
The Unified Floating Point Vector Co-processor for

Reconfigurable Hardware

A Thesis Presented

by

Jainik Kathiara

The Department of Electrical and Computer Engineering

in partial fulfillment of the requirements

for the degree of

Master of Science

in

ELECTRICAL AND COMPUTER ENGINEERING

Advisor:

Prof. Miriam Leeser

Dissertation Committee:

Prof. Stefano Basagni

and

Prof. Ningfang Mi

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT

NORTHEASTERN UNIVERSITY

Boston, Massachusetts

2010

 2

© Copyright 2010 by Jainik Kathiara

All Rights Reserved

 3

NORTHEASTERN UNIVERSITY
Graduate School of Engineering

Thesis Title: The Unified Floating Point Vector Co-processor for

Reconfigurable Hardware

Author: Jainik Kathiara.

Department: Electrical and Computer Engineering.

Approved for Thesis Requirements of the Master of Science Degree

Thesis Advisor: Prof. Miriam Leeser Date

Thesis Committee Member: Prof. Stefano Basagni Date

Thesis Committee Member: Prof. Ningfang Mi Date

Department Chair: Prof. Ali Abur Date

Graduate School Notified of Acceptance:

Dean: Dr. Sara Wadia-Fascetti Date

 4

ABSTRACT

There has been an increased interest recently in using embedded cores on FPGAs.

Many of the applications that make use of these cores have floating point operations. Due

to the complexity and expense of floating point hardware, these algorithms are usually

converted to fixed point operations or implemented using floating-point emulation in

software. As the technology advances, more and more homogeneous computational

resources and fixed function embedded blocks are added to FPGAs and hence

implementation of floating point hardware becomes a feasible option.

In this research we have implemented a high performance, autonomous floating

point vector co-processor (FPVC) that works independently within an embedded

processor system. We have presented a unified approach to vector and scalar computation,

using a single register file for both scalar operands and vector elements. The Hybrid

vector/SIMD computational model of FPVC results in greater overall performance for

most applications along with improved peak performance compared to other approaches.

By parameterizing vector length and the number of vector lanes, we can design an

application specific FPVC and take optimal advantage of the FPGA fabric. For this

research we have also initiated designing a software library for various computational

kernels, each of which adapts FPVC‟s configuration and provide maximal performance.

The kernels implemented are from the area of linear algebra and include matrix

multiplication and QR and Cholesky decomposition. We have demonstrated the operation

of FPVC on a Xilinx Virtex 5 using the embedded PowerPC.

 5

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor Professor Miriam Leeser for

her support and encouragement during my Master‟s thesis and invaluable guidance for

my curriculum. I would also like to express my sincere gratitude to her for patiently

waiting and correcting my thesis. I feel lucky to have such a wonderful academic and

research advisor, to whom you can always look up on for guidance, inspiration and

patience.

I would also like to express my gratitude to Professor Stefano Basagni and

Professor Ningfang Mi for agreeing to serve in my master‟s thesis defense committee. I

would also like to thank my fellow visiting researcher Paolo Palana, who helped me to

design the linear algebra kernels for benchmarking my design and providing critical

review about my design. I would also like to thank my fellow researchers for their help

and support throughout my research at Reconfigurable Computing Laboratory.

Finally, I would like to thank my loving family and friends for their constant

support and encouragement.

 6

Contents

1 INTRODUCTION... 10
1.1 Reconfigurable Architecture ... 12

1.1.1 Embedded Block RAMs: .. 13
1.1.2 Multiply – Accumulate Blocks ... 13
1.1.3 Embedded Microprocessor Blocks ... 13

1.2 Fixed point versus Floating point arithmetic ... 14
1.2.1 Fixed Point Data Format .. 14
1.2.2 Floating point data format .. 15
1.2.3 Floating Point Libraries.. 16

1.3 Floating point arithmetic unit on FPGA ... 18
1.4 Contribution .. 22
1.5 Thesis Outline .. 23

2 VECTOR PROCESSING OVERVIEW ... 24
2.1 Vector Operation ... 25
2.2 Vector Memory and Vector Register Architecture ... 26
2.3 Vector Length Control .. 26
2.4 Vector Lane ... 27
2.5 Vector Chaining versus Hybrid Vector-SIMD Model ... 28
2.6 Vector Memory Access Patterns ... 29
2.7 Recent Trends in Vector Architecture ... 30
2.8 Conclusions ... 31

3 FLOATING POINT VECTOR CO-PROCESSOR DESIGN 32
3.1 Floating Point Vector Co-processor Architecture ... 33

3.1.1 FPVC – The Vector Co-processor .. 34
3.1.2 Local Instruction and Data RAM .. 34
3.1.3 System Bus Interface ... 35

3.2 Vector-Scalar ISA ... 37
3.2.1 Memory Access Instructions ... 39
3.2.2 Arithmetic Instruction and Instruction masking .. 40
3.2.3 Inter Lane Communication Instruction .. 41

3.3 Vector-Scalar Pipeline .. 43
3.3.1 Execution Unit ... 45
3.3.2 Vector Register File ... 46
3.3.3 Load Store Unit ... 48

3.4 Configurable Parameters .. 50
3.5 Conclusion ... 51

4 RESULTS AND DISCUSSION ... 52
4.1 Experimental Setup .. 53
4.2 Linear Algebra.. 55
4.3 DOT Product .. 55
4.4 Matrix - Vector Multiplication .. 59
4.5 Matrix – Matrix Multiplication ... 60
4.6 QR Decomposition Using Givens Rotation ... 62
4.7 Cholesky Decomposition .. 64
4.8 Area requirement .. 66
4.9 Conclusion ... 66

5 CONCLUSIONS AND FUTURE WORK .. 67

 7

REFERENCES ... 70

APPENDIX A ... 74
A.1 Data Types ... 75
A.2 Addressing modes .. 75
A.3 Instruction Classes ... 75
A.4 Instruction References ... 76
A.5 Instruction Format ... 76
A.6 Instructions ... 77
A.7 Instruction opcode encoding .. 79

 8

List of Tables
Table 3.1 Floating Point Operations and their Latencies ... 45

Table 3.2 Configuration Parameters ... 50

Table 4.1 Area Usage For Different FPVC Configuration ... 66

 9

List of Figures

Figure 1.1 Modern Field Programmable Logic Arrays (Courtesy [7])...................... 12

Figure 1.2 Data representation in fixed point format .. 14

Figure 2.1 SAXPY/DAXPY computational kernel .. 25

Figure 2.2 Strip mined SAXPY/DAXPY code .. 26

Figure 2.3 Vector lane diagram ... 27

Figure 2.4 Vector chaining (a) versus hybrid vector/SIMD execution (b). 28

Figure 3.1 Vector Co-processor Block Diagram .. 33

Figure 3.2 User programming model of a vector scalar architecture 37

Figure 3.3 Vector Co-processor Pipeline .. 44

Figure 3.4 Vector register storage partitining .. 47

Figure 3.5 Matrix subset access ... 49

Figure 4.1 Embedded System with FPVC and Xilinx FPU ... 53

Figure 4.2 Typical Program Flow for FPVC Kernel ... 54

Figure 4.3 Pseudo Code For DOT PRODUCT .. 56

Figure 4.4 DOT Product Performance for Lane Scaling .. 57

Figure 4.5 DOT PRODUCT Performance for short vector scaling 57

Figure 4.6 Pseudo Code for Matrix-Vector Multiplication ... 59

Figure 4.7 Matrix Vector Performance for Lane scaling .. 60

Figure 4.8 Pseudo Code for Matrix-Matrix Multiplication .. 61

Figure 4.9 Matrix-Matrix Multiplication for Lane Scaling .. 61

Figure 4.10 Pseudo Code for QR Decomposition ... 62

Figure 4.11 QR Decomposition Performance for Lane Scaling 63

Figure 4.12 Pseudo code for Cholesky Decomposition .. 64

Figure 4.13 Cholesky Decomposition Performance for Lane Scaling 65

file:///C:/Users/kathiara.j/Downloads/JK_MS_Thesis_Last_Edits.docx%23_Toc282096140
file:///C:/Users/kathiara.j/Downloads/JK_MS_Thesis_Last_Edits.docx%23_Toc282096142
file:///C:/Users/kathiara.j/Downloads/JK_MS_Thesis_Last_Edits.docx%23_Toc282096143
file:///C:/Users/kathiara.j/Downloads/JK_MS_Thesis_Last_Edits.docx%23_Toc282096147
file:///C:/Users/kathiara.j/Downloads/JK_MS_Thesis_Last_Edits.docx%23_Toc282096152
file:///C:/Users/kathiara.j/Downloads/JK_MS_Thesis_Last_Edits.docx%23_Toc282096153
file:///C:/Users/kathiara.j/Downloads/JK_MS_Thesis_Last_Edits.docx%23_Toc282096154
file:///C:/Users/kathiara.j/Downloads/JK_MS_Thesis_Last_Edits.docx%23_Toc282096155
file:///C:/Users/kathiara.j/Downloads/JK_MS_Thesis_Last_Edits.docx%23_Toc282096156
file:///C:/Users/kathiara.j/Downloads/JK_MS_Thesis_Last_Edits.docx%23_Toc282096157
file:///C:/Users/kathiara.j/Downloads/JK_MS_Thesis_Last_Edits.docx%23_Toc282096158
file:///C:/Users/kathiara.j/Downloads/JK_MS_Thesis_Last_Edits.docx%23_Toc282096159
file:///C:/Users/kathiara.j/Downloads/JK_MS_Thesis_Last_Edits.docx%23_Toc282096160
file:///C:/Users/kathiara.j/Downloads/JK_MS_Thesis_Last_Edits.docx%23_Toc282096161
file:///C:/Users/kathiara.j/Downloads/JK_MS_Thesis_Last_Edits.docx%23_Toc282096162
file:///C:/Users/kathiara.j/Downloads/JK_MS_Thesis_Last_Edits.docx%23_Toc282096163

 10

1 INTRODUCTION

Reconfigurable hardware bridges a gap between ASICs (Application Specific

Integrated Circuits) and microprocessor based systems. Recently, there has been an

increased interest in using reconfigurable hardware for multimedia, signal processing and

other computationally intensive embedded processing applications. These applications

perform floating point arithmetic computation for high data accuracy and high

performance. Reconfigurable hardware allows the designer to customize the

computational units in order to best match application requirements and at the same time,

optimize device resource utilization. Because of these advantages, extensive research has

been done to efficiently implement floating point computations on the reconfigurable

hardware. Floating point (FP) computations can be categorized in three classes:

1. Software library

2. General purpose floating point unit

3. Application specific floating point data path

 11

A Software library, is easy to implement but usually results in the highest

execution time. Custom hardware accelerators are highly optimized for performance but

require hardware design knowledge and long design cycles. These are the two extreme

corners of the design tradeoffs. General purpose floating point unit has a onetime long

design cycle cost but can provide comparable performance to hardware accelerators.

Typically, FP applications have a relatively small set of operations that are

repeatedly performed over a large volume of floating point data. This form of parallelism

is referred to as data-level parallelism. For these applications, vector processing offers

simple and straightforward parallelism by executing mathematical operations on multiple

data elements simultaneously. Because of the availability of a large amount of

heterogeneous resources on a Field Programmable Gate Array (FPGA), Yiannacouras [5]

and Yu [6] have implemented two of the earliest Field Programmable Gate Array (FPGA)

based vector processors and discussed various different parameterization of the

processors. But these vector processors and parameterization are limited to integer

arithmetic only.

