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Abstract

Hyperspectral imaging (HSI) is a method of remote sensing that collects many two-

dimensional images of the same physical scene. Each image corresponds to a single

wavelength band in the electromagnetic spectrum. The number of bands imaged by

an HSI sensor can be several hundred, and therefore a large amount of data is pro-

duced. This data must be handled by the platform on which the HSI sensor resides,

either through onboard processing, or relaying elsewhere. Hence, the platform plays

an important role in defining the capabilities of the entire remote sensing system.

Size, weight, and power (SWaP) are important factors in the design of any remote

sensing platform. These remote sensing platforms, such as Unmanned Air Vehicles

and microsatellites, are continually decreasing in size. This creates a need for remote

sensing and image processing hardware that consumes less area, weight, and power,

while delivering processing performance. The purpose of this research is to design and

characterize an FPGA-based hardware coprocessor that parallelizes the calculation of

covariance; a time-consuming step common in hyperspectral image processing. The

goal is to deploy such a coprocessor on a remote sensing platform.

The coprocessor is implemented using a Xilinx ML605 evaluation board. The

hardware used includes the Xilinx Virtex-6 FPGA, DDR3 memory, and PCIe inter-

face. An implementation to accelerate the covariance calculation was created, and

the OpenCPI open source framework was adopted to enable DDR3 memory and PCIe

capabilities and ease coprocessor testing.
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The coprocessor’s performance is evaluated using several metrics: total power

(Watts), processing energy (Joules), floating point operations per Watt (FLOPS/W),

and floating point operations per Watt-kg (FLOPS/(W·kg)). The coprocessor is com-

pared to a CPU-based processing platform and shown to have an overall SWaP ad-

vantage. Coprocessor FLOPS/W and FLOPS/(W·kg) performance is 2X and 2.75X

that of the CPU-based platform, respectively. The coprocessor requires 45% less

energy during processing.

This research shows that FPGA-based acceleration of HSI data covariance com-

putations is promising from a size, weight, and power perspective. Significant unused

FPGA resources in the coprocessor’s FPGA can be used to add additional HSI data

processing operations and direct HSI camera interfacing in the future.
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Chapter 1

Introduction

Remote sensing can be defined as the overhead airborne observation of the earth

[1]. Remote sensing platforms of this type are often constrained by size, weight,

and power. This limits the amount of processing that can be accomplished by the

platform, pushing these tasks to ground-based processing systems. At the same

time, the movement of unprocessed data burdens the communications link between

the platform and the ground systems.

One type of sensor that can be employed in remote sensing is known as a hyper-

spectral imaging (HSI) sensor. HSI sensor systems collect a series of two-dimensional

images. Each image collected corresponds to one wavelength band in the electromag-

netic spectrum [2]. The number of spectral bands imaged can be several hundred.

This generates a large amount of image data that, if not compressed or processed,

can exceed a communication system’s maximum data rate [3]. Onboard processing

of HSI data, within the SWaP constraints of the platform, can help alleviate this

problem and enable real-time processing performance.
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One common operation performed during the processing of HSI data is the compu-

tation of covariance. This research presents the design of an FPGA-based covariance

coprocessor, suitable for SWaP-constrained HSI platforms. The coprocessor was tar-

geted for the Xilinx ML605 evaluation board, which contains a Xilinx Virtex-6 FPGA

and DDR3 memory. We discuss the architecture of the coprocessor and the details

of the covariance computation, which is performed using single-precision arithmetic.

We then cover the implementation of the coprocessor through the use of the Xilinx

ISE design suite and OpenCPI middleware [4, 5]. Relative error analysis is presented

to compare our results to a double-precision covariance computation. The perfor-

mance of our coprocessor is compared to a CPU-based processing platform. This

comparison includes processing throughput, power dissipation, and energy expended

during processing.

This work has provided several contributions. To our knowledge, this is the first

FPGA-based HSI data processing platform to perform the covariance calculation on

HSI data having a large number of spectral bands; 50 in our case. Related work

on FPGA-based covariance calculations has been on data having the equivalent of

6 spectral bands. Second, this is the first time that a user-generated processing

algorithm has been successfully integrated at this low a level inside the OpenCPI

framework on the ML605. Third, we demonstrate that FPGA-based HSI covariance

calculation is an attractive option when compared to CPU-based approaches. Last,

we show that our coprocessor has substantial unused resources that can be used to
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perform additional HSI data processing operations in future research.

