that executes consecutive multiply-

accumulate operations. Multiply-accumulate is the process of computing the sum-

mation of the products of a set of pairs of values. This is a very common function

for signal and image processing applications that has been implemented in FPGA

hardware. Research[73, 29] from Professor Victor Prasanna at the University of

South Carolina has focused on developing efficient methods for matrix-matrix and

matrix-vector multiplication with FPGA fabric. At the core of these functions are

multiply-accumulate operations.

Advanced methods for implementing the multiply-accumulate operations in FPGA

fabric were not required for this research. Standard floating point IP cores available

from Xilinx COREgenerator[69] were sufficient to make full use of the available mem-

ory and communication bandwidth on the platform targeted.
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Beamformers

Reconfigurable hardware has been used to implement beamformers in the past.

Hutchings et al.[24] implemented a fixed-point frequency domain beamformer on

a SLAAC1b PCI board. The SLAAC1b PCI board consists of a Xilinx 4085, two

Xilinx 40150 FPGA’s, and 10 SRAMs. The system runs at a 50 MHz clock rate.

The FPGA implementation was compared to those running on a variety of machines

including Pentium-II and Pentium-III machines, HP PA-RISC workstations, and G4

Power PC’s. The fastest performing machine was a 552 MHz PA-RISC workstation

and its runtime was 18 times as long as the FPGA. The slowest machine was a 400

MHz Pentium-II machine with a runtime 83 times as long as the FPGA.

Leeper et al.[31] used an Annapolis WildstarII board with a Xilinx VirtexII FPGA

to implement a fixed-point block-adaptive time-domain beamformer. The hardware

was composed of multiply-accumulate and an update block for the weights used to

form beams. The update block used Givens rotations for the least squares solver and

QR decomposition. Weights are updates at a rate of once per 1000 time steps.

Graham et al.[17] designed a fixed-point data independent time-domain sonar

beamformer for a hypothetical FPGA board. Altera outlined a method[1] that uses

logic and the Nios soft-core processor available for the Stratix FPGA to realize either

a block-adaptive or fully-adaptive beamformer in fixed point.

Parts of the beamformer presented in this thesis are similar to these previous

implementations. Grahams’s implementation may be the most similar in terms of the
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FPGA implementation. The hardware presented in this thesis has no functionality

for computing new weights or adapting to the result data as it is produced. The

FPGA relies on software for adaptation and weight computation. Since Graham’s

system is data-independent, the two circuits are similar in behavior and design. The

hybrid Altera design that uses a combination of hardware to form beams and software

running on the Nios soft-core processor is similar to the design presented here in that

computation is distributed between hardware and software.

What distinguishes the beamformer presented in this thesis from these and other

beamformers implemented with reconfigurable hardware is its use of single precision

floating point at every stage of computation, its generic design and its use of VForce.

2.4 Summary

This chapter has presented background for hardware/software co-design and for

beamforming. It has also summarized related research specific to run-time execution

models for hardware/software co-design and FPGA implementations of beamformers.

In the next chapter, the VForce framework is presented.
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VForce

This chapter presents a framework that allows users to make use of FPGAs and other

SPPs with source code written in C++. The library is called VForce and was devel-

oped in collaboration with other students and faculty of the Reconfigurable Comput-

ing Lab at Northeastern University[54]. The material in this chapter was taken from

a previously published article[49]. VForce stands for Vsipl++ FOr Reconfigurable

Computing Environments. VSIPL++[22] is a standardized specification for a C++

API to a collection of commonly used signal processing functions. The VForce li-

brary is designed to allow C++ programs to target SPPs while remaining portable

across different reconfigurable computing platforms. It does this while preserving the

VSIPL++ API as well as hiding SPP-specific details from the end-user. Application

code is still written in a serial fashion without any programming paradigms specific to

VForce. The remainder of this chapter will present a brief background on VSIPL++

and then describe the VForce project.
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3.1 VSIPL++ Background

VSIPL++ is an acronym for Vector Signal Image Processing Library. The ’++’ suffix

is used to indicate that it is a C++ library and to differentiate it from VSIPL[64],

which is VSIPL++’s predecessor specification in C. VSIPL++ and VSIPL are stan-

dards maintained by the High Performance Embedded Computing Software Initiative

(HPEC-SI)[20]. This group involves a partnership of industry, academic and govern-

ment organizations centered on promoting a unified computation/communication

embedded software standard. The goal of the initiative is to enable “write-once, run-

everywhere” development for applications of high performance embedded computing.

The specifications for VSIPL and VSIPL++ are the results of the software initiative.

The ongoing development of VSIPL++ is focused on three major aspects of

the specification: high performance, code portability and end-user productivity.

VSIPL++ is an open standard thT facilitates both high performance and portability.

To maximize performance on a given platform, a library can implement the specifica-

tion in a way that best exploits the architecture of the platform. CodeSourcery[10], an

industry member of HPEC-SI, offers a reference implementation of VSIPL++ based

on its VSIPL reference implementation and the C standard library. The company also

offers an optimized implementation that can make use of select performance math

libraries such as Intel’s Math Kernel Library[27] and Mercury Computer System’s

Scientific Algorithm Library[45]. The reference implementation was designed to be a

reference point for the correctness of future implementations. The optimized imple-
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#include <vsip/signal.hpp>

using namespace vsip;

int main()

{

vsipl lib;

Vector<cscalar_f> inData(16);

Vector<cscalar_f> outData(16);

Fft<const_Vector,cscalar_f,cscalar_f,fft_forward>

ftObj(Domain<1>(16),1.0);

outData = fftObj(inData);

}

Figure 3.1: Function objects interact intuitively with data objects with VSIPL++

mentation is an effort to extract high performance from a small subset of platforms

that CodeSourcery has decided to target. Since high performance implementations

are being developed, applications that use VSIPL++ need not use low-level code

to achieve performance. The “openness” of the standard enables high performance

through platform-specific implementations of the library, which in turn, enable the

development of platform-independent, portable source code for applications.

The object-oriented nature of VSIPL++ provides an interface to data and func-

tions that increases application development and end-user productivity. Objects for

data storage and data access interact intuitively with objects that process and trans-

form data. Figure 3.1 shows a code snippet that contains an example of a C++

program that uses VSIPL++ data and processing objects to execute an FFT.

Including an appropriate VSIPL++ header file is all that is required to access the
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underlying VSIPL++ implementation. As shown, objects are instantiated to store

input and output data. An Fft object is instantiated with template parameters

that indicate the input and output data types and the direction of the transform.

Constructor arguments are used to pass the FFT’s size and shape, as well as a scaling

factor, which adjusts how the transform is computed internally. Output is assigned

the Vector returned by the function operator, overloaded by the VSIPL++ Fft class.

VSIPL++ appealed to our research lab for use in the VForce project for mul-

tiple reasons. Most importantly, VSIPL++ is centered on high performance and

portability. High performance is always important to SPP application designers and

portability is one of the major focuses of the VForce project. VSIPL++ also has

built-in support for parallel processing and mapping data across distributed com-

puting environments. The object-oriented nature of the specification provides for

implementations with modular components. The VSIPL++ specification also in-

cludes a list of functions that are proven candidates for acceleration with FPGAs

and other SPPs.

3.2 VForce Project Goals

The primary goal of the VForce project is to add support for SPPs to VSIPL++ in

a way that maintains code portability. This means that new and existing VSIPL++

applications must be able to run on different platforms and with different SPPs. In or-

der to make this possible, the VSIPL++ API has to remain unchanged. Additionally,

the use of VForce can not introduce additional programming requirements. While
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add-ons are acceptable, legacy VSIPL++ application code must run with VForce

to target SPPs. Thus, the details specific to the underlying hardware, whether it

consists of microprocessors or SPPs, needs to be hidden from the user. Likewise,

errors and exceptions generated by hardware and low-level APIs need to be handled

in a way such that users only see VSIPL++ exceptions and error messages. VForce

also must ease the integration of new SPP architectures and functions, which will be

mapped to the set of supported SPPs. Since high performance will always be a con-

cern, overhead introduced by VForce must not limit the performance of applications.

Finally, VForce must support concurrency so hardware and software functions can

execute in parallel.

3.3 VForce Software Framework

The VForce software framework is a collection of C++ classes, which enables the

execution of VSIPL++ functions in SPP hardware. There are two parts to the soft-

ware framework. The first is a hierarchy of classes, which abstracts the functionality

of SPPs. This hierarchy is designed to provide a common interface shared among

the SPPs supported by VForce. The way in which each SPP implements the set

of virtual methods that make up the common interface is different. However, the

common interface allows classes that are responsible for mapping functions to SPPs

to do so in a general way. This is essentially a middleware layer of software that

separates the description of functions from the hardware they will execute on. For

the remainder of this thesis, this layer will be referred to as the VForce middleware.
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Figure 3.2: A UML diagram of the VForce software framework. The function classes
in blue serve as the user interface to VForce. The class in pink serves as the middle-
ware interface, which maps functions to SPP hardware. The green classes implement
the middleware for each SPP.

The second part to the VForce software framework is the set of classes that replaces

the existing VSIPL++ function classes. These classes are designed to intercept calls

to supported functions and offload the required processing to SPP hardware. Figure

3.2 shows a UML diagram of the software framework. The classes in blue (Func-

tion, Fft and Fir) are the function class replacements. The pink class (Hardware) is

the standard interface function classes use to map to hardware. The green classes

(MCJ6 FCN, Vantage FCN, Cell SPE, WildcardII, XD1 Accel.) implement the

middleware layer specified by the functions in the Hardware class.

3.3.1 Abstracting SPP Functionality

Each SPP supported by VForce is represented in the software framework by a class

that implements the set of virtual methods that composes the abstract base class,
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Hardware. Figure 3.2 shows the relationship between HardwareBase and the sub-

classes which implement the set of virtual methods. The list of functions in the

Hardware class serves as the common interface that other classes use to access SPPs.

Usually, an SPP is coupled with a vendor-specific API. This API is used to implement

the interface. Essentially, these classes serve as wrappers, which insulate the details

of each vendor’s API. In Figure 3.2, the MCJ6 FCN class uses Mercury’s FCN API

to implement the interface described by HardwareBase. It is up to the person who

creates a class to support a given SPP in a way that will maintain the goals of the

VForce project. One of the goals is to mask underlying details specific to a given

platform with the VSIPL++ interface. For example, special care must be taken to

handle every exception and error a vendor’s API may generate so that these errors

are not exposed to end users. The list of virtual methods in the Hardware class in-

cludes calls to reset the device, load function kernels, send/receive data and control

the operation of the function kernels. The list of methods was originally determined

by the minimum requirement for microprocessor-FPGA co-processing. Since then,

additional functions have been added to support higher performance run-time modes.

