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ABSTRACT 

There has been an increased interest recently in using embedded cores on FPGAs. 

Many of the applications that make use of these cores have floating point operations. Due 

to the complexity and expense of floating point hardware, these algorithms are usually 

converted to fixed point operations or implemented using floating-point emulation in 

software. As the technology advances, more and more homogeneous computational 

resources and fixed function embedded blocks are added to FPGAs and hence 

implementation of floating point hardware becomes a feasible option. 

In this research we have implemented a high performance, autonomous floating 

point vector co-processor (FPVC) that works independently within an embedded 

processor system. We have presented a unified approach to vector and scalar computation, 

using a single register file for both scalar operands and vector elements. The Hybrid 

vector/SIMD computational model of FPVC results in greater overall performance for 

most applications along with improved peak performance compared to other approaches. 

By parameterizing vector length and the number of vector lanes, we can design an 

application specific FPVC and take optimal advantage of the FPGA fabric. For this 

research we have also initiated designing a software library for various computational 

kernels, each of which adapts FPVC‟s configuration and provide maximal performance. 

The kernels implemented are from the area of linear algebra and include matrix 

multiplication and QR and Cholesky decomposition. We have demonstrated the operation 

of FPVC on a Xilinx Virtex 5 using the embedded PowerPC. 
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1 INTRODUCTION 

Reconfigurable hardware bridges a gap between ASICs (Application Specific 

Integrated Circuits) and microprocessor based systems. Recently, there has been an 

increased interest in using reconfigurable hardware for multimedia, signal processing and 

other computationally intensive embedded processing applications. These applications 

perform floating point arithmetic computation for high data accuracy and high 

performance. Reconfigurable hardware allows the designer to customize the 

computational units in order to best match application requirements and at the same time, 

optimize device resource utilization. Because of these advantages, extensive research has 

been done to efficiently implement floating point computations on the reconfigurable 

hardware. Floating point (FP) computations can be categorized in three classes: 

1. Software library 

2. General purpose floating point unit 

3. Application specific floating point data path 
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A Software library, is easy to implement but usually results in the highest 

execution time. Custom hardware accelerators are highly optimized for performance but 

require hardware design knowledge and long design cycles. These are the two extreme 

corners of the design tradeoffs. General purpose floating point unit has a onetime long 

design cycle cost but can provide comparable performance to hardware accelerators. 

Typically, FP applications have a relatively small set of operations that are 

repeatedly performed over a large volume of floating point data. This form of parallelism 

is referred to as data-level parallelism. For these applications, vector processing offers 

simple and straightforward parallelism by executing mathematical operations on multiple 

data elements simultaneously. Because of the availability of a large amount of 

heterogeneous resources on a Field Programmable Gate Array (FPGA), Yiannacouras [5] 

and Yu [6] have implemented two of the earliest Field Programmable Gate Array (FPGA) 

based vector processors and discussed various different parameterization of the 

processors. But these vector processors and parameterization are limited to integer 

arithmetic only. 

Initial sections of the chapter give the background information about 

reconfigurable architecture, floating point data format and various FPGA based FP 

libraries. The following section describes related work in the area of general purpose 

floating point unit implementation. At the end of this chapter, we list the contributions of 

this research and provide an outline of the rest of the thesis.  
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1.1 Reconfigurable Architecture 

Reconfigurable architectures is a computer architecture combining some of the 

flexibility of software with the high performance of hardware by processing with very 

flexible high speed computing fabrics. An example is Field Programmable Gate Arrays 

(FPGAs). The principle difference between reconfigurable architecture and a 

microprocessor based system is the ability to make substantial changes to the datapath 

itself in addition to the control flow. Similarly, reconfigurable architecture differentiates 

itself from ASICs by providing run time or compile time reconfigurability to adapt 

application specific hardware requirements and hence reduces design cycle time as well 

as non-recurring engineering cost.  

FPGAs are integrated circuits that contain large, two-dimensional arrays of 

homogeneous configurable logic blocks (CLBs). Each CLB has logical elements (LE). 

The logic element connects to a switch matrix to access the configurable distributed 

routing network. The LEs support both combinational logic and memory storage. Each 

FPGA logic element (LE) contains a look-up table (LUT) and a one-bit flip-flop (FF). 

This architecture has been widely adopted to speed up computationally intensive 

Figure 1.1 Modern Field Programmable Logic Arrays (Courtesy [7]) 
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applications. As technology advances, modern FPGAs are getting denser and faster. A 

single FPGA chip has millions of gate equivalents and clock speeds above 100 MHz. As 

shown in Figure 1.1, most current FPGA devices employ an island-style fine grained 

architecture [8], with additional fixed-function heterogeneous blocks such as embedded 

block RAMs, DSP functions such as multiply and accumulate and general purpose 

embedded processors.  

1.1.1 Embedded Block RAMs:  

Embedded RAMs in FPGAs provide large storage structures. While the capacity 

of a given block RAM is fixed, multiple block RAMs can be connected through the 

interconnection network to form larger capacity RAM storage. A key limitation of block 

RAMs is they have only two access ports allowing just two simultaneous reads or writes. 

1.1.2 Multiply – Accumulate Blocks 

The multiply-accumulate blocks, also referred to as DSP blocks, have dedicated 

circuitry for performing multiply and accumulate operations. These DSP blocks can also 

perform addition, subtraction and barrel shifter functions.  

1.1.3 Embedded Microprocessor Blocks  

The major FPGA companies provide embedded cores, both hard and soft, for use 

with their processors. Altera has the Nios II soft core [1] and Xilinx offers the 

MicroBlaze soft [2] and PowerPC hard cores [3] on their FPGAs.  

All these large embedded logic blocks make more efficient use of on-chip FPGA 

resources. However, they can also waste on-chip resources if they are not being used. In 

this work, we will explore the utilization of these embedded blocks on Xilinx Virtex 

FPGAs in implementing floating-point operations and vector processing. 
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1.2 Fixed point versus Floating point arithmetic 

Every numerical value is composed of an integer part, fractional part and the 

delimitation which is called the radix point. Two formats are popular for storing and 

manipulating data in the computational units, fixed point and floating point. In fixed 

point format, the radix point is always at a predetermined position while the position of 

the radix point is not fixed in floating point.  

 

1.2.1 Fixed Point Data Format 

 

0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 

Figure 1.2 Data representation in fixed point format 

 

Several ways for representing values exist in the fixed point format: including 

signed fixed point and unsigned fixed point numbers. In the unsigned fixed point format, 

only positive values are represented. For 32-bit data, assuming the radix point to the right 

of the least significant bit (i.e., only integer values are represented), the range using the 

unsigned fixed point format is 0 to (2
32

 - 1). Assuming the radix point at left of the most 

significant bit (i.e., only fractional values are represented), the smallest representable 

fixed point value is 2
-32

. In the signed fixed point format, the most significant bit is 

reserved for sign bit of the data and hence the range of the data can be -2
31

 to (2
31

 - 1). 

For the given data width, the range and precision of the fixed point value will vary based 

on the radix point‟s position. Figure 1.2 shows the numerical value 429.8515625 in 

unsigned fixed point format. 

  

radix point 
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1.2.2 Floating point data format 

  

0 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 

Figure 1.3 Data representation in Single precision floating point format 

 

A value represented in floating point format is divided into three fields: the sign 

field s, the exponent field (e) and the fraction field (f). A floating point number can be 

defined as 

(-1) 
s
 * 1.f * 2 

e-BIAS 

The sign bit: 0 denotes a positive number and 1 denotes a negative number. The 

biased exponent is the sum of the exponent and a constant (bias value) chosen to make 

the biased exponent‟s range nonnegative. The mantissa represents the magnitude of the 

number. When a number is normalized, the mantissa is composed of a leading one bit to 

the left of its implied binary point and the fraction bits to the right. In this representation a 

wider exponent field brings higher range, while a wider fraction field brings higher 

precision. The IEEE-754 standard [9] defines a single precision floating point number to 

have an exponent field 8 bits long and a fraction field 23 bits long, while for a double 

precision floating point number the exponent and fraction fields are 11 and 52 bits long 

respectively. These two IEEE floating point representations are the most commonly used 

in computer systems where fixed hardware architecture is necessary.  

The main advantages of representing data in fixed point format are simplicity in 

the design and low cost [10]. But it suffers from low range and precision compared to 

floating point. Higher quantization error and increased algorithm complexity are two 

other issues that are inherent in fixed point arithmetic. 

sign exponent fraction 
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1.2.3 Floating Point Libraries 

There are many libraries available to generate floating point operators for FPGAs. 

Lienhart et al. [11] have developed a library which includes adder, multiplier, divider and 

square root unit. A library unit supports generalized floating-point representation with 

generic exponent and mantissa bit. They have implemented these library components on 

Xilinx XC2V3000 FPGA to accelerate the smoothed particle hydrodynamics (SPH) 

algorithms for N-Body simulations. The parameterisable floating-point cores that first 

supported IEEE double-precision format [12] were implemented on Xilinx Virtex-II 

XC2V1000 and support addition, multiplication, division and square root operations.  

Govindu et al. [13] have developed an IEEE-754 standard compliant double 

precision library. Instead of parameterizing range and precision of the computation units, 

they parameterized the pipelined depth and level of compliance with the IEEE-754 

standard. All the floating-point computation units in this library were applied to the force 

and potential calculation kernels in a Molecular dynamics (MD) simulation. 