Initial sections of the chapter give the background information about

reconfigurable architecture, floating point data format and various FPGA based FP

libraries. The following section describes related work in the area of general purpose

floating point unit implementation. At the end of this chapter, we list the contributions of

this research and provide an outline of the rest of the thesis.

 12

1.1 Reconfigurable Architecture

Reconfigurable architectures is a computer architecture combining some of the

flexibility of software with the high performance of hardware by processing with very

flexible high speed computing fabrics. An example is Field Programmable Gate Arrays

(FPGAs). The principle difference between reconfigurable architecture and a

microprocessor based system is the ability to make substantial changes to the datapath

itself in addition to the control flow. Similarly, reconfigurable architecture differentiates

itself from ASICs by providing run time or compile time reconfigurability to adapt

application specific hardware requirements and hence reduces design cycle time as well

as non-recurring engineering cost.

FPGAs are integrated circuits that contain large, two-dimensional arrays of

homogeneous configurable logic blocks (CLBs). Each CLB has logical elements (LE).

The logic element connects to a switch matrix to access the configurable distributed

routing network. The LEs support both combinational logic and memory storage. Each

FPGA logic element (LE) contains a look-up table (LUT) and a one-bit flip-flop (FF).

This architecture has been widely adopted to speed up computationally intensive

Figure 1.1 Modern Field Programmable Logic Arrays (Courtesy [7])

 13

applications. As technology advances, modern FPGAs are getting denser and faster. A

single FPGA chip has millions of gate equivalents and clock speeds above 100 MHz. As

shown in Figure 1.1, most current FPGA devices employ an island-style fine grained

architecture [8], with additional fixed-function heterogeneous blocks such as embedded

block RAMs, DSP functions such as multiply and accumulate and general purpose

embedded processors.

1.1.1 Embedded Block RAMs:

Embedded RAMs in FPGAs provide large storage structures. While the capacity

of a given block RAM is fixed, multiple block RAMs can be connected through the

interconnection network to form larger capacity RAM storage. A key limitation of block

RAMs is they have only two access ports allowing just two simultaneous reads or writes.

1.1.2 Multiply – Accumulate Blocks

The multiply-accumulate blocks, also referred to as DSP blocks, have dedicated

circuitry for performing multiply and accumulate operations. These DSP blocks can also

perform addition, subtraction and barrel shifter functions.

1.1.3 Embedded Microprocessor Blocks

The major FPGA companies provide embedded cores, both hard and soft, for use

with their processors. Altera has the Nios II soft core [1] and Xilinx offers the

MicroBlaze soft [2] and PowerPC hard cores [3] on their FPGAs.

All these large embedded logic blocks make more efficient use of on-chip FPGA

resources. However, they can also waste on-chip resources if they are not being used. In

this work, we will explore the utilization of these embedded blocks on Xilinx Virtex

FPGAs in implementing floating-point operations and vector processing.

 14

1.2 Fixed point versus Floating point arithmetic

Every numerical value is composed of an integer part, fractional part and the

delimitation which is called the radix point. Two formats are popular for storing and

manipulating data in the computational units, fixed point and floating point. In fixed

point format, the radix point is always at a predetermined position while the position of

the radix point is not fixed in floating point.

1.2.1 Fixed Point Data Format

0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0

Figure 1.2 Data representation in fixed point format

Several ways for representing values exist in the fixed point format: including

signed fixed point and unsigned fixed point numbers. In the unsigned fixed point format,

only positive values are represented. For 32-bit data, assuming the radix point to the right

of the least significant bit (i.e., only integer values are represented), the range using the

unsigned fixed point format is 0 to (2
32

 - 1). Assuming the radix point at left of the most

significant bit (i.e., only fractional values are represented), the smallest representable

fixed point value is 2
-32

. In the signed fixed point format, the most significant bit is

reserved for sign bit of the data and hence the range of the data can be -2
31

 to (2
31

 - 1).

For the given data width, the range and precision of the fixed point value will vary based

on the radix point‟s position. Figure 1.2 shows the numerical value 429.8515625 in

unsigned fixed point format.

radix point

 15

1.2.2 Floating point data format

0 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0

Figure 1.3 Data representation in Single precision floating point format

A value represented in floating point format is divided into three fields: the sign

field s, the exponent field (e) and the fraction field (f). A floating point number can be

defined as

(-1)
s
 * 1.f * 2

e-BIAS

The sign bit: 0 denotes a positive number and 1 denotes a negative number. The

biased exponent is the sum of the exponent and a constant (bias value) chosen to make

the biased exponent‟s range nonnegative. The mantissa represents the magnitude of the

number. When a number is normalized, the mantissa is composed of a leading one bit to

the left of its implied binary point and the fraction bits to the right. In this representation a

wider exponent field brings higher range, while a wider fraction field brings higher

precision. The IEEE-754 standard [9] defines a single precision floating point number to

have an exponent field 8 bits long and a fraction field 23 bits long, while for a double

precision floating point number the exponent and fraction fields are 11 and 52 bits long

respectively. These two IEEE floating point representations are the most commonly used

in computer systems where fixed hardware architecture is necessary.

The main advantages of representing data in fixed point format are simplicity in

the design and low cost [10]. But it suffers from low range and precision compared to

floating point. Higher quantization error and increased algorithm complexity are two

other issues that are inherent in fixed point arithmetic.

sign exponent fraction

 16

1.2.3 Floating Point Libraries

There are many libraries available to generate floating point operators for FPGAs.

Lienhart et al. [11] have developed a library which includes adder, multiplier, divider and

square root unit. A library unit supports generalized floating-point representation with

generic exponent and mantissa bit. They have implemented these library components on

Xilinx XC2V3000 FPGA to accelerate the smoothed particle hydrodynamics (SPH)

algorithms for N-Body simulations. The parameterisable floating-point cores that first

supported IEEE double-precision format [12] were implemented on Xilinx Virtex-II

XC2V1000 and support addition, multiplication, division and square root operations.

Govindu et al. [13] have developed an IEEE-754 standard compliant double

precision library. Instead of parameterizing range and precision of the computation units,

they parameterized the pipelined depth and level of compliance with the IEEE-754

standard. All the floating-point computation units in this library were applied to the force

and potential calculation kernels in a Molecular dynamics (MD) simulation.

Matousek et al. [14] used Logarithmic Number System (LNS) arithmetic instead

of floating point arithmetic. Their library includes addition, multiplication, division,

square and square root units and supports 32-bit and 20-bits precision. In the Logarithmic

Number System multiplication, divide and square root operation are as simple as integer

addition and subtraction whereas the main complexity lies in the addition and subtraction

operations.

The Lyon Library [15] supports both floating-point and logarithmic number

system arithmetic. This library is implemented in both pure combinational and pipelined

versions. Apart from basic arithmetic unit, it also supports exponent and logarithmic

conversion units.

 17

VFLOAT library [16], which we used to generate single precision floating point

unit supports adder, multiplier, divide, square root, format conversion units and

accumulator. Wang [17] has demonstrated K-mean clustering and QR decomposition

applications using these library operators. The key elements of the VFLOAT library

include:

 Each component in the VFLOAT library has a READY and a DONE signal along

with STALL signal to support pipelining. All the hardware modules in the library

are fully pipelined.

 The VFLOAT library has a separate denormalization, normalization and rounding

unit supporting either ”round to zero” or ”round to nearest”.

 The Library elements support some error handling and exception detection.

 The VFLOAT library has components to convert from fixed-point format to

floating point format and vice versa, which supports the implementation of hybrid

designs with both fixed-point and floating-point formats in a single design.

In summary, the VFLOAT library is a superset of many previously published

floating point formats, and is general and flexible. Except for the Lyon library, the library

is also more complete than earlier work with support for separate normalization, rounding

and some error handling. Basic operational units such as adder, multiplier, divider and

square root are generated from the parameterized floating point library or using CAD

tools. In this research, we will focus on the implementation of a floating point unit with

the help of the VFLOAT [16] library functions.

 18

1.3 Floating point arithmetic unit on FPGA

The implementation of a floating point unit in general purpose computing is

extremely common but it makes an interesting case study for an FPGA based

reconfigurable computing system. Up to now there have been many research efforts

applied to the implementation of an FPGA based Floating point unit. This research can be

categorized based on the type of communication with main processor, precision support,

number of computation units and level of autonomy.

One of the earliest works in this area is done by Fagin et al. [18]. They have

implemented IEEE-754 standard compliant floating point adder and multiplier function

on the FPGA for design space exploration. They found that the floating point unit

substantially improves performance, but technology limitations made it difficult to

implement floating point units at that time. Recently, Pittman et al. [19] have

implemented a custom floating point unit (CFPU) which is compliant with the IEEE 754

standard and improves floating-point intensive computation performance. The CFPU is

implemented on the Xilinx‟s Virtex FPGA based eMIPS platform which is partitioned

into fixed and reconfigurable regions. They demonstrated various trade-offs for area,

power and speed with the help of software profiling and run time reconfiguration for the

CFPU.

The Altera‟s Nios II processor [1] allows a user to include floating-point custom

instructions that implements single precision floating-point arithmetic operations. These

custom instructions are used to accelerate floating-point operations in Nios II C/C++

application program. The basic set of floating-point custom instructions includes single

precision floating-point addition, subtraction, and multiplication. Floating-point division

 19

is available as an extension to the basic instruction set. These are either implemented in

software emulation mode or with hardware support.

The Xilinx‟s MicroBlaze processor [2] supports a single precision floating point

unit in hardware that is tightly coupled to the embedded processor pipeline. The FPU

implements addition, subtraction, multiplication and comparison. Floating point division

and square root are available as an extension, as well as conversions from integers to

floating point and vice versa. If the FPU is not instantiated, floating point operations are

emulated in software. The Xilinx‟s PowerPC hardcore processor [3] has a floating point

unit available that supports IEEE-754 floating-point arithmetic operations in single or

double precision. Floating point instructions supported include add, subtract, multiply,

divide, square root and fused multiply-add instructions. The FPU is tightly coupled to the

PowerPC processor core with the Auxiliary Processing Unit (APU) interface [4]. The

Xilinx FPU includes 32 floating point registers.

In other research, Govindu et al. [20] described and evaluated performance of

dual-precision, pipelined, floating point arithmetic cores for addition/subtraction,

multiplication and division. Each of the arithmetic cores can be switched at run-time to

perform either one double-precision operation or two single-precision operation with the

same hardware resources. Similarly, Schulte et al. [21] have presented an interval

arithmetic [22] unit based variable precision floating point co-processor. The co-

processor gives the programmer the ability to specify the precision of the computation,

determine the accuracy of the result and recompute inaccurate results with higher

precision. For similar accuracy in the result with comparable performance, the area

 20

requirement of their coprocessor is 20% lesser than the IEEE-754 standard double

precision floating point unit.

Brunelli et al. [23] and Rodolfo et al. [24] have implemented flexible floating

point units for open source MIPS based processors. These co-processors are not tightly

coupled with the main processor and they also implement separate memory access unit

within floating point unit. All floating point data accesses are done by these memory

units which reduces traffic on the main processor bus and provides some degree of

autonomy to the floating point cores. Instructions are still provided by the main processor.

The Ramp project from Berkeley has implemented RAMP Blue, an

implementation of over one thousand cores implemented from MicroBlaze processors as

a platform for manycore research. The authors connect the processors to an independent

double precision floating point unit via FSL (Fast Simplex Link) [25]. Their main goal in

implementing the independent FPU is to keep its pipeline full all the time. Others have

implemented an autonomous FPU which can be shared by two processors [26]. Their

FPU has separate register file, instruction fetch and write back unit. In their approach,

loads and stores are handled by the processor which limits the amount of parallel

execution that they can achieve. Recently, researchers have also proposed some limited

hardware assist for the Altera SoftFloat library [27]. Their goal is to provide performance

with a very small hardware cost. Each instruction is under control of the Altera Nios

processor. This is very different from our goal to exploit the parallelism available on an

FPGA.