The list of methods used to abstract the SPP platforms limits what each SPP

is capable of doing. SPP architectures can be radically different from one another.

VForce attempts to support SPPs in a way that makes them easy to use. It is often

the case that an SPP vendor’s API supports higher performance methods which do

not fit into the VForce software framework. In these cases, the run-time performance

of an application designed with VSIPL++ and mapped to an SPP with VForce may
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not be as efficient as a fully custom implementation of the application using the

vendor API directly. For some applications, there will be a tradeoff between the

performance possible with a fully custom software implementation and the ease of

programming with VForce.

This common interface to SPPs is not the interface a user will see. This is an

interface internal to VForce that function classes use to map VSIPL++ functions

to SPP hardware. The hierarchy of classes can be thought of as a middleware that

VForce interposes in between function classes and the API used to control each SPP.

Users work within the context of VSIPL++. Applications target SPP hardware

through regular VSIPL++ function calls.

3.3.2 Function Class Replacements

An implementation of the VSIPL++ specification will include classes corresponding

to each of the functions available in VSIPL++. In order to map functions to SPP

hardware, these classes need to know about the existence of SPPs. VForce interposes

a class for each function supported on SPPs, which replaces the function class native

to the implementation of the VSIPL++ specification. These replacements use the

middleware described in the previous section. The original class does not go away.

Instead, VForce uses naming conventions to intercept the instantiation of function

objects. VForce function objects have the ability to map functions to hardware or use

the original VSIPL++ function class to run in software. Figure 3.2 shows how the Fft

and Fir function classes implement the interface described by class FunctionBase,
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which interacts with VSIPL++ data objects and the VForce middleware.

VForce function classes are responsible for operating a generic SPP in a way

that processes VSIPL++ data to return the same results the original VSIPL++

function class would have returned. Function classes see a generic SPP because

all SPPs are accessed via a common interface. VForce function classes work by

programming or configuring an SPP with a configuration stream capable of executing

the function specified by the function class. There is a one-to-many mapping of

function classes to configuration streams. A single function class is designed to work

for any SPP that is supported by VForce. In order for VForce to support a function

for a given SPP, there must be a configuration stream for the specific function that

has been implemented for that SPP. The VForce framework does not create SPP

function kernel implementations. The binaries and configuration streams used in

cooperation with their function class counterparts must exist before the function can

be incorporated into VForce. A separate body of research addresses the automated

compilation of high level software source code to FPGA circuits. This work is beyond

the scope of the research presented in this thesis; however, VForce is able to leverage

implementations generated by automated compilers [6, 46, 26].

Figure 3.3 shows how the VForce library works in conjunction with user code,

the VSIPL++ interface and the VSIPL++ implementation. The blue “VForce

VSIPL++” box shows how the VForce interface supersedes VSIPL++ for a por-

tion of the VSIPL++ specification as well as adds additional functionality. This

will be explained in the next section. This blue area corresponds to the blue UML
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Figure 3.3: VForce (blue region) supersedes VSIPL++ for a subset of the VSIPL++
specification. The pink region coincides with the internal middleware and SPP im-
plementations of VSIPL++ functions. The yellow region represents the VSIPL++
interface. The grey region is the VSIPL++ implementation.

class diagrams in Figure 3.2. Likewise, the pink “SPP Specific Implementation” box

corresponds to the pink middleware class diagram in Figure 3.2. This diagram shows

that VForce uses a combination of VSIPL++ and SPP specific libraries. The area

in grey is an example of some of the libraries that can be used to implement the

VSIPL++ specification.

3.3.3 Add-Ons

Offloading processing partitions of an application from software to SPP hardware

can be accomplished at different levels of granularity in terms of the size and scope

of the functions offloaded to an SPP. In some cases, the overhead involved with

configuring a device, transmitting data and communicating with that device is too

great to warrant offloading a function. Better performance often can come as a result

of increasing the granularity of the function offloaded to an SPP. In some cases, this

means increasing the amount of data processed on an SPP for a given function. In
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other cases, it means moving a larger portion of the processing to an SPP.

A goal of the VForce project is to support new and existing VSIPL++ applica-

tions; however, the granularity of some VSIPL++ functions is at too low a level to

improve performance by offloading to SPPs. This leaves opportunities for increases in

run-time performance. VForce addresses this by going beyond the VSIPL++ specifi-

cation to offer functions not available through VSIPL++. The case study presented

in this thesis is an example of a function with a coarser level of granularity than

other VSIPL++ functions. While existing VSIPL++ code will not benefit from the

additional functionality that VForce enables, new applications can be written to take

advantage of these functions.

3.4 Run-time System Model

VForce is set up so classes corresponding to each SPP’s implementation of the generic

SPP interface are compiled to shared objects. These shared objects are loaded dy-

namically at run-time to match the targeted SPP. This way, applications need not

be recompiled to target new SPP architectures. Dynamically loaded shared objects

(DLSOs) are added to a library that is representative of the available SPPs in a given

system. Figure 3.4 shows how an application is broken down into VSIPL++, VForce

and DLSO components. DLSOs implement the low-level functions required for the

generic SPP interface specific to a particular SPP vendor API.

In addition to having a library of DLSOs to interface with the different SPPs

available in a given system, VForce also requires that a library of function kernels
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Figure 3.4: Function objects interact with VSIPL++ data and SPPs through hard-
ware/DLSO middleware.

be present for each SPP. With systems composed of different SPPs, a mechanism for

managing these libraries, as well as the physical hardware, is required. Figure 3.4

shows how function objects use inter-process communication (IPC) to interface with

libraries of DLSOs and functions kernels.

3.4.1 Run-time Resource Management

VForce uses a run-time resource manager (RTRM) to supervise VSIPL++ applica-

tions and allocate hardware resources based on the availability of SPPs and their

corresponding function kernels. The RTRM is a standalone application that runs on

a separate processor or as a separate process on the same processor as a VSIPL++

application. There are three components that make up the RTRM. There is a library

of DLSOs to support the available SPPs, a library of function kernels and a sched-
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Figure 3.5: The RTRM supervises two independenet VSIPL++ applications. Each
use a separate SPP allocated by the RTRM.

uler that handles requests for SPP resources from VSIPL++ applications. Figure 3.5

shows how the RTRM manages two independent VSIPL++ applications simultane-

ously. Note that the manager uses the same DLSOs that VSIPL++ applications use

to interface with SPPs.

A VSIPL++ application that includes the VForce library needs to be able to

communicate with the RTRM in order to use SPP resources. The RTRM is respon-

sible for maintaining a list of available SPP resources and their status at run-time.

VForce dynamically binds SPP resources to functions at run-time. If the execution

of a VSIPL++ program reaches an instantiation of an object of a function class that

has been replaced by the VForce software framework, the object instantiated will
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be of a VForce class as opposed to the original VSIPL++ class. When execution

reaches a call to a method of this object, the RTRM is invoked. First, the function

object sends a request to the RTRM asking if there is SPP support for this function

and if there is an available SPP capable of performing the function. If there is no

support, or all the resources are busy, the RTRM will send a message back denying

the request and the function will be executed in software. If there is support and an

available resource, the RTRM uses a DLSO to configure a device with the appropriate

function kernel and then sends a message back to the function object with a handle

to the SPP. This SPP has been bound and allocated to the function object and will

stay that way until the function object sends a message to the RTRM relinquish-

ing the resource. Once the SPP resource has been acquired by the function object,

it connects directly by loading the corresponding DLSO. At this point, there is no

additional RTRM overhead. All communication and data movement is between the

function object, which is local to the processor running the VSIPL++ application,

and the SPP. Typically, the function object will iteratively upload input data, send

messages to control SPP processing and then download result data.

The scheduling algorithm used by the RTRM is a simple first-come, first-served

scheme. Requests are handled in the order they are received. Currently, there is no

mechanism in place to choose the best SPP resource for a given function. The first

SPP which is capable of performing the requested function is allocated. To reduce

overhead, the RTRM keeps track of which function kernels were previously loaded for

each SPP. In cases where the same function request is repeated, the RTRM needs only
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configure the SPP the first time. This initial design of the RTRM is straightforward.

In the future, more sophisticated scheduling can be incorporated.

3.5 Extending VForce

A goal of the VForce project is to facilitate the integration of new SPP architectures

and the addition of new functions. Extending the VForce software framework to

include new components is straightforward. To incorporate a new SPP, a new class

must be written to implement the virtual methods in the HardwareBase class. This

class is then compiled to a shared object and added to the library of DLSOs. In

order to be useful, function kernels for this new SPP must be added to the library of

function kernels. To support an additional VSIPL++ function with SPP hardware, a

function kernel needs to be designed for one or many SPPs and a function class must

be written to replace the function class native to the VSIPL++ implementation.

To use the VForce framework on a new system, the RTRM must be ported to that

system.

3.6 Summary

This chapter has presented VForce, a framework which enables users to target SPPs

with serial C++ code. VForce sits on top of VSIPL++ and maintains application

portability across reconfigurable computing platforms. VForce’s extensible software

framework leverages existing SPP function kernels to deliver high performance in

a way that hides hardware-specific details from users. With VForce, a run-time
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resource manager supervises the execution of VSIPL++ applications and allocates

SPP resources as needed. The next chapter presents a case study into the use of

VForce.



Chapter 4

Beamforming: a case study using
VForce

This chapter presents the design and development of a time-domain beamformer ap-

plication that serves as a case study into the use of VForce for high performance

computing. Beamforming is a function that is not included in the VSIPL++ specifi-

cation. The focus of this case study is to assess the value of using VForce for functions

at a coarser level of granularity than those native to VSIPL++. The beamformer

is implemented to target a Mercury Computer Systems platform that incorporates

microprocessors with FPGAs. The computation required for beamforming is split be-

tween software running on a microprocessor and FPGA hardware. The computation

is split in order to showcase VForce’s ability to facilitate concurrent processing for

hybrid applications. The case study provides a means of evaluating the effectiveness

of VForce in terms of performance, application programmability and the methods

used for implementing function kernels and the run-time resource manager.

This chapter begins by describing our approach for incorporating a new function

with coarser granularity than those native to VSIPL++ and distributing computa-
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tion between software and custom FPGA hardware. Next, the Mercury Computer

System’s reconfigurable computing platform is described and the development of both

the software and FPGA hardware is presented. Finally, the experimental system used

to evaluate the performance of the system at run-time is described.

4.1 Approach

The combination of many degrees of freedom in both hardware and software present

a design space with many options for implementing a given algorithm. The VForce

software framework is versatile in terms of the ways that function classes can be in-

corporated and implemented. FPGA fabric is able to implement essentially any type

of digital circuit. Mercury’s multi-computer architecture provides for many different

processing configurations. There are a variety of algorithms that can be used for

beamforming. Some of these algorithms can be adjusted so that a beamformer bet-

ter fits the target platform and matches requirements for performance and accuracy.