Matousek et al. [14] used Logarithmic Number System (LNS) arithmetic instead 

of floating point arithmetic. Their library includes addition, multiplication, division, 

square and square root units and supports 32-bit and 20-bits precision. In the Logarithmic 

Number System multiplication, divide and square root operation are as simple as integer 

addition and subtraction whereas the main complexity lies in the addition and subtraction 

operations.  

The Lyon Library [15] supports both floating-point and logarithmic number 

system arithmetic. This library is implemented in both pure combinational and pipelined 

versions. Apart from basic arithmetic unit, it also supports exponent and logarithmic 

conversion units. 
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VFLOAT library [16], which we used to generate single precision floating point 

unit supports adder, multiplier, divide, square root, format conversion units and 

accumulator. Wang [17] has demonstrated K-mean clustering and QR decomposition 

applications using these library operators. The key elements of the VFLOAT library 

include: 

 Each component in the VFLOAT library has a READY and a DONE signal along 

with STALL signal to support pipelining. All the hardware modules in the library 

are fully pipelined. 

 The VFLOAT library has a separate denormalization, normalization and rounding 

unit supporting either ”round to zero” or ”round to nearest”. 

 The Library elements support some error handling and exception detection. 

 The VFLOAT library has components to convert from fixed-point format to 

floating point format and vice versa, which supports the implementation of hybrid 

designs with both fixed-point and floating-point formats in a single design. 

In summary, the VFLOAT library is a superset of many previously published 

floating point formats, and is general and flexible. Except for the Lyon library, the library 

is also more complete than earlier work with support for separate normalization, rounding 

and some error handling. Basic operational units such as adder, multiplier, divider and 

square root are generated from the parameterized floating point library or using CAD 

tools. In this research, we will focus on the implementation of a floating point unit with 

the help of the VFLOAT [16] library functions. 
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1.3 Floating point arithmetic unit on FPGA 

The implementation of a floating point unit in general purpose computing is 

extremely common but it makes an interesting case study for an FPGA based 

reconfigurable computing system. Up to now there have been many research efforts 

applied to the implementation of an FPGA based Floating point unit. This research can be 

categorized based on the type of communication with main processor, precision support, 

number of computation units and level of autonomy. 

One of the earliest works in this area is done by Fagin et al. [18]. They have 

implemented IEEE-754 standard compliant floating point adder and multiplier function 

on the FPGA for design space exploration. They found that the floating point unit 

substantially improves performance, but technology limitations made it difficult to 

implement floating point units at that time. Recently, Pittman et al. [19] have 

implemented a custom floating point unit (CFPU) which is compliant with the IEEE 754 

standard and improves floating-point intensive computation performance. The CFPU is 

implemented on the Xilinx‟s Virtex FPGA based eMIPS platform which is partitioned 

into fixed and reconfigurable regions. They demonstrated various trade-offs for area, 

power and speed with the help of software profiling and run time reconfiguration for the 

CFPU. 

The Altera‟s Nios II processor [1] allows a user to include floating-point custom 

instructions that implements single precision floating-point arithmetic operations. These 

custom instructions are used to accelerate floating-point operations in Nios II C/C++ 

application program. The basic set of floating-point custom instructions includes single 

precision floating-point addition, subtraction, and multiplication. Floating-point division 
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is available as an extension to the basic instruction set. These are either implemented in 

software emulation mode or with hardware support. 

The Xilinx‟s MicroBlaze processor [2] supports a single precision floating point 

unit in hardware that is tightly coupled to the embedded processor pipeline. The FPU 

implements addition, subtraction, multiplication and comparison. Floating point division 

and square root are available as an extension, as well as conversions from integers to 

floating point and vice versa. If the FPU is not instantiated, floating point operations are 

emulated in software. The Xilinx‟s PowerPC hardcore processor [3] has a floating point 

unit available that supports IEEE-754 floating-point arithmetic operations in single or 

double precision. Floating point instructions supported include add, subtract, multiply, 

divide, square root and fused multiply-add instructions. The FPU is tightly coupled to the 

PowerPC processor core with the Auxiliary Processing Unit (APU) interface [4]. The 

Xilinx FPU includes 32 floating point registers. 

In other research, Govindu et al. [20] described and evaluated performance of 

dual-precision, pipelined, floating point arithmetic cores for addition/subtraction, 

multiplication and division. Each of the arithmetic cores can be switched at run-time to 

perform either one double-precision operation or two single-precision operation with the 

same hardware resources. Similarly, Schulte et al. [21] have presented an interval 

arithmetic [22] unit based variable precision floating point co-processor. The co-

processor gives the programmer the ability to specify the precision of the computation, 

determine the accuracy of the result and recompute inaccurate results with higher 

precision. For similar accuracy in the result with comparable performance, the area 
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requirement of their coprocessor is 20% lesser than the IEEE-754 standard double 

precision floating point unit.  

Brunelli et al. [23] and Rodolfo et al. [24] have implemented flexible floating 

point units for open source MIPS based processors. These co-processors are not tightly 

coupled with the main processor and they also implement separate memory access unit 

within floating point unit. All floating point data accesses are done by these memory 

units which reduces traffic on the main processor bus and provides some degree of 

autonomy to the floating point cores. Instructions are still provided by the main processor. 

The Ramp project from Berkeley has implemented RAMP Blue, an 

implementation of over one thousand cores implemented from MicroBlaze processors as 

a platform for manycore research. The authors connect the processors to an independent 

double precision floating point unit via FSL (Fast Simplex Link) [25]. Their main goal in 

implementing the independent FPU is to keep its pipeline full all the time. Others have 

implemented an autonomous FPU which can be shared by two processors [26]. Their 

FPU has separate register file, instruction fetch and write back unit. In their approach, 

loads and stores are handled by the processor which limits the amount of parallel 

execution that they can achieve. Recently, researchers have also proposed some limited 

hardware assist for the Altera SoftFloat library [27]. Their goal is to provide performance 

with a very small hardware cost. Each instruction is under control of the Altera Nios 

processor. This is very different from our goal to exploit the parallelism available on an 

FPGA. 

As the available computational resources on a single FPGA increases, multiple 

floating point units can be implemented on the same FPGA. Researchers have published 
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accelerating MicroBlaze floating point operations using an independent FPU [28]. The 

authors have implemented Single Instruction Multiple Data (SIMD) based vector floating 

point unit and suggested that, by integrating DMA and local memory within the floating 

point unit, they can reduce system bus traffic and improve the performance of the FPU. 

Their FPU only supports addition, subtraction and multiply operations while we support 

division and square root as well.   

Yang et al. [29] have designed a floating point vector unit which is tightly 

coupled with the scalar processor. They have implemented floating point adder and 

multiplier in the floating point vector unit and used the vector unit to solve sparse 

matrices based on real flow network‟s linear equations. In similar research [30], Chen et 

al. proposed unified floating point unit approach to improve overall performance of the 

application. They conclude that by executing a separate vector thread on each lane can 

greatly improve the performance.  

Only the last two researches are closely related to our research as both floating 

point unit implements Hybrid vector-SIMD computational model (refer section 2). But 

vector cores are still tightly coupled with the scalar core, which is responsible for integer 

arithmetic and program flow control. Also, in these floating point units, the number of 

floating point vector lanes and register file size are fixed and cannot be changed. In our 

research, we implement a completely autonomous floating point vector unit where the 

register file size and floating point vector lanes are configurable. Also, they have 

assumed that the targeted application does not perform any inter lane communication. 
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1.4 Contribution 

The main contribution of this research is applying a unified scalar and vector 

processing model to data-parallel floating point applications. Such a soft vector processor 

provides a scalable and user-selectable amount of acceleration and resource usage, and a 

configurable feature set to the user. The scalability of the vector processor allows users to 

make large performance and resource tradeoffs in the vector processor with little or no 

modification to software.  

We are also developing a software library that can adapt to the floating point 

unit‟s configuration. We include linear algebra kernels such as matrix multiplication, QR 

decomposition and Cholesky decomposition. Use of such a library makes accessible to 

the user a much larger design space and larger possible tradeoffs than current soft 

processor solutions. This architecture independent library allows acceleration of multiple 

sections of an application and multiple applications. 

As part of this research, a complete vector processor was implemented within an 

embedded processor system. It targets a Xilinx Virtex V FPGA to illustrate the feasibility 

of the approach and possible performance gains. The co-processor instruction set 

architecture is highly inspired by the VIRAM instruction set architecture (ISA) [31], but 

makes modifications to include the scalar ISA features for FPGAs. A novel instruction 

execution model that is a hybrid between traditional vector and single-instruction-

multiple-data (SIMD) is used in the co-processor.  
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1.5 Thesis Outline 

The remainder of the thesis is organized as follows. Chapter 2 gives an overview 

of vector processing and previously implemented vector processors. Chapter 3 describes 

in detail the architecture of the floating point vector co-processor. Chapter 4 provides 

software library description, experimental results and describes various design trade-offs. 

Chapter 5 summarizes the work in this thesis and provides suggestions for future work. 
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2 VECTOR PROCESSING OVERVIEW 

Most current microprocessors have scalar instruction sets. A scalar instruction set 

is one which requires a separate opcode and related operand specifiers for every 

operation to be performed. Vector processors provide vector instructions in addition to 

scalar instructions. This chapter reviews vector processing in general, defines terms used 

in the rest of the thesis and lists recent trends in vector execution architecture.  
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2.1 Vector Operation 

The code in Figure 2.1 is called SAXPY/DAXPY loop which forms the inner loop 

of the Basic Linear Algebra Subprograms library [42]. For the above code, A and Y are 

vectors and x is a scalar value. Each iteration of the SAXPY/DAXPY loop, performs 

below six steps.  