As the available computational resources on a single FPGA increases, multiple

floating point units can be implemented on the same FPGA. Researchers have published

 21

accelerating MicroBlaze floating point operations using an independent FPU [28]. The

authors have implemented Single Instruction Multiple Data (SIMD) based vector floating

point unit and suggested that, by integrating DMA and local memory within the floating

point unit, they can reduce system bus traffic and improve the performance of the FPU.

Their FPU only supports addition, subtraction and multiply operations while we support

division and square root as well.

Yang et al. [29] have designed a floating point vector unit which is tightly

coupled with the scalar processor. They have implemented floating point adder and

multiplier in the floating point vector unit and used the vector unit to solve sparse

matrices based on real flow network‟s linear equations. In similar research [30], Chen et

al. proposed unified floating point unit approach to improve overall performance of the

application. They conclude that by executing a separate vector thread on each lane can

greatly improve the performance.

Only the last two researches are closely related to our research as both floating

point unit implements Hybrid vector-SIMD computational model (refer section 2). But

vector cores are still tightly coupled with the scalar core, which is responsible for integer

arithmetic and program flow control. Also, in these floating point units, the number of

floating point vector lanes and register file size are fixed and cannot be changed. In our

research, we implement a completely autonomous floating point vector unit where the

register file size and floating point vector lanes are configurable. Also, they have

assumed that the targeted application does not perform any inter lane communication.

 22

1.4 Contribution

The main contribution of this research is applying a unified scalar and vector

processing model to data-parallel floating point applications. Such a soft vector processor

provides a scalable and user-selectable amount of acceleration and resource usage, and a

configurable feature set to the user. The scalability of the vector processor allows users to

make large performance and resource tradeoffs in the vector processor with little or no

modification to software.

We are also developing a software library that can adapt to the floating point

unit‟s configuration. We include linear algebra kernels such as matrix multiplication, QR

decomposition and Cholesky decomposition. Use of such a library makes accessible to

the user a much larger design space and larger possible tradeoffs than current soft

processor solutions. This architecture independent library allows acceleration of multiple

sections of an application and multiple applications.

As part of this research, a complete vector processor was implemented within an

embedded processor system. It targets a Xilinx Virtex V FPGA to illustrate the feasibility

of the approach and possible performance gains. The co-processor instruction set

architecture is highly inspired by the VIRAM instruction set architecture (ISA) [31], but

makes modifications to include the scalar ISA features for FPGAs. A novel instruction

execution model that is a hybrid between traditional vector and single-instruction-

multiple-data (SIMD) is used in the co-processor.

 23

1.5 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 gives an overview

of vector processing and previously implemented vector processors. Chapter 3 describes

in detail the architecture of the floating point vector co-processor. Chapter 4 provides

software library description, experimental results and describes various design trade-offs.

Chapter 5 summarizes the work in this thesis and provides suggestions for future work.

 24

2 VECTOR PROCESSING OVERVIEW

Most current microprocessors have scalar instruction sets. A scalar instruction set

is one which requires a separate opcode and related operand specifiers for every

operation to be performed. Vector processors provide vector instructions in addition to

scalar instructions. This chapter reviews vector processing in general, defines terms used

in the rest of the thesis and lists recent trends in vector execution architecture.

 25

2.1 Vector Operation

The code in Figure 2.1 is called SAXPY/DAXPY loop which forms the inner loop

of the Basic Linear Algebra Subprograms library [42]. For the above code, A and Y are

vectors and x is a scalar value. Each iteration of the SAXPY/DAXPY loop, performs

below six steps.

1. Load element from vector A

2. Load element from vector Y

3. Load scalar value x

4. Multiply A‟s element with x

5. Add result of multiplication to element of Y

6. Store result back in vector Y

 For a scalar processor, these operations will be performed in a loop. A Vector

processor provides direct instruction set support for operations on whole vectors i.e., on

multiple data elements rather than on a single scalar value. This vector instruction

specifies operand vectors and a vector length, and an operation to be applied element-

wise to these vector operands. Assuming the vector length is equal to the number of

elements in each vector register then the SAXPY/DAXPY operation can be performed

with just six instructions. Thus, vector operations reduce the dynamic instruction

bandwidth requirement.

for (i=0; i < n; i++)

Y[i] = A[i] * x + Y[i];

Figure 2.1 SAXPY/DAXPY computational kernel

 26

2.2 Vector Memory and Vector Register Architecture

There are two main classes of vector architecture: Vector Memory Architecture

and Vector Register Architecture. In vector memory architecture such as the CDC STAR

100 [32], operands are read from memory and results of the operation performed on

operands will be stored back in to memory. In vector register architecture such as Cray

series [33], operands are read from vector registers and results of the operation performed

on operands are stored back in the vector registers. Vector memory architecture has

higher memory bandwidth requirement than vector register architecture.

2.3 Vector Length Control

A vector processor has a natural length determined by the number of elements in

each vector register, which is called the Maximum Vector Length (MVL). It is highly

unlikely that a given program will have vector length that equals MVL. The size of all the

vector operations for SAXPY/DAXPY depends on “n”, which may not be known until run

time. The solution is to create a vector-length register (VLR). The VLR controls the

length of any vector operation. However, the value of VLR cannot be greater than the

natural vector length of the processor.

m = n; i =0;

while (m > MVL){

 for (j = 0; j < MVL; j= j++)

 Y[i*MVL+j] = A[i*MVL+j] * x + Y[i*MVL+j];

 m = m – MVL;i++;}

for (j = 0;j < m; j++)

 Y[i*MVL+j] = A[i*MVL+j] * x + Y[i*MVL+j];

Figure 2.2 Strip mined SAXPY/DAXPY code

 27

If the vector length is longer than the maximum length, a technique called strip

mining is used. As shown in Figure 2.2, strip mining is the generation of code such that

each vector operation is done for a size less than or equal to the MVL. In our vector

processing, strip mining will divide vector execution into two parts. The first for loop will

be vectorizable for length equals to MVL, whereas, the second for loop is vectorizable for

length less than MVL.

2.4 Vector Lane

Figure 2.3 Vector lane diagram

The vector lanes of a vector unit are shown in detail in Figure 2.3. Each vector

lane has a complete copy of the functional units, a partition of the vector register file and

vector flag registers. All vector lanes receive the same control signals and operate

independently without communication for most vector instructions. With more vector

lanes, a fixed-length vector can be processed in fewer cycles, improving performance.

Processor which supports vector operations through parallel lanes is generally known as

Single Instruction Multiple Data (SIMD) processors. Many popular microprocessors have

extended instruction set architecture (ISA) to support SIMD instructions such as Intel

SSE, MMX and PowerPC AltiVec.

 28

2.5 Vector Chaining versus Hybrid Vector-SIMD Model

Figure 2.4 Vector chaining (a) versus hybrid vector/SIMD execution (b).

Traditional vector processors are optimized towards processing long vectors.

Since they tend not to have a large number of parallel vector lanes, they rely on

pipelining and instruction chaining through the vector register file to achieve high

performance. Instruction chaining is illustrated in Figure 2.4(a). It refers to the passing of

results from one functional unit to the next between two data dependent instructions

before the entire result vector has been computed by the first unit. Chaining through the

register file has a significant drawback: it requires one read port and one write port for

each functional unit to support concurrent computations. This contributes to the

complexity and size of the traditional vector register file. Another approach, which is

described by Huang et al. [34] is to combine vector and SIMD processing and create a

hybrid vector/SIMD model, illustrated in Figure 2.4(b). In the hybrid model,

computations are performed both in parallel in SIMD fashion, and over time as in the

traditional vector model. Elements which are accessed simultaneously for parallel

execution contribute to short vectors whereas each vector register is made of multiple

short vector registers. AMD‟s GPU architecture is one of the famous Hybrid

vector/SIMD architecture.

 29

2.6 Vector Memory Access Patterns

Below is the various memory access patterns, frequently used in vector processor.

These patterns emerge from the sequence of vector memory instructions used to access

an array operand within a vectorized loop. Our design supports all of these memory

access patterns.

Strided Vector access: One of the simplest access patterns in which all vector elements

reside in the memory at constant distance from each other and hence memory accesses

are highly predictable. Most vector processors provide efficient strided access.

Permutations: A permutation access uses indexed vector memory instructions to access

every item within memory and the index value is always constant. In this access, the

index register is a scalar register.

Lookup Tables: In this type of access memory elements are accessed as per the index

register and the index is a random value. The index register is a vector register. Such

accesses can be observed in sparse matrix computations.

Neighbor Access: In this type of access, the same element in the memory is accessed

multiple times by the neighboring lanes. This access can be imitated by providing stride

value equal to zero.

Rake Access: This is a special two dimensional interleaved strided access and can be

performed with a nested loop of vector memory instructions. This access is useful when

you want to load or store multiple random rows or columns of a matrix.

 30

2.7 Recent Trends in Vector Architecture

Many optimizations are implemented in vector processors. Recent trends in vector

execution are listed below.

CODE (Clustered Organization for Decoupled Execution): A centralized vector

register file limits the number of functional units because of its size and complexity.

Kozyrakis [35] has designed a vector register file such that each vector functional unit

can directly access only a subset of the registers. The issue logic selects the appropriate

cluster to execute each instruction and the interconnection network between each subset

of the register file provides results between vector functional units.

Decoupled Vector Execution: Espasa and Valero [36] have implemented partial

dynamic scheduling by splitting the execution pipeline into three different streams: One

implements the vector computation, the second contains all the memory access

instructions and the third executes the scalar computation instructions. The decoupled

pipelined architecture can implement limited chaining with minor increase in register file

size and is able to support different latency for each vector stream.

Out-of-order Vector Execution: Register renaming and out-of-order issue in a vector

processor improves performance. Performance improvements can be achieved by

introducing extra physical registers for renaming. Renaming enables precise exceptions

to be easily implemented [37].

Vector Lane Threading: Vector lane threading (VLT) allows short-vector or scalar

threads to be run on idle vector lanes. The number of lanes assigned to each thread

corresponds to its amount of data-level parallelism [38].

 31

2.8 Conclusions

 In this chapter we have given a brief introduction to vector processing,

basic terminology used in the vector processor and recent trends in vector execution. In

FPGA implementations usually a general purpose register file is implemented in block

RAM which has only one pair of read write ports. Hence, it is hard to implement vector

chaining on FPGAs. Our Hybrid vector/SIMD computation model can provide

comparable performance. Also, we have implemented a unified vector scalar computation

approach to save on area, and adopted decoupled vector execution to support variable

pipeline latency for floating point operation. The details of our implementation are

provided in the next chapter (Chapter 3).

 32

3 FLOATING POINT VECTOR CO-PROCESSOR

DESIGN

This chapter describes the design and implementation of the Floating Point Vector

Co-processor (FPVC) targeting Xilinx FPGAs. Three key features distinguish our work

in floating-point architecture: a unified approach to scalar and vector processing, support

for different latency of each functional unit and simplicity of organization. The initial

section of this chapter provides an overall architecture of the processor. Next section

describes the Instruction Set Architecture (ISA) features whereas the unified vector core

is described in following sections. Finally, FPGA specific novel inter-lane

communication features, vector compression and expansion and configurable parameters

are described.