Therefore, when designing a system that maps the functionality of beamforming to

the target Mercury platform through VForce, there are many options for processing,

and in turn, many decisions that need to be made before we can develop a system.

At the highest level, the two major decisions that shaped our approach were which

beamforming algorithm to use, and how the computations would be distributed across

the Mercury multi-computer. Additional decisions having to do with interfacing were

contingent upon the scheme for distributing the computation. We had to decide how

the separate components would work concurrently, what the interface would look
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like between the components and how user code would interface with the beamformer

function. A system needed to be designed that was intuitive at the user programming

level, while being capable of high performance at run-time. The following section

will describe our approach in designing the software and FPGA circuits for adding

beamformer functionality to VForce.

4.1.1 Algorithm Design

The process of forming a beam in order to focus a sensor array to receive a signal

that propagates in a particular direction can be broken down into two separate sub-

processes. First, weights are computed to form the desired beam pattern. Then, the

weights are applied to incoming sensor data to reconstruct signals originating from a

direction of interest. The goal of beamforming is to reconstruct the desired signal(s)

and reduce the impact of noise and interference. Algorithms for beamforming are

categorized based on how and when the weights are computed. A description of the

types of beamformers and how they differ is available in Chapter 2 of this thesis. Re-

gardless of which type of beamformer is used, each type allows for the two processes

to be separated.

For this case study, we wanted the hybrid system to be capable of forming beams

in different types of situations, in different domains (acoustic, RF, etc.) and for dif-

ferent sensor topologies. We did not use a specific sensor array or waveform as targets

in the design of the system. There was no required minimum sampling frequency we

needed to be able to process and no specified number of jammers that needed to be
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handled at once. The goal was to design the beamformer to be generic, similar to

other functions in VSIPL++. For this reason, we decided to design the system in

a way that would allow a user to implement any type of time-domain beamformer.

This means the user is responsible for writing the code that sets and/or updates the

weights. In order to design, develop and test a functional beamformer, we had to de-

cide on an algorithm for setting and/or updating weights. Adaptive beamformers are

more computationally demanding than statistically independent beamformers. Since

adaptive beamformers are slower on conventional computer systems and in higher

need of run-time acceleration, we decided to implement an adaptive beamformer.

The remainder of this thesis will focus on the design, development and performance

of the adaptive beamforer we implemented; however, the design of the software and

FPGA hardware added to support beamforming is generic and can be used for dif-

ferent types of beamformers.

There are many different types of adaptive beamformers. The most computation-

ally demanding type of beamformer is the continuous, fully-adaptive beamformer. A

continuous, fully-adaptive beamformer updates every weight for every sensor dur-

ing each update cycle. Update cycles occur at a rate that ensures every sample

from each sensor is combined with a corresponding reference signal to generate a

new set of weights. On the other end of the spectrum, a block partially-adaptive

beamformer updates a subset of the weights during each update cycle. Update cy-

cles occur periodically at a rate based on characteristics of the signal of interest,

the sensor array’s environment and the application’s tolerance for accuracy. Since
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our implementation is not targeting a specific sensor array, sampling frequency or

domain, we had the opportunity to base our adaptivity only on the tradeoff between

accuracy of results/run-time performance. For the remainder of this thesis, the term,

accuracy, will be used to express the frequency of weight update cycles when used

to explain a beamformer system. A beamformer with a higher frequency of weight

update cycles is more accurate than one that updates less frequently. We use a block

fully-adaptive beamformer. In this scheme, all weights are updated for each update

cycle, but update cycles take place periodically. If there were requirements for the

run-time performance or accuracy of our system, we would have chosen a scheme

that would have delivered the maximum performance given the accuracy required

or delivered accuracy required given the minimum level of performance. Instead, we

chose to implement a fully-adaptive beamformer in order to demonstrate the possible

run-time performance for different levels of accuracy.

There are many algorithms and methods for adaptively choosing weights to form

beampatterns. Evaluating the effectiveness of algorithms designed to select weights is

beyond the scope of this thesis. What is important to this case study is the computa-

tion required to execute the algorithm for adapting weights is complex and intensive

enough to warrant splitting the computation of the entire beamformer (adapting

weights and forming beams) between hardware and software. We chose to use an

algorithm that solves an overdetermined linear system of equations. Each equation

represents a step in time. The products of the delayed samples from each sensor and

their corresponding weights are summed to produce the result for that step in time.
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Equation 4.1 shows an example of an overdetermined linear system of equations. n

unique equations are required to solve for n variables in a linear system like this.

When more than n unique equations are used to solve for n variables, there can be

no exact solution. The solution we chose to use is the solution that minimizes the

sum of the squared error for each equation.

x1(k − d1) ∗ w1 + x2(k − d2) ∗ w2 + x3(k − d3) ∗ w3 = y(k)

x1((k + 1) − d1) ∗ w1 + x2((k + 1) − d2) ∗ w2 + x3((k + 1) − d3) ∗ w3 = y(k + 1)

x1((k + 2) − d1) ∗ w1 + x2((k + 2) − d2) ∗ w2 + x3((k + 2) − d3) ∗ w3 = y(k + 2)

x1((k + 3) − d1) ∗ w1 + x2((k + 3) − d2) ∗ w2 + x3((k + 3) − d3) ∗ w3 = y(k + 3)

(4.1)

Equation 4.1 represents the calculation used to produce the output of the beam-

former. xi represents time-indexed sample data from the ith sensor. When computing

a set of weights, a number of equations greater than the number of weights are used

and w is an unknown. To begin, a reference signal can be used for y to solve for

the initial set of weights. This is accomplished by solving xw = y for w. During

operation, a reference signal can be transmitted periodically so that weights adapt

to changes in the environment. It is also possible for the weights to adapt based on

noisy incoming signals[63]. This is accomplished by computing a new set of weights

equal to the current set plus a scaling factor of the difference between the current set

and the estimated set. This estimated set of weights can be generated in many differ-

ent ways. Random sets can be used. Van Veen[63] presents a method of multiplying
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the noisy data matrix for data that has already been processed by the correspond-

ing result data to get an estimated set. He shows how this method will guarantee

convergence of a weight set if the scaling factor is chosen appropriately. To test our

system, we had to choose a method of updating weights. To find our estimated set,

we solve the system of linear equations discussed earlier with current input data and

result data previously received. The length of time in between the current data and

the data previously received is based on the frequency of the desired signal and the

sampling frequency of the sensors. These parameters and the value for the scaling

factor are inputs to the system. The number of equations used to solve for weights

is also an input.

Deciding on a format for representing data is usually a critical decision in the

design of any hybrid system. Using a reduced floating or fixed point format for data

can result in a significantly smaller number of bits necessary for representing data.

This increases the quantity of data stored in on-chip and on-board memory, as well as

the rate at which data can be transferred via communication channels. The tradeoff,

of course, is that for some algorithms, using less precision for representing data can

have dramatic effects in the accuracy of the results. In some cases, the accuracy

of results is not as critical as throughput, and the accuracy can be sacrificed. In

other cases, the accuracy of results is the most important parameter in designing a

system and reductions in the format for representation are not possible. In cases

where throughput is most important but accuracy needs to be maintained, using a

reduced representation for data requires a statistical analysis of the algorithm and
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the data that will be processed. Typically this analysis will determine the minimum

representation required to guarantee a maximum percentage error aloowed in results.

Maximizing throughput and the amount of sensor data which can be stored in

memory at a time is a priority for this case study. However, producing repeatable

results for an application is often important for run-time operation as well as for

debugging. With VForce, functions within applications may run locally in software

one moment then on an FPGA the next. VForce dynamically binds functions to

resources at run-time so resources that return different results for the same function

could potentially cause problems. Users with no understanding of the underlying

hardware may be misled as to what is happening with their application code if results

can not be guaranteed with VForce. In some cases, differences could be interpreted

as bugs.

For this case study, single precision floating point data is used at every stage of

processing in software as well as in hardware. This guarantees results are the same

whether the function is being executed in software or with FPGA hardware. We chose

to do this in order to evaluate what performance can be achieved without sacrificing

accuracy or performing an analysis to determine a tolerable level of precision.

4.1.2 Hardware/Software Partitioning

The available hardware in the target system provides different configurations for how

computation can be distributed between hardware and software. Decisions also had

to be made as to how distributed components would work together and interface
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with one another. Furthermore, the granularity at which the beamformer function is

made available to the user is another degree of freedom in the design of this system.

This section will present our approach in mapping the block-adaptive beamformer

algorithm to the target system.

The type of beamformer and the algorithm for adapting weights were chosen

in part because they allow the subprocess of adapting weights and the subprocess

of forming beams to execute concurrently with limited synchronization. Our goal

was to configure the hybrid system in a way that allows these two subprocesses to

execute concurrently in order to make the most efficient use of the hardware resources

available in the target platform. For the remainder of this thesis, the subprocess of

adapting weights will be referred to as weight adaptation and the subprocess of

applying those weights to form a beam and reconstruct a signal will be referred to

as signal reconstruction.

Signal reconstruction is frequently limited in performance by memory. Sensor

data is fetched, multiplied by weight data corresponding to a specific sensor and

then accumulated. This subprocess requires random access into arrays of sensor

and weight data, complex multiplication, accumulation and sequential access into

an array to store results. Signal reconstruction has no data dependencies and can

be fully pipelined. Data corresponding to each sensor can be processed in parallel.

The computation is highly regular and requires floating point multipliers and adders.

Due to the opportunities for pipelining and parallel processing, our approach was to

map this component of the computation to FPGA hardware. FPGA fabric is capable
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of supporting floating point math as well as the parallelism and pipelining possible

for signal reconstruction. The target hardware also provides the FPGAs with high

bandwidth to memory.

Weight adaptation can differ from application to application. For example, a

beamformer operating in a noisy and changing environment will probably use a very

short period of time between update cycles to maintain the signal to noise ratio.

Another application may not need to update as often. Similarly, one application

may need to use more equations to solve for a new set of weights while another can

use a number of equations equal to one plus the number of sensors in the array. Due

to the complexity of the subprocess, and that it will most likely vary significantly

from application to application, our approach was to use software to execute weight

adaptation.

By using an FPGA for signal reconstruction and software running on a micropro-

cessor for the weight adaptation, the two processes have the opportunity to execute

concurrently if the application permits. While some applications will allow undeter-

ministic latency between the update cycles and the sensor data used to solve for the

current weights, others will force the system to stall. Splitting the computation in

this manner also provides a solution that requires limited inter-process communica-

tion. The signal reconstruction subprocess produces results based on sensor, weight,

and parameter data that is indicative of the direction of the beam. Results can be

produced at a rate equal the speed at which sensor data is received and processed.