1. Load element from vector A 

2. Load element from vector Y 

3. Load scalar value x 

4. Multiply A‟s element with x 

5. Add result of multiplication to element of Y 

6. Store result back in vector Y 

 For a scalar processor, these operations will be performed in a loop. A Vector 

processor provides direct instruction set support for operations on whole vectors i.e., on 

multiple data elements rather than on a single scalar value. This vector instruction 

specifies operand vectors and a vector length, and an operation to be applied element-

wise to these vector operands. Assuming the vector length is equal to the number of 

elements in each vector register then the SAXPY/DAXPY operation can be performed 

with just six instructions. Thus, vector operations reduce the dynamic instruction 

bandwidth requirement.  

 

for (i=0; i < n; i++) 

Y[i] = A[i] * x + Y[i]; 

Figure 2.1 SAXPY/DAXPY computational kernel 
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2.2 Vector Memory and Vector Register Architecture 

There are two main classes of vector architecture: Vector Memory Architecture 

and Vector Register Architecture. In vector memory architecture such as the CDC STAR 

100 [32], operands are read from memory and results of the operation performed on 

operands will be stored back in to memory. In vector register architecture such as Cray 

series [33], operands are read from vector registers and results of the operation performed 

on operands are stored back in the vector registers. Vector memory architecture has 

higher memory bandwidth requirement than vector register architecture. 

 

2.3 Vector Length Control 

A vector processor has a natural length determined by the number of elements in 

each vector register, which is called the Maximum Vector Length (MVL). It is highly 

unlikely that a given program will have vector length that equals MVL. The size of all the 

vector operations for SAXPY/DAXPY depends on “n”, which may not be known until run 

time. The solution is to create a vector-length register (VLR). The VLR controls the 

length of any vector operation. However, the value of VLR cannot be greater than the 

natural vector length of the processor.  

m = n; i =0; 

while (m > MVL){ 

 for (j = 0; j < MVL; j= j++) 

        Y[i*MVL+j] = A[i*MVL+j] * x + Y[i*MVL+j];  

 m = m – MVL;i++;} 

for (j = 0;j < m; j++) 

 Y[i*MVL+j] = A[i*MVL+j] * x + Y[i*MVL+j]; 

Figure 2.2 Strip mined SAXPY/DAXPY code 
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If the vector length is longer than the maximum length, a technique called strip 

mining is used. As shown in Figure 2.2, strip mining is the generation of code such that 

each vector operation is done for a size less than or equal to the MVL.  In our vector 

processing, strip mining will divide vector execution into two parts. The first for loop will 

be vectorizable for length equals to MVL, whereas, the second for loop is vectorizable for 

length less than MVL. 

 

2.4 Vector Lane 

 
Figure 2.3 Vector lane diagram 

 

The vector lanes of a vector unit are shown in detail in Figure 2.3. Each vector 

lane has a complete copy of the functional units, a partition of the vector register file and 

vector flag registers. All vector lanes receive the same control signals and operate 

independently without communication for most vector instructions. With more vector 

lanes, a fixed-length vector can be processed in fewer cycles, improving performance. 

Processor which supports vector operations through parallel lanes is generally known as 

Single Instruction Multiple Data (SIMD) processors. Many popular microprocessors have 

extended instruction set architecture (ISA) to support SIMD instructions such as Intel 

SSE, MMX and PowerPC AltiVec. 
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2.5 Vector Chaining versus Hybrid Vector-SIMD Model 

 

Figure 2.4 Vector chaining (a) versus hybrid vector/SIMD execution (b). 

 

Traditional vector processors are optimized towards processing long vectors. 

Since they tend not to have a large number of parallel vector lanes, they rely on 

pipelining and instruction chaining through the vector register file to achieve high 

performance. Instruction chaining is illustrated in Figure 2.4(a). It refers to the passing of 

results from one functional unit to the next between two data dependent instructions 

before the entire result vector has been computed by the first unit. Chaining through the 

register file has a significant drawback: it requires one read port and one write port for 

each functional unit to support concurrent computations. This contributes to the 

complexity and size of the traditional vector register file. Another approach, which is 

described by Huang et al. [34] is to combine vector and SIMD processing and create a 

hybrid vector/SIMD model, illustrated in Figure 2.4(b). In the hybrid model, 

computations are performed both in parallel in SIMD fashion, and over time as in the 

traditional vector model. Elements which are accessed simultaneously for parallel 

execution contribute to short vectors whereas each vector register is made of multiple 

short vector registers. AMD‟s GPU architecture is one of the famous Hybrid 

vector/SIMD architecture. 
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2.6 Vector Memory Access Patterns 

Below is the various memory access patterns, frequently used in vector processor. 

These patterns emerge from the sequence of vector memory instructions used to access 

an array operand within a vectorized loop. Our design supports all of these memory 

access patterns. 

 

Strided Vector access: One of the simplest access patterns in which all vector elements 

reside in the memory at constant distance from each other and hence memory accesses 

are highly predictable. Most vector processors provide efficient strided access.  

 

Permutations: A permutation access uses indexed vector memory instructions to access 

every item within memory and the index value is always constant. In this access, the 

index register is a scalar register. 

 

Lookup Tables: In this type of access memory elements are accessed as per the index 

register and the index is a random value. The index register is a vector register. Such 

accesses can be observed in sparse matrix computations. 

 

Neighbor Access: In this type of access, the same element in the memory is accessed 

multiple times by the neighboring lanes. This access can be imitated by providing stride 

value equal to zero. 

 

Rake Access: This is a special two dimensional interleaved strided access and can be 

performed with a nested loop of vector memory instructions. This access is useful when 

you want to load or store multiple random rows or columns of a matrix. 
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2.7 Recent Trends in Vector Architecture 

Many optimizations are implemented in vector processors. Recent trends in vector 

execution are listed below. 

CODE (Clustered Organization for Decoupled Execution): A centralized vector 

register file limits the number of functional units because of its size and complexity. 

Kozyrakis [35] has designed a vector register file such that each vector functional unit 

can directly access only a subset of the registers. The issue logic selects the appropriate 

cluster to execute each instruction and the interconnection network between each subset 

of the register file provides results between vector functional units. 

Decoupled Vector Execution: Espasa and Valero [36] have implemented partial 

dynamic scheduling by splitting the execution pipeline into three different streams: One 

implements the vector computation, the second contains all the memory access 

instructions and the third executes the scalar computation instructions. The decoupled 

pipelined architecture can implement limited chaining with minor increase in register file 

size and is able to support different latency for each vector stream. 

Out-of-order Vector Execution: Register renaming and out-of-order issue in a vector 

processor improves performance. Performance improvements can be achieved by 

introducing extra physical registers for renaming. Renaming enables precise exceptions 

to be easily implemented [37].  

Vector Lane Threading: Vector lane threading (VLT) allows short-vector or scalar 

threads to be run on idle vector lanes. The number of lanes assigned to each thread 

corresponds to its amount of data-level parallelism [38]. 
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2.8 Conclusions 

 In this chapter we have given a brief introduction to vector processing, 

basic terminology used in the vector processor and recent trends in vector execution. In 

FPGA implementations usually a general purpose register file is implemented in block 

RAM which has only one pair of read write ports. Hence, it is hard to implement vector 

chaining on FPGAs. Our Hybrid vector/SIMD computation model can provide 

comparable performance. Also, we have implemented a unified vector scalar computation 

approach to save on area, and adopted decoupled vector execution to support variable 

pipeline latency for floating point operation. The details of our implementation are 

provided in the next chapter (Chapter 3). 
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3 FLOATING POINT VECTOR CO-PROCESSOR 

DESIGN 

This chapter describes the design and implementation of the Floating Point Vector 

Co-processor (FPVC) targeting Xilinx FPGAs. Three key features distinguish our work 

in floating-point architecture: a unified approach to scalar and vector processing, support 

for different latency of each functional unit and simplicity of organization. The initial 

section of this chapter provides an overall architecture of the processor. Next section 

describes the Instruction Set Architecture (ISA) features whereas the unified vector core 

is described in following sections. Finally, FPGA specific novel inter-lane 

communication features, vector compression and expansion and configurable parameters 

are described. 
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3.1 Floating Point Vector Co-processor Architecture 

The Floating Point Vector Co-processor (FPVC) is a configurable soft-core vector 

processor architecture developed specifically for FPGAs. It leverages the configurability 

of FPGAs to provide many parameters to configure the processor for a specific 

application for desired performance and area. The FPVC instruction set supports both 

scalar and vector instructions with unified register files and execution units. Instruction 

set features are heavily borrowed from the instruction set of VIRAM and RISC 

processors such as PowerPC and Microblaze. Currently the FPVC does not support 

virtual memory and certain bit manipulation instructions, but it adds new instructions to 

take advantage of DSP functionality and embedded memories.  

 

Figure 3.1 Vector Co-processor Block Diagram 

 

Figure 3.1 illustrates the high level view of the floating point vector processor. 

The FPVC integrates local instruction and data RAM, system bus interface and a floating 

point vector core.  
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3.1.1 FPVC – The Vector Co-processor  

Some of the key design features of Floating Point Vector Core are: 

 Completely autonomous from the main processor 

 Supports single precision and 32-bit integer arithmetic operations  

 4 stage RISC pipeline for integer arithmetic and memory access 

 Variable length RISC pipeline for floating point arithmetic 

 Unified vector scalar general purpose register file 

 Supports modified Harvard style memory architecture where there are 

separate level 1 instruction and data RAM but unified level 2 memory 

 

3.1.2 Local Instruction and Data RAM 

The FPVC implements a modified Harvard style memory system architecture. 