 33

3.1 Floating Point Vector Co-processor Architecture

The Floating Point Vector Co-processor (FPVC) is a configurable soft-core vector

processor architecture developed specifically for FPGAs. It leverages the configurability

of FPGAs to provide many parameters to configure the processor for a specific

application for desired performance and area. The FPVC instruction set supports both

scalar and vector instructions with unified register files and execution units. Instruction

set features are heavily borrowed from the instruction set of VIRAM and RISC

processors such as PowerPC and Microblaze. Currently the FPVC does not support

virtual memory and certain bit manipulation instructions, but it adds new instructions to

take advantage of DSP functionality and embedded memories.

Figure 3.1 Vector Co-processor Block Diagram

Figure 3.1 illustrates the high level view of the floating point vector processor.

The FPVC integrates local instruction and data RAM, system bus interface and a floating

point vector core.

 34

3.1.1 FPVC – The Vector Co-processor

Some of the key design features of Floating Point Vector Core are:

 Completely autonomous from the main processor

 Supports single precision and 32-bit integer arithmetic operations

 4 stage RISC pipeline for integer arithmetic and memory access

 Variable length RISC pipeline for floating point arithmetic

 Unified vector scalar general purpose register file

 Supports modified Harvard style memory architecture where there are

separate level 1 instruction and data RAM but unified level 2 memory

3.1.2 Local Instruction and Data RAM

The FPVC implements a modified Harvard style memory system architecture.

The FPVC‟s memory system is divided in two levels: main memory and local memory.

Main memory is connected to FPVC through master port of system bus interface whereas

local memory sits in between. Apart from our approach, there are many options exist for

connecting the FPVC to the main memory, such as through unified cache memory,

separate instruction and data cache, through direct connection to main memory etc. For

off-chip memory, caches are used to hide the memory latencies, but for streaming

applications in the area of embedded and scientific applications this may not be true. This

range of different memory system configurations could be interesting to explore in the

future.

As shown in Figure 3.1 instruction and data RAM constitute local memory. These

memories can be configured for various sizes with various data widths using

C_INSTR_MEM_SIZE, C_DATA_MEM_SIZE and C_MPLB_DWIDTH parameters at

 35

design compile time. The instruction and data memory are part of system address space

and can be accessed by any master on the system bus. Hence, data coherency and other

communication protocols between FPVC and other masters can be implemented through

software. Also through software, we can pre-fetch instructions and data required for

FPVC and reduce traffic on the system bus.

3.1.3 System Bus Interface

The FPVC has one slave (SLV) port for communicating with the main processor

and one master (MST) port for main memory accesses. The system bus interface for

master and slave ports is not restricted to a specific bus protocol. The slave port interface

can be connected to any type of bus including point-to-point, shared bus or simple glue

logic.

In the current design implementation, we have implemented Processor Local Bus

(PLB) [3] as the system bus interface. The PLB can be configured for 32-bit, 64-bit or

128-bit interface. Data alignment is also done in the system bus interface. The master port

of the system bus interface includes a Direct Memory Access (DMA) controller to

provide software prefetch mechanism for the vector core. DMA transfers setup include

below three steps.

1. Write source/destination address of main memory in global address register

2. Write destination/source address of local memory in local address register.

3. Configure DMA transfer parameters : includes direction of the DMA, size of

the DMA, which local memory involves in the transfer, state of DMA transfer

are provided written in configuration register

Details for each register are provided below.

 36

1) Control Register (CR) :-

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FPU

EN

INT

EN

S/W

RST
RSVD

DMA

EN

DMA

WAIT

DMA

TYPE

DMA

RNW
RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD DMA LENGTH

FPUEN (31) : Enables or disables the floating point co-processor (0 - Disable, 1 - Enable)

INTEN (30) : Interrupt enable (0 – Disable, 1 – Enable)

S/W RST (29) : Software reset (0 - No effect on co-processor, 1 – Reset co-processor)

DMAEN (27) : Enables DMA transfers (0 – Enable DMA, 1 – Disable DMA)

DMAWAIT (26) : Core execution state when DMA transfer is enabled (0 – Continue, 1 – Pause)

DMA TYPE (25) : Destination or source of DMA (0 – Instruction RAM, 1- Data RAM)

DMA RNW (24) : Direction of DMA (0 – DMA write operation, 1 – DMA read operation)

DMA LENGTH (11-0) : Length of DMA transfers in number of bytes

2) Global address register (GAR):-

It provides destination/source address to DMA controller for main memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Global Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Global Address

3) Local address register(LAR) :-

It provides destination/source address to DMA controller for local memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Local Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Local Address

 37

3.2 Vector-Scalar ISA

This programming model has 32 vector data registers, within each register there are 32

short vectors and each short vector register has 4 lanes which totals 128 elements in a

single vector register.

Special

Purpose

Registers

Vector-Scalar Register File

Scalar

Register

s

V1.0
V2.0

V1.1
V2.1

V1.31
V2.31

V3.0

add.vvv V3, V1, V2

Vector Arithmetic

V2.0

V1.0

V3.0

add.sss V3, V1, V2

Scalar Arithmetic

V1_base Immd_offset

V3.0

V3.1

V3.2

V3.3

V1_base

+

V2_index

store.vss V3, V1, V2, Immd

Memory Accesses

Figure 3.2 User programming model of a vector scalar architecture

V3.1

V3.0

 38

The goals of the Vector-Scalar ISA design are to be flexible and scalable and to

provide a simple architecture suitable for a wide range of floating point applications. Due

to trade-offs between performance versus design complexity, we selected to design new

ISA which is inspired by RISC instruction architectures such as Power ISA [3],

Microblaze ISA [2] and VIRAM vector ISA [35].

The Vector-Scalar ISA is a 32-bit instruction set. The instruction encoding allows

for 32 vector-scalar registers with variable vector length. As shown in figure 3.2, the top

short vector of each vector register can be used as a scalar register. Due to this unification

of the vector register file we can freely mix vector and scalar vector registers without any

scalar – vector core communication. Register-0 always returns the value zero. Each

vector register supports configurable lane width. The vector-scalar ISA supports

maximum vector length of C_NUM_OF_LANE * C_NUM_OF_VECTOR. These

parameters are explained in section 3.5. Vector-scalar instruction can be classified into

three major classes:

1. Memroy access Instructions

2. Artihmetic Instructions

3. Inter lane communication instructions

This classes are described below whereas each instructions are defined in

Appendix A.

 39

3.2.1 Memory Access Instructions

Vector memory instructions (load.xxx and store.xxx) support all memory access

patterns described in Chapter 2. Figure 3.2 bottom shows the rake access pattern, which

can be described by a single vector instruction in the vector scalar ISA. Rake access is

generally used in block operations for matrices. It requires a vector base address, vector

index address and immediate offset value, which is a distance between two neighbor

elements. All neighbor elements within each rake are stored in single short vector

whereas each rack of elements is stored in different short vector. The same instruction

can be used for unit stride and non unit stride access by setting the immediate offset value

to an equal distance between two vector elements in memory. Permutation and look-up

table access classes are realized by keeping immediate offset to zero and providing index

register. The only difference between permutation and look-up table accesses is the index

register is scalar and vector type respectively. Vector ISA designs anticipate that most

hardware would be optimized for unit-stride or indexed accesses; in our vector-scalar

architecture all memory accesses are performed equally efficiently.

As source and destination registers are encoded in the same opcode space, scalar

accesses are supported with the same instruction. It also allows a post-increment of the

scalar base address to be specified in the same instruction for indexed and rake accesses.

This post-increment is an arbitrary amount taken from any scalar register, and register

zero can be specified if no post-increment is required. This post-increment avoids a

separate scalar add instruction, and so saves instruction issue bandwidth.

 40

3.2.2 Arithmetic Instruction and Instruction masking

The primary application domain of our research is floating point arithmetic

applications and hence we have included several floating point instructions: floating point

add, multiply, divide and square root. In order to be an autonomous and to support basic

program control constructs, we have included basic integer arithmetic, compare and shift

instructions which operates on the full data word. One exception is the multiply

instruction which only works on the lower 16-bits of the operands and produces a 32 bit

result.

In conventional vector ISA or VIRAM ISA based vector processors [35] [39] [5]

[6], that implement separate scalar and vector processor cores, inter processor

communication instructions are usually provided to allow the scalar processor to access

single elements within a vector register. These are useful for partially vectorizable loops.

A common example is where a loop contains memory accesses that can be vectorized but

where the computation contains a dependency between loop iterations that requires scalar

execution. In our Vector-Scalar ISA, all scalar operations are performed on the first

element of the first short vector of each register and the result will be replicated to all

lanes and stored on the first short vector of the destination register. Hence, vector

instructions which require scalar data can reference the top of each register. Figure 3.2

shows vector and scalar arithmetic operation.

Masked vector instruction execution is usually provided to allow vectorization of

loops containing conditionally executed statements. A mask vector controls the element

positions where a vector instruction is allowed to update the result vector. The mask

vector may be held in special flag/mask registers.

 41

3.2.3 Inter Lane Communication Instruction

Each lane in the vector processor communicates with each other via local memory

access instructions which access local data memory. In some cases, other forms of inter-

lane communications can improve performance but these can incur significant hardware

costs to provide the necessary inter-lane communication. These Inter-lane communication

operations are vector compression and expansion. Compress instructions select the subset

of an input vector marked by a flag vector and pack these together into contiguous

elements at the start of a destination vector. Expand instructions perform the reverse

operation to unpack a vector, placing source elements into a destination vector at

locations marked by bits in a flag register.

Compress and expand operations can be used to implement conditional operations

in density-time. Instead of using masked instructions, flagged elements can be

compressed into a new vector and vector length reduced to lower execution time. After

the conditional instructions are completed, an expand operation can update the original

vectors. But, as the number of lanes increases and the number of clocks per vector

instruction drops, the advantages of compress/expand over masked instruction execution

diminishes.

There are several alternative ways of providing compress and expand

functionality. In traditional vector computers, vector compression and expansion is

implemented using scatter and gather instructions. In this approach, the masked bit is

applied to the index vector and compressed indices are written to the index vector. The

elements can then be retrieved using a vector gather instruction. Another variant of this

approach is to support compress and expand functionality as part of loads and stores. The

loads compress flagged elements as they were read from memory, and compressed stores

 42

compress elements from a vector register storing the packed vector in memory. Expand

variants can also be supported in the opposite manner. For cases where the packed vector

must move between registers and memory, these instructions avoid the inter-lane traffic

and excess memory traffic required for register-register compression or compressed index

vectors. Adding these compressed memory instructions does not require much additional

complexity on top of masked load/stores, but it does require additional instruction

encodings.

T0 [39], VIRAM [38], VESPA [5] and soft vector accelerator [6] use the crossbar

wiring to perform inter-lane communication. In this approach flagged registers are only

routed to the destination register. This register-register compress avoids the use of

memory address bandwidth to move data and so may have the highest performance for

machines with limited address bandwidth at the expense of higher design complexity of

the load store unit. The index vector compression is easy to simulate with a register-

register compress.

We have implemented a register-register instruction that reads a source flag

register and a source vector data register, stores it to a FIFO inside the load store unit and

writes these flagged data into the first elements of the destination vector register in serial

fashion. The advantage of this approach is that it does not require access to memory and

it does not require a crossbar in the load store unit. Expand instructions are implemented

similarly.