The weight adaptation subprocess produces weights based on sensor and result data.
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Figure 4.1: The weight adaptation and signal reconstruction subprocesses work to-
gether in a beamformer.

Thus, sensor data can be distributed to both subprocesses that can execute con-

currently. Periodically, result data can be moved from the signal reconstruction

subprocess to the weight adaptation subprocess in exchange for new weights. By

distributing the computation at the subprocess level, the complexity, size and fre-

quency of communication between components is minimized. Figure 4.1 shows the

two subprocesses that make up the beamformer.

4.1.3 Software Interface

The level of granularity of the interface to the beamformer impacts the versatility

of the function. Exposing the functionality at a low level makes the system more

versatile, but less intuitive to program and integrate with VSIPL++ applications.

Exposing the function at a higher level restricts how the system can be used. Our

approach was to expose the functionality at the lowest level that hides the generic
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SPP-specific implementation details. The signal reconstruction subprocess is en-

capsulated by a new function class. Member functions are provided to control the

functionality of the underlying processing. The weight adaptation subprocess and

the code that controls the movement of data between the two subprocesses is at the

user level.

4.2 Target Platform

VForce is a framework designed to maintain application portability across different

reconfigurable supercomputing platforms. The software added to the VForce soft-

ware framework to support beamforming is platform independent. Only the function

kernel that implements the signal reconstruction subprocess in hardware is platform

specific. The Mercury multi-computer described in this section is the target platform

in that the signal reconstruction function kernel has been implemented for the FPGA

daughtercard from this system, and we use this system to benchmark the run-time

performance for this case study.

The Mercury 6U VME[41] is a VME chassis in an embedded form factor with a

backplane that supports Mercury’s proprietary Race++[53] switch fabric. Race++ is

an all-to-all switch fabric that operates at 66MHz. Point-to-point transfers are capa-

ble of reaching up to 266 MB/s for bursts. The 6U VME can be configured with any

combination of PowerPC[40] and FPGA Compute Node (FCN) [39] daughtercards.

Both daughtercards are compatible with the VME interface and support Race++.

The PowerPC daughtercard houses two PowerPC 7447A microprocessors with Al-
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Figure 4.2: The 6U VME chassis supports Mercury’s Race++ backplane and accom-
modates ad-hoc configurations of PowerPC and FCN daughtercards.[42]

tiVec technology running at 800 MHz. Each microprocessor has access to memory

and the Race++ switch fabric via its own interface chip. The MCJ6 FCN daughter-

card houses two Xilinx Virtex II Pro 70 FPGAs. In addition, banks of SRAM and

DRAM are dedicated to each FPGA. Figure 4.2 shows the 6U VME chassis. Figure

4.3 and figure 4.4 show the PowerPC and FCN daughtercards respectively.

Mercury provides an FCN Development Kit (FDK) for application development

for their FPGA Compute Nodes. FDK extends Race++ into the FPGA fabric of the

Virtex II Pros that are housed on the FCN daughtercards. FDK also provides VHDL

IP so that user logic can interface with the memory and peripherals on the board.

Figure 4.5 shows the interface FDK provides user logic. User logic is instantiated

within User Application Space, while Mercury’s intellectual property is implemented
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Figure 4.3: Mercury’s PowerPC daughtercard houses dual PowerPC 7447As with
AltiVec technology.[44]

Figure 4.4: The FCN module houses two FPGA compute nodes based on the Xilinx
Virtex II Pro 70 FPGA.[43]
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Figure 4.5: The FPGA Compute Node Development Kit provides an infrastructure
that extends Race++ to RaceOnChip and provides user logic with an interface to
FCN peripherals.[43]

within the Platform Abstraction Layer. The separation of application based logic and

the infrastructure supplied by Mercury provides a degree of circuit design portability

between Mercury platforms.

4.3 Beamformer Software

Two levels of software were added to the VForce framework in order to support

beamforming on the Mercury platform. The lower level is the VForce middleware

implemented in a generic fashion to map function classes to the FCN. The second

layer is the function class for the signal reconstruction subprocess of the application.

User level code was also developed outside of the VForce software framework to test
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the system and to implement weight adaptation. This section will present the two

levels of software added to the VForce framework and the user level code that im-

plements weight adaptation. User code developed to test the system and benchmark

the run-time performance of the hybrid system is presented in the final section of

this chapter.

4.3.1 VForce Middleware

The middleware class for the Mercury FCN and the run-time resource manager are re-

sponsible for mapping function classes to the FCNs available in the 6U VME platform.

Mercury provides an API for communicating between processes running on separate

microprocessors. This API, which is part of Mercury’s MCOE (Multi-Computer Op-

erating Environment), is based on shared memory buffers and DX. DX is a high level,

high speed, low latency communication pathway between microprocessors. Another

API is provided in order for microprocessors to interface with the FCNs. The FCN

middleware class added to the VForce software framework is a wrapper around the

DX and FCN APIs. The virtual methods of the generic SPP interface in VForce map

directly to function calls in the APIs provided by Mercury. DX function calls expect

a pointer to a contiguous array of memory that has been allocated for DX transfers.

Some methods, specifically the methods for moving data to and from memory local

to FCNs, require data reorganization in order to transfer data from VSIPL++ types

to the contiguous arrays which the DX function calls expect.

The FCN middleware class implements the VForce middleware layer for the tar-
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get platform of this thesis. This class is essentially a wrapper for Mercury’s FCN

and MCOE APIs. The middleware methods function classes use to access hardware

include kernel_initialize, kernel_destroy, put_data, get_data, put_constant

and get_constant. kernel_initialize and kernel_destroy communicate with

the RTRM to acquire and configure an FCN with a requested function kernel bit-

stream. These methods also create and destroy the shared memory buffers local to

both the microprocessor and FCN that are used for communication. The put_data

and get_data methods use the DX function calls in order to DMA data to and

from the shared memory buffers established by kernel_initialize. The buffers

local to the FCN consumes every word of SRAM and DRAM dedicated to an FPGA

on an FCN, as well as the blockRAM that has a Mercury RaceOnChip interface.

put_constant and get_constant methods are used for reading and writing small

control words to and from the FCN.

The VForce run-time resource manager is a standalone application written in

C++ that works in cooperation with the FCN middleware class to bind function

classes to FCNs available in a Mercury 6U VME system. The manager is a lightweight

application that handles two requests in a “first-come, first-served” order. The

first request is kernel_initialize. When an FCN middleware object sends a

kernel_initialize request to the manager, the manager receives the message,

checks its internal listings of FCNs and function kernels to see if there is an avail-

able FCN and if there is a function kernel which matches the request. For this case

study, the function kernel request is always an encoding that represents the signal
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reconstruction function kernel. If an FCN is available and the function kernel exists,

the manager configures the FCN with the bitstream that corresponds to that func-

tion kernel. Then the manager sends a message back to the FCN object that made

the request that includes a handle indicating which FCN was configured. This FCN

becomes locked and owned by the FCN object that requested it until that object re-

leases the resource by sending a kernel_destroy request to the manager. To handle

the kernel_destroy request, the manager returns the FCN which was allocated to

the object to the list of available FCNs. If another kernel_initialize request is

made for the same function kernel, the manager is able to immediately send a handle

back to the requesting function object without reconfiguring the device. Overhead

latency for acquiring and configuring an FPGA can take seconds of run-time when

the bitstreams are remote. Any mechanisms used to reduce this latency have the

potential to improve the overall performance of a system.

4.3.2 Beamformer Function Class

Supporting functions native to the VSIPL++ specification with VForce requires the

addition of only one function class. This function class maps the computation to a

special purpose processor via the VForce middleware or leverages the software-only

function class native to the VSIPL++ implementation. The interface to the added

class is required to match that of the function class in VSIPL++. Beamforming is a

function not included in the VSIPL++ specification. To support beamforming, two

function classes were added to the VForce software framework. One is an implemen-
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tation of the signal reconstruction in software to act as the function class that would

normally already exist within VSIPL++. The second is the hybrid version that en-

capsulates code that interfaces with the generic SPP hardware object and also has

the ability to leverage the software-only signal reconstruction function class. As with

functions native to VSIPL++, the interfaces to the two classes are identical. Figure

4.6 shows the interface as programmed in the class headers. Set and get methods are

provided for the variables and pointers to arrays that store sensor, weight, parameter

and result data. In addition to updating the pointers for the various arrays, the set

methods update an internal list that keeps track of whether or not the arrays have

been changed between hardware passes. The term hardware pass will be used to

describe the computation, data transfers and synchronization involved in running a

function in hardware through VForce. The Start() and Finish() control methods

are provided so users can begin and end a hardware pass. The Start() method takes

no arguments. The internal listings that keep track of the last time the data arrays

were updated are used to determine which data need to be transmitted to the FCN

in order to keep the FCN’s local memory synchronized with the current VSIPL++

data.

During a SignalReconstruct hardware pass, the function kernel is reset, data is

transferred to memory local to the FCN and then a control sequence tells the function

kernel to start processing. When the function kernel is done processing, result data

may or may not be transferred back to memory local to the microprocessor. The

Finish() method takes a boolean argument that controls whether or not result data
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is transferred back to the microprocessor’s memory before another hardware pass is

run. For hardware passes that are run immediately before a weight update cycle,

the data is required to be transferred back to the microprocessor’s memory. During

periods when an update cycle is not pending, it is up to the application or the user to

decide whether result data should be transferred or should remain local to the FCN.

4.4 Signal Reconstruction Hardware

The hardware portion of the hybrid system presented in this thesis is responsible

for forming a beam to reconstruct a signal propagating in a particular direction.

The computation required for forming a beam is straightforward. For each step

in time, samples corresponding to a particular direction in space from each sensor

are multiplied by their respective weights and accumulated. The access pattern for

reading sensor data is pseudo-random. In other words, the access pattern is neither

sequential nor completely random. Consecutive reads into the arrays that store the

sample data for each sensor are guaranteed to be within a fixed number of addresses

of each other. The fixed number of addresses is determined by the topology of the

sensor array, the sampling frequency of the sensors and the speed at which the signal

propagates through the medium of the sensor array. The process of combining the

product of weights and delayed sample data provides opportunities for pipelining and

parallelization. For each step in time, a single sample from each sensor array is used

to reconstruct a propagating signal. These arrays can be accessed in parallel if they
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class SignalReconstruct

{

//constructors

public:

SignalReconstruct();

...

~SignalReconstruct();

//set and get methods

public:

void SetSensorCount(int count);

int GetSensorCount();

void SetSampleCount(int count);

int GetSampleCount();

void SetWeightPointer(Vector< complex<float> > *pointer);

Vector< complex<float> > * GetWeightPointer();

void SetIndexPointer(Vector< int > *pointer);

Vector< int > * GetIndexPointer();

void SetSensorPointer(Matrix< complex<float> > *pointer);

Matrix< complex<float> > * GetSensorPointer();

void SetResultPointer(Vector< complex<float> > *pointer);

Vector< complex<float> > * GetResultPointer();

//control methods

public:

void Start();

bool Finish(bool data);

//internal data

private:

...