The FPVC‟s memory system is divided in two levels: main memory and local memory. 

Main memory is connected to FPVC through master port of system bus interface whereas 

local memory sits in between. Apart from our approach, there are many options exist for 

connecting the FPVC to the main memory, such as through unified cache memory, 

separate instruction and data cache, through direct connection to main memory etc. For 

off-chip memory, caches are used to hide the memory latencies, but for streaming 

applications in the area of embedded and scientific applications this may not be true. This 

range of different memory system configurations could be interesting to explore in the 

future.  

As shown in Figure 3.1 instruction and data RAM constitute local memory. These 

memories can be configured for various sizes with various data widths using 

C_INSTR_MEM_SIZE, C_DATA_MEM_SIZE and C_MPLB_DWIDTH parameters at 
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design compile time. The instruction and data memory are part of system address space 

and can be accessed by any master on the system bus. Hence, data coherency and other 

communication protocols between FPVC and other masters can be implemented through 

software. Also through software, we can pre-fetch instructions and data required for 

FPVC and reduce traffic on the system bus. 

 

3.1.3 System Bus Interface 

The FPVC has one slave (SLV) port for communicating with the main processor 

and one master (MST) port for main memory accesses. The system bus interface for 

master and slave ports is not restricted to a specific bus protocol. The slave port interface 

can be connected to any type of bus including point-to-point, shared bus or simple glue 

logic.  

In the current design implementation, we have implemented Processor Local Bus 

(PLB) [3] as the system bus interface. The PLB can be configured for 32-bit, 64-bit or 

128-bit interface. Data alignment is also done in the system bus interface. The master port 

of the system bus interface includes a Direct Memory Access (DMA) controller to 

provide software prefetch mechanism for the vector core. DMA transfers setup include 

below three steps. 

1. Write source/destination address of main memory in global address register 

2. Write destination/source address of local memory in local address register. 

3. Configure DMA transfer parameters : includes direction of the DMA, size of 

the DMA, which local memory involves in the transfer, state of DMA transfer 

are provided written in configuration register 

Details for each register are provided below.  
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1) Control Register (CR) :-  

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

FPU 

EN 

INT 

EN 

S/W 

RST 
RSVD 

DMA 

EN 

DMA 

WAIT 

DMA 

TYPE 

DMA 

RNW 
RSVD 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

RSVD DMA LENGTH 

 

FPUEN (31)  : Enables or disables the floating point co-processor (0 - Disable, 1 - Enable) 

 

INTEN (30)  : Interrupt enable (0 – Disable, 1 – Enable) 

 

S/W RST (29)  : Software reset (0 - No effect on co-processor, 1 – Reset co-processor) 

 

DMAEN (27)  : Enables DMA transfers (0 – Enable DMA, 1 – Disable DMA) 

 

DMAWAIT (26)  : Core execution state when DMA transfer is enabled  (0 – Continue, 1 – Pause) 

 

DMA TYPE (25)  : Destination or source of DMA (0 – Instruction RAM, 1- Data RAM) 

 

DMA RNW (24)  : Direction of DMA (0 – DMA write operation, 1 – DMA read operation) 

 

DMA LENGTH (11-0) : Length of DMA transfers in number of bytes 

 

 

2) Global address register (GAR):- 

It provides destination/source address to DMA controller for main memory. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Global Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Global Address 

 

3) Local address register(LAR) :-  

It provides destination/source address to DMA controller for local memory. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Local Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Local Address 
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3.2 Vector-Scalar ISA 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This programming model has 32 vector data registers, within each register there are 32 

short vectors and each short vector register has 4 lanes which totals 128 elements in a 

single vector register. 

Special 

Purpose 

Registers 

Vector-Scalar Register File 

Scalar 

Register

s 

V1.0 
V2.0 

V1.1 
V2.1 

V1.31 
V2.31 

V3.0 

add.vvv V3, V1, V2 

Vector Arithmetic 

V2.0 

V1.0 

V3.0 

add.sss V3, V1, V2 

Scalar Arithmetic 

V1_base Immd_offset 

V3.0 

V3.1 

V3.2 

V3.3 

V1_base 

+ 

V2_index 

store.vss V3, V1, V2, Immd 

Memory Accesses 

Figure 3.2 User programming model of a vector scalar architecture 

V3.1 

V3.0 
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The goals of the Vector-Scalar ISA design are to be flexible and scalable and to 

provide a simple architecture suitable for a wide range of floating point applications. Due 

to trade-offs between performance versus design complexity, we selected to design new 

ISA which is inspired by RISC instruction architectures such as Power ISA [3], 

Microblaze ISA [2] and VIRAM vector ISA [35]. 

The Vector-Scalar ISA is a 32-bit instruction set. The instruction encoding allows 

for 32 vector-scalar registers with variable vector length. As shown in figure 3.2, the top 

short vector of each vector register can be used as a scalar register. Due to this unification 

of the vector register file we can freely mix vector and scalar vector registers without any 

scalar – vector core communication. Register-0 always returns the value zero. Each 

vector register supports configurable lane width. The vector-scalar ISA supports 

maximum vector length of C_NUM_OF_LANE * C_NUM_OF_VECTOR. These 

parameters are explained in section 3.5. Vector-scalar instruction can be classified into 

three major classes: 

1. Memroy access Instructions 

2. Artihmetic Instructions 

3. Inter lane communication instructions 

This classes are described below whereas each instructions are defined in 

Appendix A. 
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3.2.1 Memory Access Instructions 

Vector memory instructions (load.xxx and store.xxx) support all memory access 

patterns described in Chapter 2. Figure 3.2 bottom shows the rake access pattern, which 

can be described by a single vector instruction in the vector scalar ISA. Rake access is 

generally used in block operations for matrices. It requires a vector base address, vector 

index address and immediate offset value, which is a distance between two neighbor 

elements. All neighbor elements within each rake are stored in single short vector 

whereas each rack of elements is stored in different short vector. The same instruction 

can be used for unit stride and non unit stride access by setting the immediate offset value 

to an equal distance between two vector elements in memory. Permutation and look-up 

table access classes are realized by keeping immediate offset to zero and providing index 

register. The only difference between permutation and look-up table accesses is the index 

register is scalar and vector type respectively. Vector ISA designs anticipate that most 

hardware would be optimized for unit-stride or indexed accesses; in our vector-scalar 

architecture all memory accesses are performed equally efficiently.  

As source and destination registers are encoded in the same opcode space, scalar 

accesses are supported with the same instruction. It also allows a post-increment of the 

scalar base address to be specified in the same instruction for indexed and rake accesses. 

This post-increment is an arbitrary amount taken from any scalar register, and register 

zero can be specified if no post-increment is required. This post-increment avoids a 

separate scalar add instruction, and so saves instruction issue bandwidth.  
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3.2.2 Arithmetic Instruction and Instruction masking 

The primary application domain of our research is floating point arithmetic 

applications and hence we have included several floating point instructions: floating point 

add, multiply, divide and square root. In order to be an autonomous and to support basic 

program control constructs, we have included basic integer arithmetic, compare and shift 

instructions which operates on the full data word. One exception is the multiply 

instruction which only works on the lower 16-bits of the operands and produces a 32 bit 

result.  

In conventional vector ISA or VIRAM ISA based vector processors [35] [39] [5] 

[6], that implement separate scalar and vector processor cores, inter processor 

communication instructions are usually provided to allow the scalar processor to access 

single elements within a vector register. These are useful for partially vectorizable loops. 

A common example is where a loop contains memory accesses that can be vectorized but 

where the computation contains a dependency between loop iterations that requires scalar 

execution. In our Vector-Scalar ISA, all scalar operations are performed on the first 

element of the first short vector of each register and the result will be replicated to all 

lanes and stored on the first short vector of the destination register. Hence, vector 

instructions which require scalar data can reference the top of each register. Figure 3.2 

shows vector and scalar arithmetic operation. 

Masked vector instruction execution is usually provided to allow vectorization of 

loops containing conditionally executed statements. A mask vector controls the element 

positions where a vector instruction is allowed to update the result vector. The mask 

vector may be held in special flag/mask registers.  
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3.2.3 Inter Lane Communication Instruction 

Each lane in the vector processor communicates with each other via local memory 

access instructions which access local data memory. In some cases, other forms of inter-

lane communications can improve performance but these can incur significant hardware 

costs to provide the necessary inter-lane communication. These Inter-lane communication 

operations are vector compression and expansion. Compress instructions select the subset 

of an input vector marked by a flag vector and pack these together into contiguous 

elements at the start of a destination vector. Expand instructions perform the reverse 

operation to unpack a vector, placing source elements into a destination vector at 

locations marked by bits in a flag register. 

Compress and expand operations can be used to implement conditional operations 

in density-time. Instead of using masked instructions, flagged elements can be 

compressed into a new vector and vector length reduced to lower execution time. After 

the conditional instructions are completed, an expand operation can update the original 

vectors. But, as the number of lanes increases and the number of clocks per vector 

instruction drops, the advantages of compress/expand over masked instruction execution 

diminishes.  

There are several alternative ways of providing compress and expand 

functionality. In traditional vector computers, vector compression and expansion is 

implemented using scatter and gather instructions. In this approach, the masked bit is 

applied to the index vector and compressed indices are written to the index vector. The 

elements can then be retrieved using a vector gather instruction. Another variant of this 

approach is to support compress and expand functionality as part of loads and stores. The 

loads compress flagged elements as they were read from memory, and compressed stores 
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compress elements from a vector register storing the packed vector in memory. Expand 

variants can also be supported in the opposite manner. For cases where the packed vector 

must move between registers and memory, these instructions avoid the inter-lane traffic 

and excess memory traffic required for register-register compression or compressed index 

vectors. Adding these compressed memory instructions does not require much additional 

complexity on top of masked load/stores, but it does require additional instruction 

encodings. 