 43

3.3 Vector-Scalar Pipeline

The FPVC is based on the classic dynamic scheduling (In-order issue and our-of-

order completion) RISC pipeline. The four stages of the pipeline are Instruction Fetch,

Decode, Execution and Write Back. The pipeline is intentionally kept short so integer

vector instructions can complete in a small number of cycles to eliminate the need for

forwarding multiplexers and to reduce area. Due to the short pipeline, floating point

instruction spends most of their time in the floating point unit which optimizes the overall

execution latency. As both scalar and vector instructions are executed from the same

instruction pipeline, both type of instructions are freely mixed in the program execution

and stored in the same local instruction memory.

As shown Figure 3.3, the fetch and decode stages are common to all instructions.

The instruction fetch stage (IF) is used to access the instruction. During IF stage, the next

instruction address is determined and sent to local instruction RAM, which returns the

instruction by the end of the cycle. We assume that all instructions fit in the local

instruction RAM. Therefore the size put a limitation on the size of program. An

alternative approach is an instruction cache which would support larger programs at the

cost of increased complexity. The fetch unit of the pipeline always assumes that branches

are not taken and fetches an instruction from the next instruction address. Hence, the

branch penalty for the vector co-processor will be two cycles.

During the decode stage (ID), instructions pass through three steps and all steps

are performed in a single clock cycle. In the first step, the instruction is decoded and data

hazard checkers perform checks to find out whether the current instruction‟s source

and/or destination registers are in flight. Due to dynamic scheduling, not only RAW

 44

(Read after Write) hazards exist but the data hazard checker must also check WAW

(Write after Write) and WAR (Write after Read) hazards. Until all hazards are cleared,

the Instruction Decode unit stalls the next instruction fetch.

Figure 3.3 Vector Co-processor Pipeline

Once all hazards are cleared, the instruction enters the vector state machine. If the

instruction is a scalar instruction then the vector state machine issues the instruction to

the execution unit and the new fetched instruction enters the decode stage in next clock

cycle. If it is a vector instruction, based on the maximum vector length stored in the MVL

register, the instruction will be repeatedly issued to the execution unit.

As the instruction encoding can address 32 short vector registers as

source/destination registers, the vector counter together with source/destination register

references the current instruction‟s operand data. Finally, in the last step, when the

decode stage issues an instruction to the execution unit, it updates the scoreboard to keep

track of in flight instructions for data hazard checks.

Once the instruction reaches the end of the execution unit, the result is written

back to registers.

 45

3.3.1 Execution Unit

The execution unit performs floating point arithmetic (add, sub, mul, div, sqrt),

integer arithmetic (add, sub, mul), shift operations, comparisons of the operands and

memory accesses to local data memory. These functions are shown in Figure 3.3. The

execution unit is divided into three main units based on the type of data and memory

access for decouple execution. These three units are floating point unit (FPU), integer

unit (IU) and load store unit (LSU) and all these units work independently from each

other. To keep our overall design simple, instruction decoding is divided into two parts.

First, partial decoding is done in the decode stage which is useful for data hazard

checking and scoreboarding. The second part is implemented in the execution unit and

directs the current instruction to a particular unit.

Table 3.1 Floating Point Operations and their Latencies

Normalization and rounding for the floating point arithmetic functions are done

along with multiplexing in the data path. The IEEE 754 standard single precision

functional units are generated from the VFLOAT library [16]. Latency for each function

unit is shown in Table 1.1.

Modern FPGAs include fixed computational units such as adders, multipliers and

barrel shifter as well as storage elements such as block RAMs. All computational units

MODULE Latency

Denormalization 0

Normalization 1

Rounding 1

Add 4

Multiply 4

Division 10

Square root 11

 46

are pipelined so they can produce result in single cycle with a reasonable operating

frequency.

Since the execution unit supports dynamic scheduling all three major units works

independently from each other. Hence, a structural hazard may occur at the end of

execution of an operation. To avoid this problem, we have implemented an arbiter

between the end of the execution stage and the write back stage of the pipeline. This

arbiter can commit one result in each clock cycle. When multiple results are available at

the same time, one will be written to the register file, and other results will be stalled. We

currently implement a straightforward fixed arbitration scheme with the load store unit

having the highest priority and integer arithmetic with lowest priority, but will consider

other schemes in the future.

3.3.2 Vector Register File

The vector register file lies at the heart of the vector core. It provides temporary

storage for intermediate values and interconnection between functional units. The number

of registers and length of each vector register is a key decision in the vector core design.

Here, first we will discuss various ways to configure vector registers and configurations

in previous vector processors and then we present our implementation of the vector

register.

Register-Partitioned versus Element-Partitioned Register Banks

There are two orthogonal ways in which we can divide the vector register storage

into banks. The first places elements belonging to the same vector register into the same

bank, which is called register partitioned. The second places elements with the same

 47

element index into the same bank, which is called element partitioned. A separate

interconnection network connects banks and function unit ports.

Figure 3.4 Vector register storage partitining

Register partitioning is created for an example vector register file with 4 vector registers

each 8 elements long. All vector registers are addressed in Vx[y] format, where x denotes

register number, y denotes the element number. All configurations have been divided into

4 memory banks.

Figure 3.4(a) shows a vector storage scheme which is popular in traditional vector

processors and SIMDized vector processor. This is the simplest vector storage scheme as

it does not require any interconnection network between banks and functional units. With

this scheme, a functional unit reserves a bank port for the duration of an instruction‟s

execution. If another functional unit tries to access the same bank using the same port, it

must wait for the first instruction to finish execution.

Traditional vector processors are heavily dependent on long vectors and vector

chaining, but because of the exclusivity of each instruction on a single bank port,

chaining through the register file requires extra ports. Similarly, a SIMDized processor

can only be scaled by the number of lanes but as you scale the lanes, resource usage and

 48

efficiency of resource utilization may be severely hit. Hence, this is a limited scaling

option, even though it is the simplest to implement.

An element-partitioned scheme is shown in figure 3.4(b). By interleaving vector

register storage across multiple banks, a single instruction cycles through all the banks

one after another and hence, we can reduce the number of ports required on each bank.

This allows all functional units to perform multiple chained accesses to the same vector

register even though each bank has a limited number of ports. This scheme is

implemented in the soft vector accelerator, VIRAM [35], T0 [39] and RSVP [40]. This

can scale better than the register-partitioned scheme, but as the number of element

increases so as the number of banks and the interconnection network will become

bottleneck of the design.

 In an FPGA, the vector register file is implemented in block RAM and this RAM

has only one pair of asynchronous read and write ports, which lends itself to the element-

partitioned scheme. But with the adaption of the Hybrid-SIMD model, we can

partitioned long vectors into short vectors and are able to store the short vectors of each

vector register in a single bank. Thus we can avoid the limitations of element-partitioned

banks and achieve the simplicity of the register-partitioned bank. Hence we used a

register storage scheme as shown in figure 3.4(c).

3.3.3 Load Store Unit

Memory instructions are dispatched to the vector load store unit controller at the

end of the ID stage. The Load Store Unit contains a small memory controller which is a

state machine that generates basic memory read-write signals and the pipeline control

signals for the remainder of the memory pipeline. Basic stages of the state machine are

 49

memory address calculation, memory access and write back results to the vector register

file. In the address calculation stage, the base register is updated with the index value

based on access type. The load store unit supports vector unit stride, vector non-unit

stride, index accesses and scalar access.

In traditional vector processors, multiple memory access ports or wide read-write

ports are implemented. Multiple ports require that memory has multiple read-write port

available whereas wide read-write ports only optimize unit stride operations. In an FPGA,

the load store unit is connected to only on-chip block RAM memory, which has only one

read-write port available. Hence, to support multiple memory accesses requires a crossbar

and data alignment logic. To keep the design simple and to follow strictly sequential

memory consistency model, we serialized all the memory accesses. Thus each memory

access is performed in 3 clock cycles. One optimization is that the load store unit can do

burst accesses for each short vector. Burst size depends on the number of lane parameter.

So, if the vector scalar architecture has 32 short vectors per vector-scalar register and

each short vector accommodates 4 lanes then the total number of memory access will be

128. These 128 memory accesses will be partitioned into 32, 4-beat bursts accesses.

Figure 3.5 Matrix subset access

Two dimensional matrix accesses or rake accesses can be done with a single vector

instruction. Here, we provided base address, arbitrary index value for post increment and

immediate stride values.

 50

3.4 Configurable Parameters

Table 3.2 Configuration Parameters

Table 3.2 lists the configurable parameters and features of the FPVC. As unified

vector scalar register stores integer and floating point data, C_EXP_BITS, C_MAN_BITS

will decide element size of the FPVC. Maximum Vector Length is determined by

C_NUM_OF_LANE and C_VECTOR_LENGTH. Element size, the number of registers

defined in the ISA and the FPGA embedded memory block size constrains Maximum

Vector Length. C_INSTR_MEM_SIZE and C_DATA_MEM_SIZE determine the size of

local memory. These are the primary parameters of FPVC that impact design.

C_ADD_MAN_BITS,C_MUL_MAN_BITS,C_DIV_MAN_BITS and C_SQRT_MAN_BITS

are the secondary parameters. We are using the VFLOAT [16] library design modules

which support customized range and precision of each floating point unit. The secondary

parameters enables us to do more fine tuning of the design according to the application

requirements but currently we support only single precision floating point operations

using these units.

Parameter Name Description
Typical

Value

C_EXP_BITS Exponent width for floating point data 8-11 bits

C_MAN_BITS Mantissa width for floating point data 23-52 bits

C_ADD_MAN_BITS Mantissa width for floating point addition 23-52 bits

C_MUL_MAN_BITS Mantissa width for floating point multiply 23-52 bits

C_DIV_MAN_BITS Mantissa width for floating point division 23-52 bits

C_SQRT_MAN_BITS Mantissa width for floating point square root 23-52 bits

C_NUM_OF_LANE Number of parallel functional units 1,2,4,8

C_VECTOR_LENGTH Number of short vectors 1,2,4,8,16,32

C_INSTR_MEM_SIZE Size of local instruction RAM 1K-64KB

C_DATA_MEM_SIZE Size of local data RAM 1K-64KB

 51

3.5 Conclusion

In this chapter, we have presented the overall architecture of the floating point

vector co-processor and proposed the new vector scalar ISA. We have discussed various

design trade-offs in the co-processor pipeline and inter-lane communication operation,

compression and expansion. Finally, we have listed various configurable parameters

which can be defined for each application domain. True reconfigurable processor based

system, not only provide configurable hardware but it should have adaptable software for

different hardware configuration. In the next chapter, we present adaptable software

design and results for different FPVC configurations.

 52

4 RESULTS AND DISCUSSION

Numerical linear algebra kernels are key components in scientific computing,

multimedia and human-machine interface tasks. With the rapid advances in technology,

hardware acceleration of linear algebra applications using FPGAs has become feasible. In

this chapter, we describe software kernels based on BLAS [42] and LINPACK [41]

libraries that run on our vector scalar co-processor architecture. The design is

implemented on the Xilinx‟s Virtex 5 FPGA and performance of each FPVC

configuration for these kernels is compared against performance of an embedded

processor block on Xilinx‟s Virtex 5 FPGA.

 53

4.1 Experimental Setup

We have tested the FPVC for correctness as well as for area usage and speed. The

FPVC is implemented in VHDL and synthesized using Xilinx ISE 10.1 CAD tools

targeting Virtex-5 FPGAs. We have compared various FPVC configurations against a

hard processor (PowerPC 440 with the Xilinx FPU [3]) using various linear algebra

kernels. We have also compared area and speed for each configuration of the FPVC.