}

Figure 4.6: The SignalReconstruct class header shows the interface shared between
the software-only and the hybrid function classes.
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are stored in separate memory banks, and parallel hardware can be used to combine

data in a pipeline that allows new data to be processed continuously.

The hardware used for the signal reconstruction subprocess stores sensor array

data in the four 2MB banks of SRAM dedicated to the FPGA, weight and parameter

data in blockRAM on-chip and result data in one of the two DRAM banks. The

pseudo-random access requirement for the sensor arrays prohibits a purely streaming

circuit implementation. This means that sensor data needs to be buffered into one

or more of the memory banks available on the FCN. The DRAM provides the largest

amount of memory to the FPGA; however, SRAM is used because using DRAM

would require large secondary caching memory and circuits dedicated for control in

order to deal with the non-deterministic read latency, which is inherent to DRAM

technology for random-access patterns. The four banks of SRAM are capable of

delivering four individually addressable 32 bit data words per clock cycle. The size

of blockRAM required to store the weight data for a sensor array with our circuit

implementation is equal to 32 bits times the number of sensors in the array. The

size of blockRAM required to store the parameter data for a sensor array is equal

to 16 bits times the number of sensors in the array. In order to allow for changes in

the topology of the sensor array during operation, an amount of blockRAM capable

of supporting 1024 sensors is implemented so any number of sensors up to 1024 is

supported with the circuit presented in this section. Since result data is stored in a

sequential access pattern, there are no complications in using DRAM.

Mercury’s FDK is used to connect the signal reconstruction IP we developed with
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the memory on the FCN and the rest of the multi-computer via Race++. Mercury

intellectual property modules are used to control and interface with the four banks of

SRAM, one bank of DRAM and one DMA endpoint. These modules interface with

RaceOnChip, which is the name of the infrastructure Mercury uses to extend the

Race++ protocol onto the FPGA fabric. Dual ported blockRAMs were implemented

to store weight and parameter data. One port is used to interface with the signal

reconstruction module. The other port is used to interface with RaceOnChip. The

four SRAMs, DRAM and the dual ported blockRAM modules implemented for this

case study are all accessible via Race++ and VSIPL++ applications throughVForce.

The signal reconstruction module is a floating point pipeline developed with

VHDL that has been parameterized to make use of the available bandwidth to mem-

ory. Figure 4.7 shows the floating point pipeline and how it interfaces with the rest

of the components on the chip. The IEEE single precision floating point adders and

multipliers required for signal reconstruction were generated using version 1.0 of the

floating point core generated by Xilinx COREgenerator[11]. Four multipliers and

two adders make up each of the two complex multipliers responsible for applying the

weight values to the sensor samples that flow out of the sensor arrays stored in the

four SRAM banks. The pair of complex products are combined and accumulated

to produce a value for each step in time. Not shown in Figure 4.7 is the control

and addressing logic responsible for calculating the indices into the sensor arrays and

managing the operation of the circuit.
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Figure 4.7: Single precision floating point multipliers and adders reconstruct signals
by applying weight values to sensor data and accumulating with respect to each step
in time.
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The control and addressing logic consists of a lightweight state machine and a

series of counters used to keep track of the circuit’s progress and to generate the

indices necessary for addressing the appropriate data samples in the sensor arrays.

Sample data from each sensor array is partitioned into sub-sections equal to the size

of the available SRAM divided by the number of sensors in the sensor array. A

sub-section from each sensor array representing samples received for the same period

in time is transferred to the SRAM for each hardware pass. This partitioning is

accomplished in software with zero copy by using the Vector subview of the Matrix

view from VSIPL++. Calculated strides are used so partitioning is accomplished

within VSIPL++ data types. Partitions are interleaved in SRAM in a way that

counters and a pipeline of fixed point adders can be used to determine the appropriate

addresses for each step in time. For each step in time and for each sensor, the address

into the SRAM housing the sensor arrays is equal to that sensor’s partition’s offset

into SRAM plus the offset specific to the beam’s direction plus the current step in

time. Three pipeline stages are required to fetch the beam direction offset and add

the three values in order to compute the address into SRAM.

4.5 Summary

Function classes and a function kernel for the Mercury 6U VME reconfigurable super-

computer are presented as new additions to the VForce software framework for sup-

porting beamforming in the time domain. A block-adaptive beamformer is mapped

to the target Mercury platform using VForce to distribute concurrent processing be-
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tween software and FPGA hardware. In the next chapter, the run-time performance

of the beamformer will be evaluated based on a testbench designed to explore the

versatility of the beamformer function classes.



Chapter 5

Results

This chapter presents the run-time performance for the hybrid systems described

in the previous chapter. Run-time performance is evaluated for a range of hybrid

adaptive beamformer test applications and is compared to the software-only function

class running on a single PowerPC microprocessor. An analysis of the performance

is presented along with a discussion of the effectiveness and scalability of the hybrid

system.

5.1 Experimental Setup

This section describes the hardware and software used to test the hybrid systems

presented in chapter 4. In designing the test system, it was important to provide

mechanisms to verify the correctness of the functions executing in software as well

as in hardware for the different modes of processing. In addition to testing the

beamformer for correctness, benchmarking was conducted to evaluate its run-time

performance. Since the hybrid systems presented are designed to be generic and

work for different domains, a single benchmark would not be an effective means to
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evaluate the run-time performance. Therefore, a range of beamformer testbenches

are implemented with the hybrid system.

5.1.1 Middleware Verification

FCN middleware objects make use of the MCOE APIs to communicate with the run-

time resource manager and function kernels resident in FPGAs on FCNs. In order

to test the functionality, middleware objects are tested with the run-time resource

manager and a function kernel that included interfaces to all the peripherals made

available on the FCN via the FCN middleware class. A function kernel was generated

based on the Mercury Default Bitstream. This function kernel provided Race++

access to the peripheral memory banks, on-chip blockRAM and included a simple

state machine to acknowledge receiving control signals from FCN middleware objects.

5.1.2 Beamformer Verification

The software-only function class written in VSIPL++ added to the VForce software

framework was tested by comparing the results it generated against the results gen-

erated by a previously verified software implementation written in C. Both versions

processed identical data sets generated randomly.

The hybrid function class and signal reconstruction function kernel were tested

together with VForce and the run-time resource manager. A 6U VME setup with

one PowerPC daughtercard and one FCN daughtercard were used for testing. One

PowerPC executed the run-time resource manager while the other executed the pro-

gram containing the testbenches. The results generated were verified by comparing
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the results generated by the software-only function class. Both versions processed

identical data sets.

5.1.3 Benchmark Suite

The software-only and hybrid function classes added to the VForce software frame-

work are versatile in that they are capable of signal reconstruction for arrays of

sensors of different sizes and topologies. The implementation of the block-adaptive

beamformer discussed in this chapter allows for a variable number of equations used

to solve for new weights during each update cycle. It also allows the user to choose

when weight update cycles occur in terms of the number of sensor samples processed

between updates.

Testbenches written as user-level VSIPL++ applications were designed in order

to evaluate the run-time performance of block-adaptive beamformer implementations

with a varying number of sensors, equations used per weight update and samples in

between weight update cycles. The test application also varies the number of beams

formed for a given buffer of sensor data. The last parameter the test application

is capable of varying is the number of FCNs used for signal reconstruction. Since

a 6U VME system can accommodate multiple FCNs, it may make sense in some

applications to distribute sensor data across more than one FCN in a round-robin

fashion.
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5.2 Performance

This section presents the run-time performance of the following three systems for

implementing beamforming: the software-only function class, the hybrid function

class making use of one FCN and the hybrid function class making use of two FCNs.

Each of these systems was evaluated by reconstructing signals based on synthetic

data for different sensor array topologies, different parameters for weight adaptation

and different sized bursts of processing. In total, 25 experiments were run on each

system and benchmarked for performance. In addition to presenting the end-to-end

run-times for each experiment on each system, a breakdown of the timing for each

component of the overall processing for a sub-set of the experiments is presented.

5.2.1 Experiment Parameters

Four parameters of a simple test application were adjusted in order to create the

25 unique experiments run to evaluate the three systems. The parameters are: the

number of sensors in the sensor array, the number of beams of focus, the number of

equations for weight adaptations and the number of samples between weight update

cycles. The range of values for each parameter was selected to represent the com-

putational requirements of an assortment of beamformer applications, as well as to

identify the bottlenecks in the three systems.

The first parameter used to define the performance experiments is the number of

sensors in the sensor array. The signal reconstruction circuit is capable of processing

sensor data in parallel and in a pipelined fashion. The larger a sensor array, the more
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potential there is for gains in performance for the hybrid systems as compared to the

software-only system. The number of sensors in each array ranged from 4 to 64 in the

experiments presented in this chapter. The signal reconstruction circuit is capable of

handling any even number of sensors up to 1024. Sensor arrays with an odd number

of sensors are handled by padding an additional SRAM partition with zeroes. Sensor

arrays with numbers of sensors greater than 1024 are split, reconstructed separately

and then combined in software. Only arrays with even numbers of sensors were

tested. The range only went as high as 64 due to limitations in the VSIPL++ least

squares solver, which was used for weight adaptation. Additionally, the number of

equations must be greater than or equal to the number of sensors in order for the

least squares solver to work. 64 sensors with 64 equations is the largest size that

would run with the optimized VSIPL++ implementation from CodeSourcery on the

PowerPC daughtercard.

The second and third parameters used to define the performance experiments are

the number of equations used for weight adaptation and the number of sensor samples

processed between weight updates. These two parameters test the performance of the

three systems for applications that use different schemes for adapting to noise and

other environmental changes. The number of equations used for weight adaptation

ranges from 64 to 1024. As mentioned above, there is a memory limitation in the

VSIPL++ least squares solver. The size of the VSIPL++ QR object used for the least

squares solver cannot exceed 642. Thus, for experiments with fewer sensors, more

equations can be used while still not exceeding the memory limitation. The number
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of samples processed between weight updates ranges from 16k to 256k. 16k was

chosen as the minimum because at a period of 16k samples, the software component

executing the weight adaptation subprocess accounts for a majority of the overall

computation.

The last parameter used to define the performance experiments is the number

of beams formed. Beamformer applications can be designed to reconstruct signals

propagating in multiple directions and with different beam resolution. This param-

eter controls the number of beams used for signal reconstruction on a given set of

sensor data. Since sensor data represents the largest arrays of data required to be

transmitted to memory local to an FCN for a hardware pass, iterating over this data

for several beams can provide opportunities for performance gains on the hybrid sys-

tems as compared to the software-only system. In our experiments, the number of

beams processed ranges from 1 to 10,000.