T0 [39], VIRAM [38], VESPA [5] and soft vector accelerator [6] use the crossbar 

wiring to perform inter-lane communication. In this approach flagged registers are only 

routed to the destination register. This register-register compress avoids the use of 

memory address bandwidth to move data and so may have the highest performance for 

machines with limited address bandwidth at the expense of higher design complexity of 

the load store unit. The index vector compression is easy to simulate with a register-

register compress. 

We have implemented a register-register instruction that reads a source flag 

register and a source vector data register, stores it to a FIFO inside the load store unit and 

writes these flagged data into the first elements of the destination vector register in serial 

fashion. The advantage of this approach is that it does not require access to memory and 

it does not require a crossbar in the load store unit. Expand instructions are implemented 

similarly. 
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3.3 Vector-Scalar Pipeline 

The FPVC is based on the classic dynamic scheduling (In-order issue and our-of-

order completion) RISC pipeline. The four stages of the pipeline are Instruction Fetch, 

Decode, Execution and Write Back. The pipeline is intentionally kept short so integer 

vector instructions can complete in a small number of cycles to eliminate the need for 

forwarding multiplexers and to reduce area. Due to the short pipeline, floating point 

instruction spends most of their time in the floating point unit which optimizes the overall 

execution latency. As both scalar and vector instructions are executed from the same 

instruction pipeline, both type of instructions are freely mixed in the program execution 

and stored in the same local instruction memory. 

As shown Figure 3.3, the fetch and decode stages are common to all instructions. 

The instruction fetch stage (IF) is used to access the instruction. During IF stage, the next 

instruction address is determined and sent to local instruction RAM, which returns the 

instruction by the end of the cycle. We assume that all instructions fit in the local 

instruction RAM. Therefore the size put a limitation on the size of program. An 

alternative approach is an instruction cache which would support larger programs at the 

cost of increased complexity. The fetch unit of the pipeline always assumes that branches 

are not taken and fetches an instruction from the next instruction address. Hence, the 

branch penalty for the vector co-processor will be two cycles. 

During the decode stage (ID), instructions pass through three steps and all steps 

are performed in a single clock cycle. In the first step, the instruction is decoded and data 

hazard checkers perform checks to find out whether the current instruction‟s source 

and/or destination registers are in flight. Due to dynamic scheduling, not only RAW 
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(Read after Write) hazards exist but the data hazard checker must also check WAW 

(Write after Write) and WAR (Write after Read) hazards. Until all hazards are cleared, 

the Instruction Decode unit stalls the next instruction fetch. 

 

Figure 3.3 Vector Co-processor Pipeline 

 

Once all hazards are cleared, the instruction enters the vector state machine. If the 

instruction is a scalar instruction then the vector state machine issues the instruction to 

the execution unit and the new fetched instruction enters the decode stage in next clock 

cycle. If it is a vector instruction, based on the maximum vector length stored in the MVL 

register, the instruction will be repeatedly issued to the execution unit.  

As the instruction encoding can address 32 short vector registers as 

source/destination registers, the vector counter together with source/destination register 

references the current instruction‟s operand data. Finally, in the last step, when the 

decode stage issues an instruction to the execution unit, it updates the scoreboard to keep 

track of in flight instructions for data hazard checks.  

Once the instruction reaches the end of the execution unit, the result is written 

back to registers.  



 45 

3.3.1 Execution Unit 

The execution unit performs floating point arithmetic (add, sub, mul, div, sqrt), 

integer arithmetic (add, sub, mul), shift operations, comparisons of the operands and 

memory accesses to local data memory. These functions are shown in Figure 3.3. The 

execution unit is divided into three main units based on the type of data and memory 

access for decouple execution. These three units are floating point unit (FPU), integer 

unit (IU) and load store unit (LSU) and all these units work independently from each 

other. To keep our overall design simple, instruction decoding is divided into two parts. 

First, partial decoding is done in the decode stage which is useful for data hazard 

checking and scoreboarding. The second part is implemented in the execution unit and 

directs the current instruction to a particular unit. 

Table 3.1 Floating Point Operations and their Latencies 

Normalization and rounding for the floating point arithmetic functions are done 

along with multiplexing in the data path. The IEEE 754 standard single precision 

functional units are generated from the VFLOAT library [16]. Latency for each function 

unit is shown in Table 1.1.  

Modern FPGAs include fixed computational units such as adders, multipliers and 

barrel shifter as well as storage elements such as block RAMs. All computational units 

MODULE Latency 

Denormalization 0 

Normalization 1 

Rounding 1 

Add 4 

Multiply 4 

Division 10 

Square root 11 
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are pipelined so they can produce result in single cycle with a reasonable operating 

frequency.  

Since the execution unit supports dynamic scheduling all three major units works 

independently from each other. Hence, a structural hazard may occur at the end of 

execution of an operation. To avoid this problem, we have implemented an arbiter 

between the end of the execution stage and the write back stage of the pipeline. This 

arbiter can commit one result in each clock cycle. When multiple results are available at 

the same time, one will be written to the register file, and other results will be stalled. We 

currently implement a straightforward fixed arbitration scheme with the load store unit 

having the highest priority and integer arithmetic with lowest priority, but will consider 

other schemes in the future. 

 

3.3.2 Vector Register File 

The vector register file lies at the heart of the vector core. It provides temporary 

storage for intermediate values and interconnection between functional units. The number 

of registers and length of each vector register is a key decision in the vector core design. 

Here, first we will discuss various ways to configure vector registers and configurations 

in previous vector processors and then we present our implementation of the vector 

register. 

Register-Partitioned versus Element-Partitioned Register Banks 

There are two orthogonal ways in which we can divide the vector register storage 

into banks. The first places elements belonging to the same vector register into the same 

bank, which is called register partitioned. The second places elements with the same 
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element index into the same bank, which is called element partitioned. A separate 

interconnection network connects banks and function unit ports. 

 
Figure 3.4 Vector register storage partitining  

Register partitioning is created for an example vector register file with 4 vector registers 

each 8 elements long. All vector registers are addressed in Vx[y] format, where x denotes 

register number, y denotes the element number. All configurations have been divided into 

4 memory banks.  

 

Figure 3.4(a) shows a vector storage scheme which is popular in traditional vector 

processors and SIMDized vector processor. This is the simplest vector storage scheme as 

it does not require any interconnection network between banks and functional units. With 

this scheme, a functional unit reserves a bank port for the duration of an instruction‟s 

execution. If another functional unit tries to access the same bank using the same port, it 

must wait for the first instruction to finish execution.  

Traditional vector processors are heavily dependent on long vectors and vector 

chaining, but because of the exclusivity of each instruction on a single bank port, 

chaining through the register file requires extra ports. Similarly, a SIMDized processor 

can only be scaled by the number of lanes but as you scale the lanes, resource usage and 
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efficiency of resource utilization may be severely hit. Hence, this is a limited scaling 

option, even though it is the simplest to implement.  

An element-partitioned scheme is shown in figure 3.4(b). By interleaving vector 

register storage across multiple banks, a single instruction cycles through all the banks 

one after another and hence, we can reduce the number of ports required on each bank. 

This allows all functional units to perform multiple chained accesses to the same vector 

register even though each bank has a limited number of ports. This scheme is 

implemented in the soft vector accelerator, VIRAM [35], T0 [39] and RSVP [40]. This 

can scale better than the register-partitioned scheme, but as the number of element 

increases so as the number of banks and the interconnection network will become 

bottleneck of the design. 

 In an FPGA, the vector register file is implemented in block RAM and this RAM 

has only one pair of asynchronous read and write ports, which lends itself to the element-

partitioned scheme. But with the adaption of  the Hybrid-SIMD model, we can 

partitioned long vectors into short vectors and are able to store the short vectors of each 

vector register in a single bank. Thus we can avoid the limitations of element-partitioned 

banks and achieve the simplicity of the register-partitioned bank. Hence we used a 

register storage scheme as shown in figure 3.4(c).  

 

3.3.3 Load Store Unit 

Memory instructions are dispatched to the vector load store unit controller at the 

end of the ID stage. The Load Store Unit contains a small memory controller which is a 

state machine that generates basic memory read-write signals and the pipeline control 

signals for the remainder of the memory pipeline. Basic stages of the state machine are 
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memory address calculation, memory access and write back results to the vector register 

file. In the address calculation stage, the base register is updated with the index value 

based on access type. The load store unit supports vector unit stride, vector non-unit 

stride, index accesses and scalar access. 

In traditional vector processors, multiple memory access ports or wide read-write 

ports are implemented. Multiple ports require that memory has multiple read-write port 

available whereas wide read-write ports only optimize unit stride operations. In an FPGA, 

the load store unit is connected to only on-chip block RAM memory, which has only one 

read-write port available. Hence, to support multiple memory accesses requires a crossbar 

and data alignment logic. To keep the design simple and to follow strictly sequential 

memory consistency model, we serialized all the memory accesses. Thus each memory 

access is performed in 3 clock cycles. One optimization is that the load store unit can do 

burst accesses for each short vector. Burst size depends on the number of lane parameter. 