Figure 4.1 Embedded System with FPVC and Xilinx FPU

The Xilinx ML510 board [43] was used to test the design and both PowerPC‟s

floating point extension Xilinx FPU [4] and the FPVC are implemented in a single

embedded system as shown in figure 4.1. Xilinx FPU is directly connected to PowerPC

using point-to-point FCB (Fabric Co-processor Bus) [44] whereas FPVC is connected

through 32-bit Processor Local Bus (PLB) [4]. Embedded system is running at 100MHz.

Program Flow

PowerPC based linear algebra kernels are written in C and compiled using gcc

with –o2 optimization. FPVC based linear algebra kernels are written directly in machine

code, stored as data array in embedded system and no optimization is performed.

Program and data are stored in on-chip BRAM (64 KB main memory, as shown in figure

 54

4.1) of the embedded processor system. As all programs and data are stored in the main

memory and FPVC can only access local memory (64 KB instruction and data RAM)

(see section 3.1.2), FPVC system bus interface is responsible for communication between

local and main memory.

Figure 4.2 shows typical program flow for PowerPC and FPVC. All the

parameters required to execute the kernel on FPVC such as source addresses, destination

addresses, size of the data etc., are written to the local memory by PowerPC. FPVC‟s

DMA will be configured next. DMA will be configured using system bus interface‟s

configuration register (refer section 3.1.3). Once, all instructions are loaded in the local

instruction memory FPVC starts execution. While FPVC executes the kernel, PowerPC

polls “DONE” bit of configuration register (which will be set by executing HALT

instruction on FP vector core). The main performance metric is the number of clock

cycles between the start and the end of a kernel. Clock cycles are counted using the

PowerPC‟s internal timer and all results are normalized to PowerPC‟s runtime.

Figure 4.2 Typical Program Flow for FPVC Kernel

 55

4.2 Linear Algebra

Numerical linear algebra, particularly the solution of linear system of equations,

linear least square problems, eigenvalue problems and singular value problems, is

fundamental to most embedded and scientific applications. As it is often the most

computationally intensive part of such applications, the performance improvement of

numerical linear algebra has always been of interest to researchers. Certain basic vector

and matrix operations of the arithmetic libraries such as BLAS [42], LINPACK [41] have

been implemented on FPGA. In [45] author has implemented basic BLAS operations on

FPGA. Wang [46] has implemented QR decomposition in two-dimensional systolic array

architecture on FPGA where as Maslennikow et al. [47] has implemented Cholesky

Decomposition based least square problem on FPGAs. All of these researches have

designed custom application specific floating point compute path and it cannot be used

for other operations.

4.3 DOT Product

BLAS level 1 routines are in the form of 1D vector operations, with O (N)

operations performed on length N vectors. One important routine is the vector dot product,

which can be formulated as:

 ∑

PowerPC writes source and destination address and vector size parameters on

FPVC‟s local data RAM. Complete program flow is explained in section 4.1. Here we

will only discuss compute kernel executed on the FPVC.

 56

Figure 4.3 shows pseudo code for DOT product. Strip mining (see section 2.3) is

inherent in each kernel to handle any length of vector. Here the memory load instruction

requires immediate value equals to constant stride value, which is a distance between two

elements within vector whereas index value is equals to constant stride value times

number of lane. In this way each short vector contains first MVL elements. Now that we

have loaded both vectors, we can multiply each short vector‟s lane in parallel where as

each short vector in every clock cycle and results are stored in general purpose register.

The reduction function accumulates all the elements in general purpose register

using compress and expand instruction. The fundamental concept of reduction operation

is to copy lower half of mul_vector to another register, add both the register and half the

MVL value. This pattern is performed continuously until final scalar value will be

remaining in the mul_vector. The rest of the DOT product code is self explainable.

Results for various configuration of FPVC are given in the below figures and all the

performance number are normalized with respect to PowerPC.

1. DOT_product_kernel()

2. {

3. load vector u from local data RAM;

4. load vector v from local data RAM;

5. mul_vector = multiply u and v;

6. accumulate = reduction(mul_vector);

7. store accumulate to local memory;

8. }

Figure 4.3 Pseudo Code For DOT PRODUCT

 57

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

8 16 32 64 128 256 512

P
e
r
fo

r
m

a
n

c
e
 I

m
p

r
o

v
e
m

e
n

t

Vector Length

DOT PRODUCT with Short Vector Size (SV) = 32

Power PC L = 1 L = 2 L = 4 L = 8

Figure 4.4 DOT Product Performance for Lane Scaling

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

8 16 32 64 128 256 512

P
er

fo
rm

a
n

ce
 I

m
p

ro
v

em
en

t

Number of Vector Elements

DOT PRODUCT with Lane (L) = 2

PowerPC SV = 8, L = 2 SV = 16, L = 2 SV = 32, L = 2

Figure 4.5 DOT PRODUCT Performance for short vector scaling

 58

ANALYSIS: Figure 4.4 shows performance for DOT product with short vector size (SV)

= 8, 16, 32 and constant number of lane (L) = 2 whereas Figure 4.4, shows performance

for DOT product with constant vector size. Some observations are listed below:

- As the FPVC requires all the code and data to be resided into local memory,

(2N+1+no. of instructions) memory accesses will be performed to load local memory and

to store result back to main memory. The significance of main memory access can be

observed in both the graphs where the FPVC underperformed compared to the PowerPC.

- For vector length of N, N floating-point multiplication as well as N floating-point

addition (total 2N floating point operations) needs to be performed and as number of

lanes scales up the performance increases, which we can see in figure 4.5. Highest

performance improvement is 2.24x over PowerPC for 512 elements for FPVC

configuration, SV = 32 and L = 8.

- If complete vector is accommodated in single vector register no strip mining is

required and hence the kernel execution time will be equal. For the FPVC configuration

(SV = 8 and L =2; SV = 16 and L = 2; SV = 32 and L = 2) DOT product for vector size 8

and 16 are accommodated in single vector and hence execution time for these vector sizes

is same. Similarly for FPVC configuration (SV = 16 and L = 2; SV = 32 and L = 2)

performs 32 element vector DOT product in same execution time. But FPVC

configuration (SV = 8 and L = 2) requires more execution time since all 32 elements are

not accommodated in a single vector register and strip mining is required. The number of

vector elements accommodated in single vector register is controlled by maximum vector

length (MVL), which is controlled by number of lanes and number of short vectors.

 59

4.4 Matrix - Vector Multiplication

Level 2 BLAS routines typically perform matrix-vector operations with O (N
2
)

operations per call. Matrix-vector multiply is one of the important kernels in BLAS and

there are two basic forms: V
T
 x M and M x V. It can be formulated as:

 ∑

 The dot product within the matrix-vector multiply is assigned to one lane, V
T
 x M

performs multi-column access, while M x V performs multi-row accesses to the matrix.

As the FPVC can support both accesses with rake type with equal efficiency we chose to

implement M x V. Figure 4.6 shows pseudo code for the Matrix-Vector product and as

described in the figure DOT product kernel is repeated for every row of matrix. As we

scaled up number of vector lanes in FPVC multiple rows of matrix can be computed in

parallel.

ANALYSIS: As we have discussed for the vector DOT product, if the maximum vector

length (MVL) of the FPVC can accommodate the complete vector in a single vector

scalar register, then the performance for each configuration of the FPVC will be similar.

Hence, figure 4.7 shows only different lane configurations with constant short vector size

of 32.

1. MV_product_kernel()

2. {

3. loop (i = 0 to i = N-1)

4. yi = DOT_product_kernel(Ai,x);

5. store result yi to local memory;

6. end loop;

7. }

Figure 4.6 Pseudo Code for Matrix-Vector Multiplication

 60

- For square matrix size of N x N, matrix-vector multiplication performs 2N
2

floating point operations. It is N times higher than the number of DOT product floating

point operations. FPVC underperforms for the square matrix size of 4 and 8 due to

prominent impact of main memory access for instruction and data. Highest performance

improvement is 1.4x over PowerPC.

4.5 Matrix – Matrix Multiplication

BLAS level 3 routines are primarily matrix–matrix operations that perform O (N
3
)

arithmetic operations per call. Matrix-matrix multiply is the most important routine

within BLAS and there are three basic forms: C = A x B, C = A x B
T
, C = A

T
 x B. This

BLAS operation is formulated as:

 ∑

Figure 4.7 Matrix Vector Performance for Lane scaling

0.4

0.6

0.8

1

1.2

1.4

1.6

4 8 12 16

P
e
r
fo

r
m

a
n

c
e
 I

m
p

r
o

v
e
m

e
n

t

Square Matrix Size

MV PRODUCT with Short Vector Size (SV) = 32

PowerPC L = 1 L = 2 L = 4 L = 8

 61

Matrix – Matrix multiplication can be performed by applying mv_product_kernel

to matrix A with each column of matrix B. Figure 4.8 shows pseudo code for C = A x B.

ANALYSIS: Each element of A and B is used N times and the total number of floating

point operations is 2N
3
 which is consistent with the previous two kernel‟s performance

improvements. It underperforms only for the square matrix size of 4 due to significant

effect of main memory access for instruction and data. Highest performance

improvement is 1.65x over PowerPC.

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

4 8 12 16

P
er

fr
o

m
a

n
ce

 I
m

p
ro

v
em

en
t

Square Matrix Size

MM Product with Short Vector Size (SV) = 32

PowerPC Lane = 1 Lane = 2 Lane = 4 Lane = 8

Figure 4.9 Matrix-Matrix Multiplication for Lane Scaling

1. MM_product_kernel()

2. {

3. loop (i = 0 to i = N-1)

4. Ci = MV_product_kernel(A,Bi);

5. store result Ci to local memory;

6. end loop;

7. }

Figure 4.8 Pseudo Code for Matrix-Matrix Multiplication

 62

4.6 QR Decomposition Using Givens Rotation

In linear algebra, a QR decomposition of a matrix is a decomposition of the

matrix into an orthogonal and an upper triangular matrix. QR decomposition is often used

to solve the linear least squares problem. QR decompositions can be computed with a

series of Givens rotations. Each rotation zeros an element in the sub-diagonal of the

matrix, forming the R matrix. The concatenation of all the Givens rotations forms the

orthogonal Q matrix. A Brief description of the Givens algorithm is given below.

 An M x N matrix A is zeroed out one element at a time using 2 x 2 rotation matrix:

 [

]

Each rotation matrix Qi,j is orthogonal and will zero out the element Aij in matrix A,

starting at the bottom of the first column and working up the columns, then move to the

second column and so on. A series of rotation matrices Qi,j are applied to the original

matrix A until it becomes an upper triangular matrix R. Here c and s are computed using

the following formula:

√

√

1. QR_Decomp_kernel()

2. {

3. loop (i = 0 up to i = M-1)

4. loop (j = N-1 down to j > i)

5. x = A[j-1] [i];

6. y = A[j][i];

7. compute Qi,j;

8. A[j-1:j][0:N-1] = MM_product_kernel (Qi,j , A[j-1:j][0:N-1]);

9. end loop;

10. end loop;

11. }

Figure 4.10 Pseudo Code for QR Decomposition

 63

ANALYSIS: Each rotation matrix computation requires 2 multiplications, 1 addition, 1

square root and 2 division operation which total at 6 floating point operations. Also, the

MM_product_kernel which multiplies the (2x2) matrix with a (2xN) matrix requires 8N

floating point operations. Hence, each rotation of matrix requires 8N+6 floating point

operations. So, the total number of floating point operations is (M*(M+1)*(8N+6)/2)

which is much higher than matrix multiplication.