5.2.2 Experiments

Twenty-five experiments were run on the three systems. Table 5.1 shows the values

of each parameter for each experiment. Each experiment processes 1 megasamples

per sensor. For the remainder of this chapter, experiments will be referred to by their

experiment number.

5.2.3 Results

In this section, results for each of the performance experiments are presented for the

three systems. Side-by-side comparisons are presented in the next section and are
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Performance Experiments

Exp. Sensors Eqns. Period Beams
1 4 1024 256k 1
2 4 1024 256k 10
3 4 1024 256k 100
4 4 1024 256k 1000
5 8 512 128k 1
6 8 512 128k 10
7 8 512 128k 100
8 8 512 128k 1000
9 16 256 64k 1

10 16 256 64k 10
11 16 256 64k 100
12 16 256 64k 1000
13 32 128 32k 1
14 32 128 32k 10
15 32 128 32k 100
16 32 128 32k 1000
17 64 64 16k 1
18 64 64 16k 10
19 64 64 16k 100
20 64 64 16k 1000
21 64 64 16k 10000
22 64 64 32k 10000
23 64 64 64k 10000
24 64 64 128k 10000
25 64 64 256k 10000

Table 5.1: 25 experiments were performed for the three systems.
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accompanied by a detailed performance analysis. The run-times for each experiment

are broken down into subintervals corresponding to the run-times of the components

executing the two subprocesses and a subinterval for setup time. These subintervals

are presented separately to show which components of each application dominate the

overall computation. The first subinterval is the time required for setup. During

setup time, memory is allocated, objects are constructed and data is reorganized

and moved into the appropriate arrays. In table 5.2, software-only setup time is

reported as zero for all 25 experiments. These run-times are actually non-zero, but

less than one hundredth of a second. For the two hybrid systems, this interval

represents all the time prior to the initial hardware pass. In tables 5.3 and 5.4,

setup times are irregular for the two hybrid systems due to the non-deterministic

interprocess communication latencies and the remote FPGA configuration. The other

two intervals are for the time in the signal reconstruction subprocess and in the weight

adaptation subprocess. One of the goals of this case study is to showcase VForce’s

ability to facilitate concurrent processing. The total time interval is the sum of the

time intervals for both subprocesses. The time when both subprocesses are executing

concurrently is recorded as time in the weight adaptation subprocess. All run-times

are presented in seconds (s). The results shown in red, are extrapolated as real

results were not collected for these experiments due to the prohibitively long run-

times. Since the two hybrid systems are two orders of magnitude faster than the

software-only system, real run-time results were collected for all the experiments.

Performance results for the software-only, single-FPGA and two-FPGA systems are



CHAPTER 5. RESULTS 96

Software-only Performance

Exp. Setup Weights Reconstruction Total
1 0.00s 0.06s 2.24s 2.30s
2 0.00s 0.55s 22.41s 22.96s
3 0.00s 5.53s 224.09s 229.63s
4 0.00s 55.98s 2240.90s 2296.88s
5 0.00s 0.12s 4.37s 4.49s
6 0.00s 1.16s 43.73s 44.88s
7 0.00s 11.58s 437.27s 448.85s
8 0.00s 115.80s 4372.68s 4488.48s
9 0.00s 0.25s 8.64s 8.88s

10 0.00s 2.47s 86.36s 88.83s
11 0.00s 24.69s 863.62s 888.31s
12 0.00s 246.88s 8636.19s 8883.07s
13 0.00s 0.56s 17.16s 17.73s
14 0.00s 5.64s 171.63s 177.27s
15 0.00s 56.37s 1716.30s 1772.66s
16 0.00s 563.72s 17162.90s 17726.60s
17 0.00s 1.42s 34.22s 35.64s
18 0.00s 14.21s 342.16s 356.36s
19 0.00s 142.06s 3421.55s 3563.62s
20 0.00s 1421.27s 34214.80s 35636.10s
21 0.00s 14206.40s 342155.00s 356362.00s
22 0.00s 7103.20s 342155.00s 349258.20s
23 0.00s 3551.60s 342155.00s 345706.60s
24 0.00s 1775.80s 342155.00s 343930.80s
25 0.00s 887.90s 342155.00s 343042.90s

Table 5.2: Run-time in seconds for each subprocess for each experiment on the
software-only system. Times shown in red are extrapolated.

presented in tables 5.2, 5.3 and 5.4 respectively.

In addition to the 25 experiments run on the three systems, additional measure-

ments were recorded in order to examine the run-time at a finer level of granularity

than the three time intervals presented in tables 5.2, 5.3 and 5.4. These measurements

break the time for a hardware pass for a single FCN down into four time intervals. A

hardware pass is split between the time it takes to transfer sensor data to the FCN,
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Single-FPGA Hybrid Performance

Exp. Setup Weights Reconstruction Total
1 5.16s 0.06s 1.93s 1.98s
2 5.31s 0.56s 6.96s 7.52s
3 5.13s 5.59s 57.28s 62.86s
4 5.18s 56.13s 560.46s 616.59s
5 5.15s 0.12s 3.06s 3.17s
6 5.37s 1.16s 8.10s 9.25s
7 5.38s 11.56s 58.50s 70.06s
8 5.25s 115.63s 562.54s 678.17s
9 5.13s 0.25s 5.44s 5.69s

10 5.12s 2.46s 10.50s 12.96s
11 5.12s 24.58s 61.06s 85.63s
12 5.13s 245.73s 566.64s 812.37s
13 5.14s 0.56s 10.28s 10.84s
14 5.13s 5.62s 15.37s 20.99s
15 5.29s 56.12s 66.30s 122.42s
16 5.13s 561.17s 575.61s 1136.78s
17 5.13s 1.42s 19.99s 21.41s
18 5.28s 14.16s 25.16s 39.32s
19 5.14s 141.57s 76.85s 218.42s
20 5.13s 1414.97s 594.45s 2009.42s
21 5.14s 14228.40s 5690.82s 19919.30s
22 5.40s 7064.52s 2969.52s 10034.00s
23 5.30s 3543.17s 1547.62s 5090.78s
24 5.37s 1768.35s 850.85s 2619.20s
25 5.17s 884.50s 498.79s 1383.29s

Table 5.3: Run-time in seconds for each subprocess for each experiment on the hybrid-
system making use of a single FPGA.
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Two-FPGA Hybrid Performance

Exp. Setup Weights Reconstruction Total
1 10.26s 0.06s 1.77s 1.83s
2 10.44s 0.56s 6.80s 7.36s
3 10.38s 5.56s 57.10s 62.67s
4 10.27s 55.62s 560.11s 615.73s
5 10.41s 0.12s 2.99s 3.10s
6 10.32s 1.15s 8.03s 9.18s
7 10.37s 11.51s 58.43s 69.94s
8 10.25s 115.11s 562.46s 677.57s
9 10.28s 0.25s 5.41s 5.66s

10 10.40s 2.45s 10.47s 12.92s
11 10.55s 24.45s 61.01s 85.46s
12 10.46s 244.49s 566.45s 810.94s
13 10.40s 0.56s 10.27s 10.83s
14 10.56s 5.59s 15.36s 20.95s
15 10.38s 55.89s 66.27s 122.16s
16 10.26s 558.84s 575.42s 1134.26s
17 10.40s 1.41s 19.99s 21.40s
18 10.38s 14.11s 25.15s 39.26s
19 10.24s 141.06s 76.81s 217.87s
20 10.43s 1410.34s 593.62s 2003.96s
21 10.27s 14130.60s 5779.12s 19909.07s
22 10.27s 7064.33s 2972.75s 10037.10s
23 10.27s 3542.98s 1551.22s 5094.20s
24 10.36s 1768.14s 854.54s 2622.68s
25 10.25s 884.35s 502.43s 1386.78s

Table 5.4: Run-time in seconds for each subprocess for each experiment on the hybrid-
system making use of two FPGAs.
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HW Pass Timing Breakdown

8 MB sensor data transfer 0.30110s
768 B parameter data transfer 0.00032s
FCN processing 0.00002s
16 KB result data transfer 0.00875s

Table 5.5: Timing breakdown of a hardware pass for a single FCN for experiments
17 through 21.

to transfer parameter data and weights, to process data and to transfer result data

from the FCN back to memory local to the VSIPL++ program. Table 5.5 shows the

time (in seconds) for an 8 megabyte sensor data transfer, a 768 byte paramter data

transfer, FCN processing and a 16 kilobyte result data transfer. Transfers of this size

correspond to the functionality of experiments 17 through 21. For a single hardware

pass, the time required to transfer sensor data dominates the run-time. The FCN

processing time is insignificant with respect to the total time required for a hardware

pass. When multiple beams are processed, sensor data is only transferred one time

for all the beams.

5.3 Analysis

This section gives an analysis of the run-time performance results presented in the

previous section. Table 5.6 shows the performance of the two hybrid systems com-

pared to the software-only system. Run-time results for the software-only system

are not shown. Instead, the run-times for each experiment and each interval for the

software-only system are normalized to one and the run-times for the hybrid systems

are presented as a factor that represents the number of times faster each system is as
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Performance Comparison

Single-FPGA Two-FPGA
Exp. Reconstruction Total Reconstruction Total

1 1.16 1.16 1.26 1.26
2 3.22 3.06 3.29 3.12
3 3.91 3.65 3.92 3.66
4 4.00 3.73 4.00 3.73
5 1.43 1.42 1.46 1.45
6 5.40 4.85 5.45 4.89
7 4.47 6.41 7.48 6.42
8 7.77 6.62 7.77 6.62
9 1.59 1.56 1.59 1.57

10 8.23 6.86 8.25 6.88
11 14.14 10.37 14.15 10.39
12 15.24 10.93 15.25 10.95
13 1.67 1.63 1.67 1.64
14 11.17 8.45 11.17 8.46
15 25.89 14.48 25.90 14.51
16 29.82 15.59 29.83 15.63
17 1.71 1.66 1.71 1.67
18 13.60 9.06 13.60 9.08
19 44.52 16.32 44.55 16.36
20 57.56 17.73 57.64 17.78
21 60.12 17.89 59.21 17.90
22 115.22 34.81 115.10 34.80
23 221.08 67.91 220.57 67.86
24 402.13 131.31 400.40 131.14
25 685.97 247.99 681.00 247.37

Table 5.6: A performance comparison of the two hybrid systems tested. Values are
factors of performance normalized to the software-only system.
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Figure 5.1: Normalized performance for experiments 4,8,12,16,20. Diamond data
points represent signal reconstruction performance on a single FCN. Square data
points represent the total performance.