So, if the vector scalar architecture has 32 short vectors per vector-scalar register and 

each short vector accommodates 4 lanes then the total number of memory access will be 

128. These 128 memory accesses will be partitioned into 32, 4-beat bursts accesses. 

Figure 3.5 Matrix subset access  

Two dimensional matrix accesses or rake accesses can be done with a single vector 

instruction. Here, we provided base address, arbitrary index value for post increment and 

immediate stride values. 
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3.4 Configurable Parameters 

Table 3.2 Configuration Parameters 

 

Table 3.2 lists the configurable parameters and features of the FPVC. As unified 

vector scalar register stores integer and floating point data, C_EXP_BITS, C_MAN_BITS 

will decide element size of the FPVC. Maximum Vector Length is determined by 

C_NUM_OF_LANE and C_VECTOR_LENGTH. Element size, the number of registers 

defined in the ISA and the FPGA embedded memory block size constrains Maximum 

Vector Length. C_INSTR_MEM_SIZE and C_DATA_MEM_SIZE determine the size of 

local memory. These are the primary parameters of FPVC that impact design. 

C_ADD_MAN_BITS,C_MUL_MAN_BITS,C_DIV_MAN_BITS and C_SQRT_MAN_BITS 

are the secondary parameters. We are using the VFLOAT [16] library design modules 

which support customized range and precision of each floating point unit. The secondary 

parameters enables us to do more fine tuning of the design according to the application 

requirements but currently we support only single precision floating point operations 

using these units. 

 

Parameter Name Description 
Typical 

Value 

C_EXP_BITS Exponent width for floating point data 8-11 bits 

C_MAN_BITS Mantissa width for floating point data  23-52 bits 

C_ADD_MAN_BITS Mantissa width for floating point addition 23-52 bits 

C_MUL_MAN_BITS Mantissa width for floating point multiply 23-52 bits 

C_DIV_MAN_BITS Mantissa width for floating point division 23-52 bits 

C_SQRT_MAN_BITS Mantissa width for floating point square root 23-52 bits 

C_NUM_OF_LANE Number of parallel functional units 1,2,4,8 

C_VECTOR_LENGTH Number of short vectors 1,2,4,8,16,32 

C_INSTR_MEM_SIZE Size of local instruction RAM 1K-64KB 

C_DATA_MEM_SIZE Size of local data RAM 1K-64KB 
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3.5 Conclusion 

In this chapter, we have presented the overall architecture of the floating point 

vector co-processor and proposed the new vector scalar ISA. We have discussed various 

design trade-offs in the co-processor pipeline and inter-lane communication operation, 

compression and expansion. Finally, we have listed various configurable parameters 

which can be defined for each application domain. True reconfigurable processor based 

system, not only provide configurable hardware but it should have adaptable software for 

different hardware configuration. In the next chapter, we present adaptable software 

design and results for different FPVC configurations. 
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4 RESULTS AND DISCUSSION 

Numerical linear algebra kernels are key components in scientific computing, 

multimedia and human-machine interface tasks. With the rapid advances in technology, 

hardware acceleration of linear algebra applications using FPGAs has become feasible. In 

this chapter, we describe software kernels based on BLAS [42] and LINPACK [41] 

libraries that run on our vector scalar co-processor architecture. The design is 

implemented on the Xilinx‟s Virtex 5 FPGA and performance of each FPVC 

configuration for these kernels is compared against performance of an embedded 

processor block on Xilinx‟s Virtex 5 FPGA. 
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4.1 Experimental Setup 

We have tested the FPVC for correctness as well as for area usage and speed. The 

FPVC is implemented in VHDL and synthesized using Xilinx ISE 10.1 CAD tools 

targeting Virtex-5 FPGAs. We have compared various FPVC configurations against a 

hard processor (PowerPC 440 with the Xilinx FPU [3]) using various linear algebra 

kernels. We have also compared area and speed for each configuration of the FPVC.  

Figure 4.1 Embedded System with FPVC and Xilinx FPU 

The Xilinx ML510 board [43] was used to test the design and both PowerPC‟s 

floating point extension Xilinx FPU [4] and the FPVC are implemented in a single 

embedded system as shown in figure 4.1. Xilinx FPU is directly connected to PowerPC 

using point-to-point FCB (Fabric Co-processor Bus) [44] whereas FPVC is connected 

through 32-bit Processor Local Bus (PLB) [4]. Embedded system is running at 100MHz. 

Program Flow 

PowerPC based linear algebra kernels are written in C and compiled using gcc 

with –o2 optimization. FPVC based linear algebra kernels are written directly in machine 

code, stored as data array in embedded system and no optimization is performed. 

Program and data are stored in on-chip BRAM (64 KB main memory, as shown in figure 
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4.1) of the embedded processor system. As all programs and data are stored in the main 

memory and FPVC can only access local memory (64 KB instruction and data RAM) 

(see section 3.1.2), FPVC system bus interface is responsible for communication between 

local and main memory.  

 

Figure 4.2 shows typical program flow for PowerPC and FPVC. All the 

parameters required to execute the kernel on FPVC such as source addresses, destination 

addresses, size of the data etc., are written to the local memory by PowerPC. FPVC‟s 

DMA will be configured next. DMA will be configured using system bus interface‟s 

configuration register (refer section 3.1.3). Once, all instructions are loaded in the local 

instruction memory FPVC starts execution. While FPVC executes the kernel, PowerPC 

polls “DONE” bit of configuration register (which will be set by executing HALT 

instruction on FP vector core). The main performance metric is the number of clock 

cycles between the start and the end of a kernel. Clock cycles are counted using the 

PowerPC‟s internal timer and all results are normalized to PowerPC‟s runtime.  

Figure 4.2 Typical Program Flow for FPVC Kernel 
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4.2 Linear Algebra 

Numerical linear algebra, particularly the solution of linear system of equations, 

linear least square problems, eigenvalue problems and singular value problems, is 

fundamental to most embedded and scientific applications. As it is often the most 

computationally intensive part of such applications, the performance improvement of 

numerical linear algebra has always been of interest to researchers. Certain basic vector 

and matrix operations of the arithmetic libraries such as BLAS [42], LINPACK [41] have 

been implemented on FPGA. In [45] author has implemented basic BLAS operations on 

FPGA. Wang [46] has implemented QR decomposition in two-dimensional systolic array 

architecture on FPGA where as Maslennikow et al. [47] has implemented Cholesky 

Decomposition based least square problem on FPGAs. All of these researches have 

designed custom application specific floating point compute path and it cannot be used 

for other operations.  

 

4.3 DOT Product 

BLAS level 1 routines are in the form of 1D vector operations, with O (N) 

operations performed on length N vectors. One important routine is the vector dot product, 

which can be formulated as: 

  ∑      

   

   

 

PowerPC writes source and destination address and vector size parameters on 

FPVC‟s local data RAM. Complete program flow is explained in section 4.1. Here we 

will only discuss compute kernel executed on the FPVC. 
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Figure 4.3 shows pseudo code for DOT product. Strip mining (see section 2.3) is 

inherent in each kernel to handle any length of vector. Here the memory load instruction 

requires immediate value equals to constant stride value, which is a distance between two 

elements within vector whereas index value is equals to constant stride value times 

number of lane. In this way each short vector contains first MVL elements. Now that we 

have loaded both vectors, we can multiply each short vector‟s lane in parallel where as 

each short vector in every clock cycle and results are stored in general purpose register. 

The reduction function accumulates all the elements in general purpose register 

using compress and expand instruction. The fundamental concept of reduction operation 

is to copy lower half of mul_vector to another register, add both the register and half the 

MVL value. This pattern is performed continuously until final scalar value will be 

remaining in the mul_vector. The rest of the DOT product code is self explainable. 

Results for various configuration of FPVC are given in the below figures and all the 

performance number are normalized with respect to PowerPC. 

1. DOT_product_kernel() 

2. { 

3.   load vector u from local data RAM; 

4.   load vector v from local data RAM; 

5.   mul_vector = multiply u and v; 

6.   accumulate = reduction(mul_vector); 

7.   store accumulate to local memory; 

8. } 

Figure 4.3 Pseudo Code For DOT PRODUCT 
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Figure 4.4 DOT Product Performance for Lane Scaling 
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ANALYSIS: Figure 4.4 shows performance for DOT product with short vector size (SV) 

= 8, 16, 32 and constant number of lane (L) = 2 whereas Figure 4.4, shows performance 

for DOT product with constant vector size. Some observations are listed below: 

- As the FPVC requires all the code and data to be resided into local memory, 

(2N+1+no. of instructions) memory accesses will be performed to load local memory and 

to store result back to main memory. The significance of main memory access can be 

observed in both the graphs where the FPVC underperformed compared to the PowerPC. 

 

- For vector length of N, N floating-point multiplication as well as N floating-point 

addition (total 2N floating point operations) needs to be performed and as number of 

lanes scales up the performance increases, which we can see in figure 4.5. Highest 

performance improvement is 2.24x over PowerPC for 512 elements for FPVC 

configuration, SV = 32 and L = 8. 

 

- If complete vector is accommodated in single vector register no strip mining is 

required and hence the kernel execution time will be equal. For the FPVC configuration 

(SV = 8 and L =2; SV = 16 and L = 2; SV = 32 and L = 2) DOT product for vector size 8 

and 16 are accommodated in single vector and hence execution time for these vector sizes 

is same. Similarly for FPVC configuration (SV = 16 and L = 2; SV = 32 and L = 2) 

performs 32 element vector DOT product in same execution time. But FPVC 

configuration (SV = 8 and L = 2) requires more execution time since all 32 elements are 

not accommodated in a single vector register and strip mining is required. The number of 

vector elements accommodated in single vector register is controlled by maximum vector 

length (MVL), which is controlled by number of lanes and number of short vectors. 
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4.4 Matrix - Vector Multiplication 

Level 2 BLAS routines typically perform matrix-vector operations with O (N
2
) 

operations per call. Matrix-vector multiply is one of the important kernels in BLAS and 

there are two basic forms: V
T
 x M and M x V. It can be formulated as: 

    ∑       

     

   

                   

 The dot product within the matrix-vector multiply is assigned to one lane, V
T
 x M 

performs multi-column access, while M x V performs multi-row accesses to the matrix. 