Figure 4.11, demonstrates performance improvement for various configuration of

the FPVC over the PowerPC. As we discussed in previous three kernels, the more data

parallelism available the more performance improvement is observed. Even though, we

are using the vectorizable Matrix multiplication kernel, the performance improvement is

much higher because of the ample amount of floating point operations. Maximum

performance improvement is 4.38x.

1

1.5

2

2.5

3

3.5

4

4.5

5

4 8 12 16

P
e
r
fo

r
m

a
n

c
e
 I

m
p

r
o

v
e
m

e
n

t

Square Matrix Size

QR Decomposition with Short Vector Size (SV) = 32

PowerPC L = 1 L = 2 L = 4 L = 8

Figure 4.11 QR Decomposition Performance for Lane Scaling

 64

4.7 Cholesky Decomposition

Another LINPACK [41] matrix kernel, Cholesky decomposition, is a

decomposition of a symmetric positive-definite matrix into the product of a lower

triangular matrix and its conjugate transpose [13]. Cholesky decomposition is mainly

used for the numerical solution of systems of linear equations.

If matrix A has real entries and is symmetric and positive definite, then matrix A

can be decomposed as,

where L is a lower triangular matrix with strictly positive diagonal entries and L
T
 denotes

the conjugate transpose of L. Each element of matrix L can be defined as below:

 √ ∑

 (∑

)

The computation is usually arranged in either of the following orders.

 The one starts from the upper left corner of the matrix L and proceeds to calculate the

matrix row by row.

 Another which we use, starts from the upper left corner of the matrix L and proceeds

to calculate the matrix column by column.

1. Cholesky_Decomp_kernel()

2. {

3. loop (i = 0 up to i = N-1)

4. pivot value = sqrt (Ai,i);

5. divide i
th

 column vector from i to N by pivot value;

6. loop (j = i+1 upto N)

7. accumulate row vector from 0 to i;

8. subtract accumulated value from Aj,i+1;

9. end loop;

10. end loop;

11. }

Figure 4.12 Pseudo code for Cholesky Decomposition

 65

 As shown in the pseudo code, first we find the square root of the pivot value

which is element Ai,i. Then divide column vector which contains elements Ai,i to AN,i.

Next we accumulate the row vector Ai,0:i and subtract the accumulated value from each

element of the row vector Ai,i+1:N which contains elements from i to N by pivot value.

Every iteration of Cholesky Decomposition will compute result column vector and

updates elements, which are right side to the pivotal column.

ANALYSIS: We can only compute the Ai,j entry if we know the entries to the left and

above. Hence each column or row vector cannot be assigned to separate vector lanes and

compute independently. This can be observed in the figure 4.11 as scaling of vector lane

did not improve performance significantly. Hence, a major criterion for the performance

improvement is not number of vector lane but the maximum vector length (MVL).

Minimum performance improvement for short vector size of 32 is 3x. The maximum

performance improvement is 4.3x.

1

1.5

2

2.5

3

3.5

4

4.5

5

4 8 12 16

P
er

fo
rm

a
n

ce
 I

m
p

ro
v

em
en

t

Square Matrix Size

Cholesky Decom Performance with Short Vector Size (SV) = 32

PowerPC L = 1 L = 2 L = 4 L = 8

Figure 4.13 Cholesky Decomposition Performance for Lane Scaling

 66

4.8 Area requirement

Table 4.1, lists area usage after Place and Route of embedded processor design.

Floating Point

Configuration

Xilinx
FPU

SV=8

L=1

SV=16

L=1

SV=32

L=1

SV=32

L=2

SV=32

L=4

SV=32

L=8

of LUT slices 3,055 5,414 5,453 5,493 9,013 15,628 26,196

Block RAMs 16 51 51 51 54 60 72

Multipliers 3 13 13 13 26 52 104

Table 4.1 Area Usage For Different FPVC Configuration

As shown in table 4.1, by doubling the short vector size the LUT requirement

increases by merely 1% whereas by doubling the number of lane the LUT requirement

increases on an average by 70%. For the comparable design of Xilinx‟s FPU and FPVC

the LUT usage increase by nearly 100%.

4.9 Conclusion

In this chapter we have described vectorized linear algebra kernels and evaluated

performance of each kernel with respect to PowerPC. For various small vector and/or

matrix multiplication, main memory access latency effects are prominent on the result

and they are underperformed compared to PowerPC. Also, for the matrix and vector

kernels, where each vector computation can be mapped on vector lane, vector lane

scaling is an ideal option but as seen in Cholesky decomposition kernel, where each

matrix element computation depends on the previous computations lane scaling will be

waste of resources. By designing parameterisable FPVC, we are able to tune the design

resources as per the nature of the kernel and hence we can better optimize area versus

performance.

 67

5 CONCLUSIONS AND FUTURE WORK

In this thesis, we have the described design and implementation of a Floating

Point Vector Co-processor (FPVC) on an FPGA. This is one of the first works which

implements floating point arithmetic with Hybrid Vector/SIMD co-processor architecture

on the FPGA. FPGA provides a unique feature, the reconfigurability of the design, with

which we can tune our FPVC according to the amount of parallelism available within

floating point arithmetic applications.

All the previous work in the design of vector processor have implemented a

vector processor as an extension to the scalar processor and these vector processors still

fully depends on the scalar processor for instruction fetch and partially depends for

instruction decoding. Register file and computational resources are duplicated for scalar

and vector processors and hence require more area. In this work, we have implemented a

unified approach where all scalar and vector instructions truly share all resources in the

design. Hence, our approach is more area efficient compared to others.

 68

We have initiated a floating point library design for linear algebra kernels, which

can adapt various configurations of the FPVC and tune software library. In this manner,

not only FPVC hardware design but software library is also tuned for optimal

performance. We have analyzed vectorization of these kernels with respect to PowerPC

based kernel execution and deduced that by scaling short vector registers we can improve

overall performance of each kernel without significant increase in area usage. Also, the

data level parallel tasks which can be independently mapped on each vector lane scales

performance with number of vector lane scaling. Finally, the more compute intensive

applications show the most improved perfromance.

FUTURE WORKS

There are several avenues of research which lead on from this work:

1) Variable Precisions Floating Point Data Support: All the floating point

computational units are derived from VFLOAT [16] library which supports variable

precision and hence variable data width. By limiting floating point precision and so as

the data width, we can improve area efficiency of the FPVC.

2) Architectural Improvements: As BRAM has only two ports for memory accesses,

currently our design does not support vector chaining but in future multiple BRAM

ports can improve the performance of the FPVC. Also, the inclusion of a unified or

separate instruction and data cache can improve performance.

3) Application Vectorization: In this research we have started designing a library of

parallel vectorized basic linear algebra kernels. Many more Digital Signal Processing,

multimedia kernels which exhibits data level parallelism can be added to our library

design.

 69

4) Advanced Vector Compilation: All the kernels are hand written using our vector

scalar instruction set and are not optimized. Even the vectorized kernel exhibits speed

up over the PowerPC for most of the data sets, they can benefit from further advances

in vector compiler technology. Several new vector compilation challenges are

introduced by the architectural ideas in this work, including reconfigurability of lanes,

Hybrid vector/SIMD architecture and data management in a unified vector-scalar

architecture.

5) Multi-core Design Exploration: As FPVC can work autonomous from main

processor, inclusion of features related to multi-processor support can improve a

performance of broader application base.

 70

REFERENCES

[1] “Nios II Processor Reference Handbook.” http://www.altera.com/literature/hb/nios2/

n2cpu nii5v1.pdf, 2009.

[2]“MicroBlaze Processor Reference Guide.” http://www.xilinx.com/support/

documentation/sw manuals/mb reference guide.pdf, 2008.

[3] “Embedded Processor Block in Virtex-5 FPGAs.” http://www.xilinx.com/support/

documentation/user guides/ ug200.pdf, 2009.

[4] “Virtex-5 APU Floating-Point Unit v1.01a.” http://www.xilinx.com/support/

documentation/ip documentation/apu fpu virtex5.pdf, April 2009. Data Sheet DS693.

[5] P. Yiannacouras, J. Gregory Steffan, and Jonathan Rose, VESPA: Portable, Scalable,

and Flexible FPGA-Based Vector Processors, International Conference on Compilers,

Architecture and Synthesis for Embedded Systems (CASES), October 2008, Atlanta, GA.

[6] J. Yu, G. Lemieux, and C. Eagleston, "Vector Processing as a Soft-core CPU

Accelerator," ACM International Symposium on FPGA, 2008.

[7] “ASIC or FPGA: Why Not Plan For Portability?”, By Colin Baldwin and Ehab

Mohsen, http://chipdesignmag.com/display.php?articleId=3182.

[8] V. Betz, J. Rose, and A. Marquardt, Eds., Architecture and CAD for Deep-Submicron

FPGAs. Kluwer Academic Publishers, 1999.

[9] IEEE Standards Board and ANSI, IEEE Standard for Binary Floating- Point

Arithmetic. IEEE Press, 1985. IEEE Std 754-1985.

[10] Steven W. Smith, “The Scientist and Engineer‟s Guide to Digital Signal

Processing”, Second Edition, Chapter 28 Digital Signal Processor.

[11] G. Lienhart, A. Kugel, and R. Manner. Using floating-point arithmetic on FPGAs to

accelerate scientific N-Body simulations. In 10th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM‟02), pages 182–191, April 2002.

[12] B. Lee and N. Burgess. Parameterisable floating-point operations on FPGA. In 36th

Asilomar Conference on Signals, Systems and Computers, IEEE Signal Processing

Society, November 2002.

[13] G. Govindu, R. Scrofano, and V. K. Prasanna. A library of parameterisable

floatingpoint cores for FPGAs and their application to scientific computing. The 2005

International Conference on Engineering of Reconfigurable Systems and Algorithms

(ERSA 2005), June 2005.

 71

[14] R. Matousek, M. Tich, Z. Pohl, J. Kadlec, C. Softley, and N. Coleman. Logarithmic

Number System and Floating-Point Arithmetics on FPGA. In Lecture Notes in Computer

Science, volume 2438, pages 175–188. Springer, 2002.

[15] A VHDL library of parametrisable floating-point and LNS operators for FPGA.

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/

[16]“Northeastern University Variable Precision Floating-Point Modules.”

http://www.ece.neu.edu/groups/rcl/projects/floatingpoint/.

[17] X. Wang, S. Braganza, and M. Leeser, Advanced Components in the Variable

Precision Floating-Point Library, IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM2006), pp. 249-258. April 2006.

[18] B. Fagin and Cyril Renard, “Field Programmable Gate Arrays and Floating Point

Arithmetic”, IEEE Transactions on VLSI Systems, Volume 2, September 1994.

[19] Zhanpeng Jin, Richard Neil Pittman, and Alessandro Forin, Reconfigurable Custom

Floating-Point Instructions, Microsoft Research, no. MSR-TR-2009-157, August 2009

[20] P. Diniz and G. Govindu, “Design of a Field Programmable Dual – Precision

Floating Point Arithmetic Unit”, International Conference on Field Programmable Logic

and Applications (FPL), 2006.

[21] M. Schulte and E. Swartzlander, Jr., “Hardware Design and Arithmetic Algorithms

for a Variable-Precision, Interval Arithmetic Coprocessor”, Symposium on Computer

Arithmetic, 12
th

 proceeding, 1995.

[22] R.E. Moore, Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J.. 1966.

[23] C. Brunelli, F. Garzia, J. Nurmi, et al., “A FPGA Implementation of an Open –

Source Floating Point Computation System”, Internation Symposium on System-on-

Chip, Page 29-32, 2005.