Figure 5.2: Normalized performance for experiments 17 through 21. Diamond data
points represent signal reconstruction performance on a single FCN. Square data
points represent the total performance.
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Figure 5.3: Normalized performance for experiments 21 through 25. Diamond data
points represent signal reconstruction performance on a single FCN. Square data
points represent the total performance. The horizonal axis represents the percentage
of the signal reconstruction run-time spent transferring result data.

compared to the software-only implementation. For the remainder of this chapter,

the term performance factor will be used to describe the relative performance gain

of each system as compared to the software-only system for each experiment.

The hybrid systems presented in this case study are successful in delivering up to

two orders of magnitude performance increase over the software-only system. In 25

different experiments designed to represent many beamformer applications, perfor-

mance over the software-only implementation was improved.

The two columns immediately to the right of the experiment number in table 5.6

represent the gain in performance of the single-FPGA hybrid system as compared to

the software-only system. Experiments with the same number of sensors are grouped

and groups are separated by horizontal lines in the table. The performance of the
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hybrid system as compared to the software-only system increases as the number of

sensors in the array increases and as the number of beams increases.

Figure 5.1 shows the reconstruction and total performance factors as a function

of the number of sensors for the single-FPGA system. The data points selected in

order to illustrate this trend correspond to experiments 4, 8, 12, 16 and 20. These

are the experiments that process 1000 beams for each size sensor array. The increase

in the performance factor of the reconstruction interval of the overall computation

grows close to linearly with respect to the number of sensors. This is due to the

low percentage of the FCN’s run-time of the overall hardware pass run-time. Table

5.5 shows that the run-time for FCN processing is orders of magnitude less than the

other subintervals involved in performing a hardware pass. Doubling the number of

sensors in an array doubles the amount of time required for the software-only system

to reconstruct signals from the sensor data for each sensor. Since the time required

for transferring result data dominates the reconstruction interval for experiments

with large numbers of beams, and the amount of sensor data transferred per beam

is relatively constant for experiments 1 through 21, the time required for the hybrid

systems to perform reconstruction is relatively fixed. The total performance, which

includes weight adaptation and signal reconstructions, does not increase linearly. It

approaches a limit. This is due to the fact that the weight adaptation subprocess is

executed in software and larger sized arrays require more time for weight adaptation.

It takes close to double the amount of time for weight adaptation for a sensor array

with double the number of sensors. The time interval for weight adaptation accounts
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for more and more of the total run-time as the number of sensors in an array increases.

This is the reason for the shape of the red curve in figure 5.1.

Figure 5.2 shows the performance of the single-FPGA system compared to the

software-only system as a function of the number of beams processed. The data

points selected in order to show this trend correspond to experiments 17 through

21. The only difference in the five experiments is the number of beams processed.

The performance of the hybrid system as compared to the software-only system

increases as a function of the number of beams processed but approaches a limit. As

the performance approaches this limit, so does the percentage of the reconstruction

time interval consumed by transferring result data. When the number of beams

processed is great enough so that the time required for transferring results dominates

the run-time of the reconstruction time subinterval, the performance factor for the

reconstruction subinterval converges to a value. This value represents the ratio of the

software-only run-time to the run-time for the result data transfers. The performance

factor for the total run-time approaches a lower limit because the weight adaptation

subprocess begins to account for more and more of the overall computation.

Figure 5.3 shows the factor of performance as a function of the percentage of

the reconstruction time interval for which the result transfers are responsible. The

data in this graph represent experiments 21 through 25. The only difference in these

experiments is the period at which the weight adaptation subprocess occurs. A longer

period translates to more infrequent updates and less result data being transferred.

The two rightmost columns in table 5.6 present the factors of performance gain for
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the hybrid system that makes use of two FCNs. The goal of using more than one FCN

was to increase the overall throughput of the system. Since concurrent processing

is possible with VForce, distributing data to more computing resources provides

an opportunity for additional performance improvements. For all the experiments

conducted on the application presented in this case study, it was shown that using

more than one FPGA is not worth the minimal gain in performance.

One reason why an additional FPGA does not improve the overall performance of

the system is that only the processing, not communication, can be overlapped during

concurrent processing through VForce. The version of VForce used for this case

study did not support overlapping SPP processing with communication between the

VSIPL++ program and the SPP. Another reason why the additional FPGA does

not improve the overall performance is because of the relatively small amount of

processing performed in a single hardware pass compared to the data transfer time.

Weight and parameter data specific to a single beam are transferred and signals

propagating in a single direction are reconstructed during each pass. Reconstructing

signals propagating in multiple directions in a single hardware pass would provide an

opportunity for additional performance gains and would extend the FCN’s processing

time. Increased processing time would provide more opportunity for concurrency in

processing on multiple FPGAs.
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5.4 Summary

This chapter presents the run-time performance results for 25 benchmarking exper-

iments applied to the three systems presented in the previous chapter. The hybrid

systems improve the run-time performance of user-level VSIPL++ application code

by up to two orders of magnitude. In the next chapter, conclusions drawn from this

case study are presented and future research directions are suggested.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

The availability of FPGAs and other reconfigurable processing elements in cluster-

style and other supercomputing platforms provides opportunities for high perfor-

mance hybrid applications that make use of microprocessors and special purpose

processors. These reconfigurable supercomputing platforms can exploit both fine-

grained and coarse-grained parallelism in a range of domains and applications. Due

to the recent emergence and rapid changes of this technology, architectures for recon-

figurable computing platforms are drastically different from vendor to vendor. Even

the architectures from a single vendor can undergo radical modifications from version

to version. The tools and compilers used to program and configure these architectures

are generally platform specific and there is little or no support for application porta-

bility. Porting an application to a new system often requires prohibitive redesign

cycles.

VForce is a framework that supports application portability across reconfigurable

supercomputing platforms. VForce leverages VSIPL++, which is an API to com-
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monly used signal and image processing functions. VSIPL++ focuses on high per-

formance, portability and end-user productivity. VForce makes use of an object

oriented software framework that facilitates the integration of new functions and

reconfigurable architectures as well as a run-time resource manager for binding func-

tions to special purpose processors dynamically.

This thesis presents a case study on the use of VForce for functions at a higher

granularity than the functions native to the VSIPL++ specification. An implemen-

tation of a hybrid adaptive time-domain beamformer is presented and mapped to

a Mercury Computer Systems reconfigurable computing platform with VForce. A

performance evaluation was conducted on a range of experiments. Through the per-

formance evaluation, we show that VForce is effective. The hybrid systems presented

achieve two orders of magnitude performance increase over the software-only system.

The performance trends also indicate that functions of even coarser granularity may

provide higher performance while remaining at a level low enough to be seamlessly

integrated into the list of functions available with VSIPL++.

6.2 Future Work

One of the limitations the VForce framework imposed on the hybrid systems pre-

sented in this thesis was its inability to overlap FPGA processing with communica-

tion. Many applications could benefit from the opportunity to increase the number

of concurrent operations. Additionally, most reconfigurable platforms can support

concurrent communication operations. VForce should be designed to take advantage



of all the communication bandwidth possible. Many applications are like the beam-

former in that there is a significant amount of communication and data movement

necessary. For these applications, the inability to overlap processing with commu-

nication can result in systems that underutilize computing resources. Due to these

reasons, the VForce software framework could benefit from the addition of a mecha-

nism to overlap and issue concurrent communication operations.

The circuit for signal reconstruction added to VForce stores weight and param-

eter data for one beam at a time. For applications that reconstruct signals that

propagate in more than one direction, it makes sense to store weight and parameter

data for multiple beams at once. This would reduce the run-time required for context

switching between beams in different directions. Since weight and parameter data is

relatively small with respect to the rest of the data arrays required for beamforming

and there is ample memory in blockRAM and DRAM available on the FCN, adjust-

ing the circuit to handle multiple beams at once would not add complexity to the

existing circuit. If this change was made to the signal reconstruction circuit, the

hybrid function class could be altered to transfer fewer, larger blocks of data, which

would make data transfer more efficient.

Currently, computation for the beamformer application is split between software

and FPGA hardware. It is possible to implement the entire application with FPGA

hardware. This would potentially improve performance, and possibly more impor-

tantly, increase the effective minimum period for weight updates.



Bibliography

[1] Altera. http://www.altera.com/end-markets/wireless/advanced-dsp/

beamforming/wir-beamforming.html. Last accessed 28 August 2006.

[2] G. Amdahl. Validity of the single processor approach to achieving large-scale
computing capabilities. In AFIPS Conference Proceedings, volume 30, pages
483–485, Reston, VA, USA, April 1967. AFIPS Press.

[3] E. Anderson, J. Argon, W. Peck, J. Stevens, F. Baijot, E. Komp, D. An-
drews, and R. Sass. Enabling a uniform programming model across the soft-
ware/hardware boundary. In IEEE Symposium on FPGAs for Custom Comput-
ing Machines, 2006.

[4] D. Andrews, R. Sass, E. Anderson, J. Argon, W. Peck, J. Stevens, F. Baijot, and
E. Komp. The case for high level programming models for reconfigurable com-
puting. In International Conference on Engineering of Reconfigurable Systems
and Algorithms (ERSA), 2006.

[5] P. Belanovic and M. Leeser. A library of parameterized floating-point modules
and their use. In International Conference on Field Programable Logic and
Applications, August 2002.

[6] Celoxica. http://www.celoxica.com/products/dk/. Last accessed 28 August
2006.

[7] J. C. Chen, L. Yip, J. Elson, H. Wang, D. Maniezzo, R. E. Hudson, K. Yao,
and D. Estrin. Coherent acoustic array processing and localization on wireless
sensor networks. Proceedings of the IEEE, 91(8), August 2003.

[8] S. Chen, N. N. Ahmad, and L. Hanzo. Adaptive minimum bit-error rate beam-
forming. IEEE Transactions on Wireless Communications, 4(2):341–348, March
2005.

[9] N. A. Cochrance, Y. Lee, and G. D. Melvin. Quantification of a multibeam
sonar for fisheries assessment applications. Journal of the Acoustical Society of
America, 114(2):745–758, August 2003.



[10] CodeSourcery. http://www.codesourcery.com/. Last accessed 30 October
2006.

[11] COREgen. http://www.xilinx.com/ipcenter/coregen/updates.htm. Last
accessed 20 November 2006.

[12] Cray XD1. http://cray.com/products/xd1/index.html. Last accessed 29
November 2006.

[13] R. Deville, I. Troxel, and A. George. Performance monitoring for run-time man-
agement of reconfigurable devices. In International Conference on Engineering
of Reconfigurable Systems and Algorithms (ERSA), 2005.

[14] J. Dido, N. Geraudie, L. Loiseau, O. Payeur, Y. Savaria, and D. Poirier. A
flexible floating-point format for optimizing data-paths and operators in FPGA
based dsps. In ACM International Symposium on Field Programable Gate Ar-
rays, (Monterrey, CA), 2002.