As the FPVC can support both accesses with rake type with equal efficiency we chose to 

implement M x V. Figure 4.6 shows pseudo code for the Matrix-Vector product and as 

described in the figure DOT product kernel is repeated for every row of matrix. As we 

scaled up number of vector lanes in FPVC multiple rows of matrix can be computed in 

parallel. 

ANALYSIS: As we have discussed for the vector DOT product, if the maximum vector 

length (MVL) of the FPVC can accommodate the complete vector in a single vector 

scalar register, then the performance for each configuration of the FPVC will be similar. 

Hence, figure 4.7 shows only different lane configurations with constant short vector size 

of 32. 

1. MV_product_kernel() 

2. { 

3.  loop (i = 0 to i = N-1) 

4.    yi = DOT_product_kernel(Ai,x); 

5.   store result yi to local memory; 

6. end loop; 

7. } 

Figure 4.6 Pseudo Code for Matrix-Vector Multiplication 
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- For square matrix size of N x N, matrix-vector multiplication performs 2N
2
 

floating point operations. It is N times higher than the number of DOT product floating 

point operations. FPVC underperforms for the square matrix size of 4 and 8 due to 

prominent impact of main memory access for instruction and data. Highest performance 

improvement is 1.4x over PowerPC.  

 

4.5 Matrix – Matrix Multiplication 

BLAS level 3 routines are primarily matrix–matrix operations that perform O (N
3
) 

arithmetic operations per call. Matrix-matrix multiply is the most important routine 

within BLAS and there are three basic forms: C = A x B, C = A x B
T
, C = A

T
 x B. This 

BLAS operation is formulated as: 

     ∑        

   

    

                     

 

Figure 4.7 Matrix Vector Performance for Lane scaling 
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Matrix – Matrix multiplication can be performed by applying mv_product_kernel 

to matrix A with each column of matrix B. Figure 4.8 shows pseudo code for C = A x B. 

ANALYSIS: Each element of A and B is used N times and the total number of floating 

point operations is 2N
3
 which is consistent with the previous two kernel‟s performance 

improvements. It underperforms only for the square matrix size of 4 due to significant 

effect of main memory access for instruction and data. Highest performance 

improvement is 1.65x over PowerPC.  
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Figure 4.9 Matrix-Matrix Multiplication for Lane Scaling 

1. MM_product_kernel() 

2. { 

3.  loop (i = 0 to i = N-1) 

4.    Ci = MV_product_kernel(A,Bi); 

5.   store result Ci to local memory; 

6. end loop; 

7. } 

Figure 4.8 Pseudo Code for Matrix-Matrix Multiplication 
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4.6 QR Decomposition Using Givens Rotation 

In linear algebra, a QR decomposition of a matrix is a decomposition of the 

matrix into an orthogonal and an upper triangular matrix. QR decomposition is often used 

to solve the linear least squares problem. QR decompositions can be computed with a 

series of Givens rotations. Each rotation zeros an element in the sub-diagonal of the 

matrix, forming the R matrix. The concatenation of all the Givens rotations forms the 

orthogonal Q matrix. A Brief description of the Givens algorithm is given below. 

 An M x N matrix A is zeroed out one element at a time using 2 x 2 rotation matrix:  

     [
  
   

]                           

Each rotation matrix Qi,j is orthogonal and will zero out the element Aij in matrix A, 

starting at the bottom of the first column and working up the columns, then move to the 

second column and so on. A series of rotation matrices Qi,j are applied to the original 

matrix A until it becomes an upper triangular matrix R. Here c and s are computed using 

the following formula:  

   
 

√      
        

  

√      
 

 

1. QR_Decomp_kernel() 

2. { 

3. loop (i = 0 up to i = M-1) 

4.   loop (j = N-1 down to j > i) 

5.    x = A[j-1] [i]; 

6.    y = A[j][i]; 

7.    compute Qi,j; 

8.    A[j-1:j][0:N-1] = MM_product_kernel (Qi,j , A[j-1:j][0:N-1]); 

9.    end loop; 

10. end loop; 

11. } 

Figure 4.10 Pseudo Code for QR Decomposition 
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ANALYSIS: Each rotation matrix computation requires 2 multiplications, 1 addition, 1 

square root and 2 division operation which total at 6 floating point operations. Also, the 

MM_product_kernel which multiplies the (2x2) matrix with a (2xN) matrix requires 8N 

floating point operations. Hence, each rotation of matrix requires 8N+6 floating point 

operations. So, the total number of floating point operations is (M*(M+1)*(8N+6)/2) 

which is much higher than matrix multiplication.  

Figure 4.11, demonstrates performance improvement for various configuration of 

the FPVC over the PowerPC. As we discussed in previous three kernels, the more data 

parallelism available the more performance improvement is observed. Even though, we 

are using the vectorizable Matrix multiplication kernel, the performance improvement is 

much higher because of the ample amount of floating point operations. Maximum 

performance improvement is 4.38x. 
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4.7 Cholesky Decomposition 

Another LINPACK [41] matrix kernel, Cholesky decomposition, is a 

decomposition of a symmetric positive-definite matrix into the product of a lower 

triangular matrix and its conjugate transpose [13]. Cholesky decomposition is mainly 

used for the numerical solution of systems of linear equations.  

If matrix A has real entries and is symmetric and positive definite, then matrix A 

can be decomposed as,  

       

where L is a lower triangular matrix with strictly positive diagonal entries and L
T
 denotes 

the conjugate transpose of L. Each element of matrix L can be defined as below: 

      √      ∑    
 

   

   

           
 

    
 (      ∑         

   

   

)          

The computation is usually arranged in either of the following orders. 

 The one starts from the upper left corner of the matrix L and proceeds to calculate the 

matrix row by row. 

 Another which we use, starts from the upper left corner of the matrix L and proceeds 

to calculate the matrix column by column. 

1. Cholesky_Decomp_kernel() 

2. { 

3.  loop (i = 0 up to i = N-1) 

4.   pivot value = sqrt (Ai,i); 

5.   divide i
th

 column vector from i to N by pivot value; 

6.   loop (j = i+1 upto N) 

7.    accumulate row vector from 0 to i; 

8.    subtract accumulated value from Aj,i+1; 

9.   end loop; 

10.  end loop; 

11. } 

Figure 4.12 Pseudo code for Cholesky Decomposition 
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 As shown in the pseudo code, first we find the square root of the pivot value 

which is element Ai,i. Then divide column vector which contains elements Ai,i to AN,i. 

Next we accumulate the row vector Ai,0:i and subtract the accumulated value from each 

element of the row vector Ai,i+1:N which contains elements from i to N by pivot value. 

Every iteration of Cholesky Decomposition will compute result column vector and 

updates elements, which are right side to the pivotal column.  

ANALYSIS:  We can only compute the Ai,j entry if we know the entries to the left and 

above. Hence each column or row vector cannot be assigned to separate vector lanes and 

compute independently. This can be observed in the figure 4.11 as scaling of vector lane 

did not improve performance significantly. Hence, a major criterion for the performance 

improvement is not number of vector lane but the maximum vector length (MVL). 

Minimum performance improvement for short vector size of 32 is 3x. The maximum 

performance improvement is 4.3x. 
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4.8 Area requirement 

Table 4.1, lists area usage after Place and Route of embedded processor design. 

Floating Point 

Configuration 

Xilinx 
FPU 

SV=8 

L=1 

SV=16 

L=1 

SV=32 

L=1 

SV=32 

L=2 

SV=32 

L=4 

SV=32 

L=8 

# of LUT slices 3,055 5,414 5,453 5,493 9,013 15,628 26,196 

Block RAMs 16 51 51 51 54 60 72 

Multipliers 3 13 13 13 26 52 104 

Table 4.1 Area Usage For Different FPVC Configuration 

As shown in table 4.1, by doubling the short vector size the LUT requirement 

increases by merely 1% whereas by doubling the number of lane the LUT requirement 

increases on an average by 70%. For the comparable design of Xilinx‟s FPU and FPVC 

the LUT usage increase by nearly 100%. 

 

4.9 Conclusion 

In this chapter we have described vectorized linear algebra kernels and evaluated 

performance of each kernel with respect to PowerPC. For various small vector and/or 

matrix multiplication, main memory access latency effects are prominent on the result 

and they are underperformed compared to PowerPC. Also, for the matrix and vector 

kernels, where each vector computation can be mapped on vector lane, vector lane 

scaling is an ideal option but as seen in Cholesky decomposition kernel, where each 

matrix element computation depends on the previous computations lane scaling will be 

waste of resources. By designing parameterisable FPVC, we are able to tune the design 

resources as per the nature of the kernel and hence we can better optimize area versus 

performance.  
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5 CONCLUSIONS AND FUTURE WORK 

In this thesis, we have the described design and implementation of a Floating 

Point Vector Co-processor (FPVC) on an FPGA. This is one of the first works which 

implements floating point arithmetic with Hybrid Vector/SIMD co-processor architecture 

on the FPGA. FPGA provides a unique feature, the reconfigurability of the design, with 

which we can tune our FPVC according to the amount of parallelism available within 

floating point arithmetic applications.  