[24] T. Rodolfo, N. L. V. Calazans, et al., “Floating Point Hardware for Embedded

Processors in FPGAs : Design Space Exploration for Performance and Area”,

International conference on Reconfigurable Computing and FPGAs, 2009.

[25] D. Burke, J. Wawrzynek, K. Asanovic, et al., “RAMP Blue: Implementation of a

Manycore 1008 Processor FPGA System,” in Reconfigurable Systems Summer Institute

(RSSI), July 2008.

 72

[26] V. E. Petcu, A. Amaricai, and M. Vladutiu, “A dual-threaded architecture for

interval arithmetic coprocessor with shared floating point units,” in 11th IEEE Workshop

on Design and Diagnostics of Electronic Circuits and Systems, pp. 1–4, 2008.

[27] N. Hockert and K. Compton, “Ffpu: Fractured floating point unit for fpga soft

processors,” in Field ProgrammableTechnology (FPT), pp. 621–624, 2009.

[28] J. Kadlec, R. Bartosinski, and M. Danek, “Accelerating microblaze floating point

operations,” in Field Programmable Logic and Applications (FPL), pp. 621–624, 2007.

[29] H. Yang and S. Ziavras, “FPGA based Vector Processor for Algebraic Equation

Solvers”, IEEE International SOC conference, 2005, Page 115-116.

[30] S. Chen, R. Venkatesan, P. Gillard, “Implementation of Vector Floating-Point

Processing Unit on FPGAs For High Performance Computing”, Canadian conference on

Electrical and Computer Engineering, 2008. Page 881- 886.

[31] C. Kozyrakis, “Scalable Vector Media Processors for Embedded Systems,” Ph.D.

dissertation, University of California-Berkeley, 2002.

[32] R. G. Hinta and D. P. „Pate. Control data STAR-100 processor design. In Proc.

Compcon 72, pages 1-4, New York, 1972. IEEE Computer Society Conf. 1972, IEEE.

[33] R. M. Russell. The CRAY-1 computer system. Communications of the ACM,

21(1):63-72, January 1978.

[34] L. Huang and Z. Wang, “SV: Enhancing SIMD Architectures via Combined SIMD-

Vector Approach”, In ICA3PP 2010, Part I, pp. 226-235.

[35] C. Kozyrakis and D. Patterson, “Overcoming the Limitations of Conventional

Vector Processors”, In Proceedings of the 30th International Symposium on Computer

Architecture, San Diego, California, June 2003, pp. 399–409.

[36] R. Espasa and M. Valero, “Decoupled Vector Architecture”, In the Proceedings of

the 2nd Intl. Symp. On High-Performance Computer Architecture, Pages 281–90, San

Jose, CA, Feb. 1996.

[37] R. Espasa, M. Valero, and J. Smith, “Out-of-order Vector Architectures”, In the

Proceedings of the 30th Intl. Symp. On Microarchitecture, Pages 160–70, Research

Triangle Park, NC, Dec. 1997.

[38] Suzanne Rivoire, Rebecca Schultz, Tomofumi Okuda, Christos Kozyrakis, “Vector

Lane Threading”, Proceedings of the 2006 International Conference on Parallel

Processing (ICPP‟06).

 73

[39] K. Asanovic, J. Beck, B. Irissou, B. Kingsbury, and N. Morgan, “The T0 Vector

Microprocessor,” Hot Chips, vol. 7, pp. 187–196, 1995.

[40] Silviu Ciricescu , Ray Essick , Brian Lucas , Phil May , Kent Moat , Jim

Norris , Michael Schuette , Ali Saidi, “The Reconfigurable Streaming Vector Processor”,

36
th

 Annual IEEE/ACM International Symposium on Microarchitecture, 2003. Page 141

– 150.

[41] J. Dongarra, J. Bunch, C. Moler, and G. Stewart. LINPACK Users’ Guide. Society

for Industrial and Applied Math., 1979.

[42] C. Lawson, R. Hanson, D. Kincaid and F. Krogh. Basic Linear Algebra

Subprograms for FORTRAN usage. ACM Transaction on Mathematical Software, 5(3):

308-323, 1979.

[43] ML510 Reference Design User Guide, “http://www.xilinx.com/support/

documentation/boards_and_kits/ug355.pdf”, 2009.

[44] Fabric Co-processor Bus for PPC440 (FCB_V20) (v1.00a), Product Specification,

2008.

[45] L. Zhuo, V.K. Prasanna, “High Performance Linear Algebra Operations on

Reconfigurable Systems”, in Proceedings of Supercomputing, November 2005,

Washington, USA

[46] X. Wang and M. Leeser, “A Truly Two Dimensional Systolic Array FPGA

implementation of QR Decomposition,” ACM Transactions on Embedded Computer

Systems, Vol. 9 No. 1, October 2009.

[47] D. Yang, G.D. Peterson, H. Li, J. Sun, “An FPGA Implementation for Solving Least

Square Problem” , IEEE Symposium of FCCM,2009, Page 303-306.

 74

APPENDIX A

A Floating Point Vector Co-processor (FPVC) is a Hybrid vector/SIMD (Single

Instruction Multiple Data) co-processor. Maximum vector length of the co-processor is

decided by the number of vector lanes within each short vector and the number of short

vectors within each general purpose registers. The vector scalar instruction set

architecture, which borrows heavily from the VIRAM instruction set architecture, is

described in chapter 3. The details of the instruction set are described in this appendix.

 75

A.1 Data Types

32-bit unsigned integer and single precision floating point data are supported by

the processor. One exception is integer multiply operation which is implemented for 16-

bit width.

A.2 Addressing modes

Instruction set supports both scalar and vector memory accesses. There are two

types of addressing modes supported for scalar memory accesses:

1. Immediate accesses

2. Indexed accesses

Vector memory accesses are supported with below addressing modes:

1. Unit – stride accesses

2. Non unit-stride accesses

3. Indexed offset accesses with no constant immediate value

4. Indexed offset accesses with constant immediate value

A.3 Instruction Classes

All the instructions can be classified in below categories:

1. Memory access instructions

2. Integer arithmetic instructions

3. Program flow control instructions

4. Floating point arithmetic instructions

5. Special instructions

 76

A.4 Instruction References

Below table describes keywords used for instructions in next section.

Name Description

op Instruction operation

Rd destination register number

r1 source operand1’s register number

r2 source operand2’s register number

reg-type

Type of each register,

sss-all are scalar type

vss-only desitnation register is vector type

vvs-destination and operand1 register are vector type, operand2

is scalar type

vsv-destination and operand2 register are vector type, operand1

is scalar type

vvv-all are vector type

exop/imd(11)/imd(16) 11-bit extended opcode or 16-bit/ 11-bit immediate field

Table A.1 Instruction References

A.5 Instruction Format

Instruction with 2- source operands

Instruction with 1 source operand and 11-bit immediate value

Instruction with 1 source operand and 16-bit immediate value

Conditional jump instruction format

Immediate jump instruction format

op[5:0] rd[4:0] r1[4:0] r2[4:0] exop[10:0]

op[5:0] rd[4:0] r1[4:0] r2[4:0] imd[10:0]

op[5:0] rd[4:0] r1[4:0] imd[15:0]

op[5:0] - lt gt eq - - imd[15:0]

op[5:0] - - imd[15:0]

 77

A.6 Instructions

Operation Mnemonics Syntax Summary

Memory Access Instructions

Load
ld

ld.imd

ld.[reg-type] rd, r1, r2, imd(11)

ld.[reg-type] rd, r1, imd(16)

Loads/Stores data to/from

the destination register

from/to memory location.

Base address is provided

by r1, r2 provides index

and imd(11)/imd(16)

provides constant stride

for the vector access and

immediate value for

scalar access

Store
st

st.imd

st.[reg-type] rd, r1, r2, imd(11)

st.[reg-type] rd, r1, imd(16)

Integer Arithmetic Instructions

Addition
add

add.imd

add.[reg-type] rd, r1, r2, exop

add.[reg-type] rd, r1, imd(16)

adds source operand2 or

immediate to source

operand1 and stores

result at destination

Subtraction
sub

sub.imd

sub.[reg-type] rd, r1, r2, exop

sub.[reg-type] rd, r1, imd(16)

subtracts source operand2

or immediate from source

operand1 and stores

result at destination

Multiply
mul

mul.imd

mul.[reg-type] rd, r1, r2, exop

mul.[reg-type] rd, r1, imd(16)

multiplies source

operand1 with source

operand2 or immediate

and stores result at

destination

Shift right

logical

srl

srl.imd

srl.[reg-type] rd, r1, r2, exop

srl.[reg-type] rd, r1, imd(16)

right shifts source

operand1 by the amount

of source operand2 or

immediate and stores

result at destination

Shift left

logical

sll

sll.imd

sll.[reg-type] rd, r1, r2, exop

sll.[reg-type] rd, r1, imd(16)

left shifts source

operand1 by the amount

of source operand2 or

immediate and stores

result at destination

Compare
cmp

cmp.imd

cmp.[reg-type] rd, r1, r2, exop

cmp.[reg-type] rd, r1, imd(16)

compares source

operand1 to source

operand2 or immediate

and comparison is stored

in status register also for

vector mask stores

targeted comparison

 78

Program Control Flow Instructions

Jump

bri

brc

bri imd(16)

brc cond,imd(16)

Jump from current PC to

offset provided in

immediate part,

conditional jump

evaluates status register

with condition and jumps

to targeted PC

Floating Point Arithmetic Instructions

Addition fadd fadd.[reg-type] rd, r1, r2, exop
adds source operand2 to

source operand1 and

stores result at destination

Subtraction fsub fsub.[reg-type] rd, r1, r2, exop

subtracts source operand2

from source operand1

and stores result at

destination

Multiply fmul fmul.[reg-type] rd, r1, r2, exop

multiplies source

operand1 with source

operand2 and stores

result at destination

Division fdiv fdiv.[reg-type] rd, r1, r2, exop
divides source operand1

by source operand2 and

stores result at destination

Square root fsqrt fsqrt.[reg-type] rd, r1, r2, exop stores square root of

operand 2 at destination

Compare
fcmp

fcmp.imd
fcmp.[reg-type] rd, r1, r2, exop

compares source

operand1 with source

operand2 and comparison

is stored in status register

also for vector mask

stores targeted

comparison

Special Instructions

SPR move
mtr

mfr

mtr rd, r1, imd(16)

mfr rd, r1, imd(16)

moves special purpose

registers value to/from

general purpose register

NOP nop nop No operation

HALT halt halt Halts execution

Table A.2 Instructions

 79

A.7 Instruction opcode encoding

Table A.3 lists the opcode field encodings for vector scalar instructions whereas

table A.4 lists the encoding of extended opcodes.

 opcode[5:2]
opcode

[1:0]
0000 0001 0010 0011 0100 0101 0110 0111

00 nop mtr add.imd srl.imd ld.sss

01 halt mfr sub.imd cmp.imd st.sss

10 brc mul.imd ld.imd int.sss

11 bri sll.imd st.imd flt.sss

Table A.3 (a) opcode encoding

 opcode[5:2]
opcode

[1:0]
1000 1001 1010 1011 1100 1101 1110 1111

00 ld.vss ld.vsv ld.vvs ld.vvv

01 st.vss st.vsv st.vvs st.vvv

10 int.vss int.vsv int.vvs int.vvv

11 flt.vss flt.vsv flt.vvs flt.vvv

Table A.3 (b) opcode encoding

exop

[10:0]
0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9

operation cmp add sub mul div sqrt sll srl cmprs expand

Table A.4 extended opcode encoding