[15] G. A. Fabrizio, A. B. Gershman, and M. D. Turley. Robust adaptive beamform-
ing for hf surface wave over the horizon radar. IEEE Transactions on Aerospace
and Electronic Systems, 40(2):510–525, April 2004.

[16] M. Franklin, J. Maschmeyer, E. Tyson, J. Buckley, and P. Crowley. Auto-pipe: a
pipeline design and evalutation system. In International Parallel and Distributed
Processing Symposium (IPDPS06), 2006.

[17] P. Graham and B. E. Nelson. FPGA-based sonar processing. In FPGA, pages
201–208, 1998.

[18] J. E. Greenberg, J. G. Desloge, and P. M. Zurek. Evaluation of array-processing
algorithms for a headband hearing aid. Journal of the Acoustic Society of Amer-
ica, 113(3):1646–1657, March 2003.

[19] S. Hayken and A. Steinhardt. Adaptive radar detection and estimation. Wiley,
New York, 1992.

[20] High Performance Embedded Computing Software Initiative. http://www.

hpec-si.org/. Last accessed 30 October 2006.

[21] B. Holland, J. Greco, I. Troxel, G. Barfield, V. Aggarwal, and A. George.
Compile- and run-time services for distributed heterogeneous reconfigurable
computing. In International Conference on Engineering of Reconfigurable Sys-
tems and Algorithms (ERSA), 2006.

[22] HPEC-SI. VSIPL++: Vector Signal Image Processing Library. http://www.

hpec-si.org, Last accessed 28 August 2006.



[23] H. M. G. Hussein, A.-B. M. Youssef, and Y. M. Kadah. Encoded multiple si-
multaneous aperture acquisition for improved signal-to-noise ratio in ultrasound
imaging. In W. F. Walker and M. F. Insana, editors, Medical Imaging 2003: Ul-
trasonic Imaging and Signal Processing. Edited by Walker, William F.; Insana,
Michael F. Proceedings of the SPIE, Volume 5035, pp. 298-303 (2003)., pages
298–303, May 2003.

[24] B. L. Hutchings and B. E. Nelson. GigaOp DSP on FPGA. The Journal of
VLSI Signal Processing, 36(1):41–55, November 2004.

[25] HyperTransport. http://www.hypertransport.org/. Last accessed 29 Novem-
ber 2006.

[26] Impulse-C. http://www.impulsec.com/XilinxDatasheetMarch06.pdf. Last
accessed 30 November 2006.

[27] Intel Math Kernel Library. http://www.intel.com/cd/software/products/

asmo-na/eng/perflib/mkl/index.htm. Last accessed 30 October 2006.

[28] S. A. Jafar and A. Goldsmith. Transmitter optimization and optimality of beam-
forming for multiple antenna systems. IEEE Transactions on Wireless Commu-
nications, 3(4):1165–1175, July 2004.

[29] J.-W. Jang, S. B. Choi, and V. K. Prasanna. Energy- and time-efficient ma-
trix multiplication on FPGAs. IEEE Trans. Very Large Scale Integr. Syst.,
13(11):1305–1319, 2005.

[30] D. Kolossa and R. Orglmeister. Nonlinear postprocessing for blind speech seper-
ation. Lecture Notes in Computer Science, 3195:832–839, October 2004.

[31] S. Leeper, R. Haney, H. Nguyen, and M. Vai. FPGA beamforming in a wide-
band airborne radar system. In 2003 High Performance Embedded Computing,
September 2003.

[32] X. Li, S. K. Davis, S. Hagness, D. W. V. D. Weide, and B. D. Van Veen. Mi-
crowave imaging via space-time beamforming: experimental investigation of tu-
mor detection in multilayer breast phantoms. IEEE Transactions on Microwave
Theory and Techniques, 52(8), August 2004.

[33] J. Litva and T. K.-Y. Lo. Digital beamforming in wireless communications.
Artech House, Boston, 1996.

[34] R. G. Lorenz and S. P. Boyd. Robust minimum variance beamforming. IEEE
Transactions on Signal Processing, 53(5):1684–1696, May 2005.



[35] D. J. Love, R. W. H. Jr., and T. Strohmer. Grassmannian beamforming for
multiple-input multiple-output wireless systems. IEEE Transactions on Infor-
mation Theory, 49(10):2735–2747, October 2003.

[36] F. Lu, E. Milios, S. Stergiopoulo, and A. Dhanantwari. New towed-array shape-
estimation scheme for real-time sonar systems. IEEE Journal of Oceanic Engi-
neering, 28(3):552–563, July 2003.

[37] R. Mammone. Computational methods of signal recovery and recognition. Wiley,
New York, 1992.

[38] J. A. Mann and W. F. Walker. A constrained adaptive beamformer for medical
ultrasound: initial results. In 2002 IEEE Ultrasonics Symposium, October 2002.

[39] MC FCN Card. http://mc.com/literature/literature files/

MCJ6-FCN-ds.pdf. Last accessed 20 November 2006.

[40] MC PPC Card. http://mc.com/literature/literature files/

PPC7447A-dc-ds.pdf. Last accessed 20 November 2006.

[41] Mercury 6U VME. http://mc.com/products/view/index.cfm?id=10&type=

systems. Last accessed 20 November 2006.

[42] Mercury 6U VME. http://mc.com/products/view/index.cfm?id=10&type=

systems. Last accessed 30 November 2006.

[43] Mercury FCN Daughtercard. http://mc.com/literature/literature files/

MCJ6-FCN-ds.pdf. Last accessed 30 November 2006.

[44] Mercury PPC Daughtercard. http://mc.com/literature/literature files/

PPC7447A-dc-ds.pdf. Last accessed 30 November 2006.

[45] Mercury Scientific Algorithm Library. http://mc.com/products/view/index.
cfm?id=5&type=software. Last accessed 30 October 2006.

[46] Mitrion. http://www.mitrion.com/products.shtml. Last accessed 28 August
2006.

[47] ModelSim. http://www.model.com/products/products se.asp. Last ac-
cessed 29 November 2006.

[48] D. C. Moore and I. A. McCowan. Microphone array speech recognition: exper-
iments on overlapping speech in meetings. In 2003 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, April 2003.

[49] N. Moore, A. Conti, L. Smith King, and M. Leeser. An extensible framework
for application portability between reconfigurable supercomputing architectures.
To appear in Computer Magazine, 2007.



[50] NUMAlink. http://www.sgi.com/pdfs/3771.pdf. Last accessed 29 November
2006.

[51] W. Peck, E. Anderson, J. Argon, J. Stevens, F. Baijot, E. Komp, D. Andrews,
and R. Sass. Hthreads: a computational model for reconfigurable devices. In
Field Programmable Logic and Applications, 2006.

[52] H. Quinn. Runtime tools for hardware/software systems with reconfigurable hard-
ware. PhD thesis, Northeastern University, October 2004.

[53] Race++. http://mc.com/technologies/standards.cfm. Last accessed 20
November 2006.

[54] Reconfigurable Computing Lab at Northeastern University. http://www.ece.

neu.edu/groups/rcl/index.html. Last accessed 30 November 2006.

[55] W. Rhee, W. Yu, and J. M. Cioffi. The optimality of beamforming in uplink
multiuser wireless systems. IEEE Transactions on Wireless Communication,
3(11):86–96, January 2004.

[56] K. Schuler, M. Younis, R. Lenz, and W. Wiesbeck. Array design for automotive
digital beamforming radar system. In 2005 IEEE International Radar Confer-
ence, May 2005.

[57] M. L. Seltzer, B. Raj, and R. M. Stern. Liklelihood-maximizing beamforming for
robust hands-free speech recognition. IEEE Transactions on Speech and Audio
Processing, 12(5):489–498, September 2004.

[58] SGI RASC. http://www.sgi.com/products/rasc/. Last accessed 29 Novem-
ber 2006.

[59] N. Shirazi, A. Walters, and P. Athanas. Quantitative analysis of floating point
arithmetic on FPGA based custom computing machines. In IEEE Symposium
on FPGAs for Custom Computing Machines, pages 155–162, 1995.

[60] Synplify Pro. http://www.synplicity.com/products/synplifypro/index.

html. Last accessed 24 November 2006.

[61] K. Underwood. FPGAs vs. CPUs: trends in peak floating-point performance. In
FPGA ’04: Proceedings of the 2004 ACM/SIGDA 12th international symposium
on Field programmable gate arrays, pages 171–180, New York, NY, USA, 2004.
ACM Press.

[62] K. D. Underwood and K. S. Hemmert. Closing the gap: CPU and FPGA trends
in sustainable floating-point blas performance. IEEE Symposium on FPGAs for
Custom Computing Machines, 00:219–228, 2004.



[63] B. D. Van Veen and K. M. Buckley. Beamforming: a versatile approach to
spatial filtering. IEEE ASSP Magazine, 5(2):4–24, April 1988.

[64] Vector Signal Image Processing Library. http://www.vsipl.org. Last accessed
28 August 2006.

[65] S. A. Vorobyov, A. B. Gershman, and L. Zhi-Quan. Robust adaptive beam-
forming using worst-case performance optimization: a solution to the signal
mismatch problem. IEEE Transactions on Signal Processing, 51(2):313–324,
February 2003.

[66] M. Vuletic, L. Pozzi, and P. Ienne. Seamless hardware-software integration
in reconfigurable computing systems. IEEE Design and Test of Computers,
22(2):102–113, 2005.

[67] WildstarII. http://www.annapmicro.com/wsiippci.html. Last accessed 29
November 2006.

[68] Y. Xie, B. Guo, J. Li, and P. Stocia. Novel multistatic adaptive microwave imag-
ing methods for early breast cancer detection. EURASIP Journal on Applied
Signal Processing, pages 1–13, 2006.

[69] Xilinx. http://www.xilinx.com. Last accessed 8 October 2006.

[70] Xilinx ISE. http://www.xilinx.com/ise/logic design prod/foundation.

htm. Last accessed 24 November 2006.

[71] Xilinx VirtexII Pro. http://www.xilinx.com/products/silicon solutions/

fpgas/virtex/virtex ii pro fpgas/index.htm. Last accessed 29 November
2006.

[72] T. Yoo and A. Goldsmith. Optimality of zero-forcing beamforming with mul-
tiuser diversity. In 2005 IEEE International Conference on Communications,
May 2005.

[73] L. Zhuo and V. K. Prasanna. Sparse matrix-vector multiplication on FPGAs. In
FPGA ’05: Proceedings of the 2005 ACM/SIGDA 13th international symposium
on Field-programmable gate arrays, pages 63–74, New York, NY, USA, 2005.
ACM Press.