All the previous work in the design of vector processor have implemented a 

vector processor as an extension to the scalar processor and these vector processors still 

fully depends on the scalar processor for instruction fetch and partially depends for 

instruction decoding. Register file and computational resources are duplicated for scalar 

and vector processors and hence require more area. In this work, we have implemented a 

unified approach where all scalar and vector instructions truly share all resources in the 

design. Hence, our approach is more area efficient compared to others. 
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We have initiated a floating point library design for linear algebra kernels, which 

can adapt various configurations of the FPVC and tune software library. In this manner, 

not only FPVC hardware design but software library is also tuned for optimal 

performance. We have analyzed vectorization of these kernels with respect to PowerPC 

based kernel execution and deduced that by scaling short vector registers we can improve 

overall performance of each kernel without significant increase in area usage. Also, the 

data level parallel tasks which can be independently mapped on each vector lane scales 

performance with number of vector lane scaling. Finally, the more compute intensive 

applications show the most improved perfromance.  

FUTURE WORKS 

There are several avenues of research which lead on from this work: 

1) Variable Precisions Floating Point Data Support: All the floating point 

computational units are derived from VFLOAT [16] library which supports variable 

precision and hence variable data width. By limiting floating point precision and so as 

the data width, we can improve area efficiency of the FPVC.  

 

2) Architectural Improvements: As BRAM has only two ports for memory accesses, 

currently our design does not support vector chaining but in future multiple BRAM 

ports can improve the performance of the FPVC. Also, the inclusion of a unified or 

separate instruction and data cache can improve performance. 

 

3) Application Vectorization: In this research we have started designing a library of 

parallel vectorized basic linear algebra kernels. Many more Digital Signal Processing, 

multimedia kernels which exhibits data level parallelism can be added to our library 

design. 
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4) Advanced Vector Compilation: All the kernels are hand written using our vector 

scalar instruction set and are not optimized. Even the vectorized kernel exhibits speed 

up over the PowerPC for most of the data sets, they can benefit from further advances 

in vector compiler technology. Several new vector compilation challenges are 

introduced by the architectural ideas in this work, including reconfigurability of  lanes, 

Hybrid vector/SIMD architecture and data management in a unified vector-scalar 

architecture.  

 

5) Multi-core Design Exploration: As FPVC can work autonomous from main 

processor, inclusion of features related to multi-processor support can improve a 

performance of broader application base. 
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APPENDIX A 

A Floating Point Vector Co-processor (FPVC) is a Hybrid vector/SIMD (Single 

Instruction Multiple Data) co-processor. Maximum vector length of the co-processor is 

decided by the number of vector lanes within each short vector and the number of short 

vectors within each general purpose registers. The vector scalar instruction set 

architecture, which borrows heavily from the VIRAM instruction set architecture, is 

described in chapter 3. The details of the instruction set are described in this appendix. 
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A.1 Data Types 

32-bit unsigned integer and single precision floating point data are supported by 

the processor. One exception is integer multiply operation which is implemented for 16-

bit width. 

 

A.2 Addressing modes 

Instruction set supports both scalar and vector memory accesses. There are two 

types of addressing modes supported for scalar memory accesses:  

1. Immediate accesses  

2. Indexed accesses 

Vector memory accesses are supported with below addressing modes:  

1. Unit – stride accesses 

2. Non unit-stride accesses 

3. Indexed offset accesses with no constant immediate value 

4. Indexed offset accesses with constant immediate value 

 

A.3 Instruction Classes 

All the instructions can be classified in below categories: 

1. Memory access instructions 

2. Integer arithmetic instructions 

3. Program flow control instructions 

4. Floating point arithmetic instructions 

5. Special instructions 
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A.4 Instruction References 

Below table describes keywords used for instructions in next section. 

Name Description 

op Instruction operation 

Rd destination register number 

r1 source operand1’s register number 

r2 source operand2’s register number 

reg-type 

Type of each register, 

sss-all are scalar type 

vss-only desitnation register is vector type 

vvs-destination and operand1 register are vector type, operand2 

is scalar type 

vsv-destination and operand2 register are vector type, operand1 

is scalar type 

vvv-all are vector type 

exop/imd(11)/imd(16) 11-bit extended opcode or 16-bit/ 11-bit immediate field 

Table A.1 Instruction References 

A.5 Instruction Format 

Instruction with 2- source operands 

Instruction with 1 source operand and 11-bit immediate value 

Instruction with 1 source operand and 16-bit immediate value 

Conditional jump instruction format 

Immediate jump instruction format 

op[5:0] rd[4:0] r1[4:0] r2[4:0] exop[10:0] 

op[5:0] rd[4:0] r1[4:0] r2[4:0] imd[10:0] 

op[5:0] rd[4:0] r1[4:0] imd[15:0] 

op[5:0] - lt gt eq - - imd[15:0] 

op[5:0] - - imd[15:0] 
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A.6 Instructions 

Operation Mnemonics Syntax Summary 

Memory Access Instructions 

Load 
ld 

ld.imd 

ld.[reg-type] rd, r1, r2, imd(11) 

ld.[reg-type] rd, r1, imd(16) 

Loads/Stores data to/from 

the destination register 

from/to memory location. 

Base address is provided 

by r1, r2 provides index 

and imd(11)/imd(16) 

provides constant stride 

for the vector access and 

immediate value for 

scalar access 

Store 
st 

st.imd 

st.[reg-type] rd, r1, r2, imd(11) 

st.[reg-type] rd, r1, imd(16) 

Integer Arithmetic Instructions 

Addition 
add 

add.imd 

add.[reg-type] rd, r1, r2, exop 

add.[reg-type] rd, r1, imd(16) 

adds source operand2 or 

immediate to source 

operand1 and stores 

result at destination 

Subtraction 
sub 

sub.imd 

sub.[reg-type] rd, r1, r2, exop 

sub.[reg-type] rd, r1, imd(16) 

subtracts source operand2  

or immediate from source 

operand1 and stores 

result at destination 

Multiply 
mul 

mul.imd 

mul.[reg-type] rd, r1, r2, exop 

mul.[reg-type] rd, r1, imd(16) 

multiplies source 

operand1 with source 

operand2 or immediate 

and stores result at 

destination 

Shift right 

logical 

srl 

srl.imd 

srl.[reg-type] rd, r1, r2, exop 

srl.[reg-type] rd, r1, imd(16) 

right shifts source 

operand1 by the amount 

of source operand2 or 

immediate and stores 

result at destination  

Shift left 

logical 

sll 

sll.imd 

sll.[reg-type] rd, r1, r2, exop 

sll.[reg-type] rd, r1, imd(16) 

left shifts source 

operand1 by the amount 

of source operand2 or 

immediate and stores 

result at destination 

Compare 
cmp 

cmp.imd 

cmp.[reg-type] rd, r1, r2, exop 

cmp.[reg-type] rd, r1, imd(16) 

compares source 

operand1 to source 

operand2 or immediate 

and comparison is stored 

in status register also for 

vector mask stores 

targeted comparison 
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Program Control Flow Instructions 

Jump 

bri 

brc 

bri imd(16) 

brc cond,imd(16) 

Jump from current PC to 

offset provided in 

immediate part, 

conditional jump 

evaluates status register 

with condition and jumps 

to targeted PC 

Floating Point Arithmetic Instructions 

Addition fadd fadd.[reg-type] rd, r1, r2, exop 
adds source operand2 to 

source operand1 and 

stores result at destination 

Subtraction fsub fsub.[reg-type] rd, r1, r2, exop 

subtracts source operand2 

from source operand1 

and stores result at 

destination 

Multiply fmul fmul.[reg-type] rd, r1, r2, exop 

multiplies source 

operand1 with source 

operand2 and stores 

result at destination 

Division fdiv fdiv.[reg-type] rd, r1, r2, exop 
divides source operand1 

by source operand2 and 

stores result at destination 

Square root fsqrt fsqrt.[reg-type] rd, r1, r2, exop stores square root of 

operand 2 at destination 

Compare 
fcmp 

fcmp.imd 
fcmp.[reg-type] rd, r1, r2, exop 

compares source 

operand1 with source 

operand2 and comparison 

is stored in status register 

also for vector mask 

stores targeted 

comparison 

Special Instructions 

SPR move 
mtr 

mfr 

mtr rd, r1, imd(16) 

mfr rd, r1, imd(16) 

moves special purpose 

registers value to/from 

general purpose register 

NOP nop nop No operation 

HALT halt halt Halts execution 

Table A.2 Instructions 
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A.7 Instruction opcode encoding 

Table A.3 lists the opcode field encodings for vector scalar instructions whereas 

table A.4 lists the encoding of extended opcodes. 

 opcode[5:2] 
opcode

[1:0] 
0000 0001 0010 0011 0100 0101 0110 0111 

00 nop  mtr  add.imd srl.imd ld.sss  

01 halt  mfr  sub.imd cmp.imd st.sss  

10   brc  mul.imd ld.imd int.sss  

11   bri  sll.imd st.imd flt.sss  

Table A.3 (a) opcode encoding 

 opcode[5:2] 
opcode

[1:0] 
1000 1001 1010 1011 1100 1101 1110 1111 

00 ld.vss  ld.vsv  ld.vvs  ld.vvv  

01 st.vss  st.vsv  st.vvs  st.vvv  

10 int.vss  int.vsv  int.vvs  int.vvv  

11 flt.vss  flt.vsv  flt.vvs  flt.vvv  

Table A.3 (b) opcode encoding 

exop 

[10:0] 
0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 

operation cmp add sub mul div sqrt sll srl cmprs expand 

Table A.4 extended opcode encoding 

 