1.1 Thesis Organization

Chapter 2 presents a background on hyperspectral imaging and HSI sensors, and

discusses covariance and HSI data processing. Hardware typically used in HSI data

processing is discussed, along with related work in the field.

Chapter 3 covers the methodology and design of the covariance coprocessor. The

sample covariance algorithm implementation is discussed in detail, along with the

datapath and control aspects of the design. Relevant information about the Xil-

inx ML605 platform is presented, and the open source middleware adopted for this

research (OpenCPI) is introduced. Bluespec System Verilog (BSV), a hardware-

synthesizable programming language used in this research, is also introduced.

Chapter 4 describes the hardware and software setup used in the evaluation of

the covariance coprocessor. The evaluation of a CPU-based alternative platform

for comparison is also presented here. A discussion of the benchmarks used for

performance evaluation is included in this chapter, along with the introduction of a

SWaP-conscious benchmark: FLoating-point OPerations Per Second (FLOPS) per

Watt-kg (FLOPS/W·kg). Chapter 5 concludes and covers future work in this area.
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Chapter 2

Background

2.1 Hyperspectral Imaging

Hyperspectral imaging (HSI) is a form of imaging where spectral information in

selected regions (bands) across the electromagnetic spectrum, is collected. HSI is

typically set apart from simple three-color and multispectral imagery in that the

spectral bands being imaged are very closely-spaced, very high in number (a hundred

or more), or both. Because processed HSI sensor data contains one spectral dimension

and two spatial dimensions, this data is typically referred to as a hyperspectral “image

cube”.

Because of the large number of closely-spaced bands, HSI is particularly useful in

remote sensing applications that will exploit this high spectral resolution and wide

spectral range. Shaw and Burke define three major applications for HSI: anomaly

detection, target recognition, and background characterization [2].
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Figure 2.1: 50-Band Hyperspectral Image Cube

2.1.1 HSI Sensors

One example of an HSI platform is NASA’s Airborne Visible/Infrared Imaging Spec-

trometer (AVIRIS). AVIRIS is an airborne scientific instrument that images the

ground in the visible, near-infrared, and short-wave infrared. AVIRIS produces im-

age cubes having 224 spectral bands and 512 x 614 spatial pixels [6]. AVIRIS data is

commonly used in remote sensing research [7, 8, 9], has a large number of bands, and

much of the data collected by AVIRIS is available to the academic community. For

these reasons, a 512 x 614 x Nb image cube of AVIRIS data was used in our research,

where Nb = 50 bands. This image cube is shown in Figure 2.1.

A “whisk broom” sensor platform such as AVIRIS collects a hyperspecral image

cube through a combination of scanning and platform motion. The spectral sensing

is accomplished through a linear array of N spectral band-specific detectors. By
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Figure 2.2: Whisk Broom HSI Platform Example

scanning the ground in the direction perpendicular to the platform’s motion (cross-

track direction), every spectral detector sees the entire ground swath width in this

direction. This provides a single spatial line having N spectral bands. The forward

motion of the platform adds the second spatial dimension, completing an image

cube. This type of “whisk broom” collection method is illustrated in Figure 2.2.

Other examples of HSI platforms are discussed in [1].

2.1.2 HSI Payload Design

A typical HSI payload design consists of several elements, as shown in Figure 2.3:

• A hyperspectral imager (camera) and its associated optics,
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• Electronics to control the imager and capture its data,

• Electronics to provide accurate information about where the imager is pointing

(GPS, inertial measurement unit (IMU), accelerometer), and

• Electronics to process the image cube (optional) and store the data, or provide

it to the host platform (aircraft, satellite, etc.) for transmission.

It is advantageous to combine as many of the above elements as possible, while

choosing hardware that can fit within the SWaP constraints of the system.

2.1.3 HSI Payload Size, Weight, and Power

Size, weight, and power (SWaP) is a common design trade on airborne, spaceborne,

and even ground-based HSI payloads. Research has been done on band-selection

techniques [10] and HSI data dimensionality reduction [3]. The former has the po-

tential to reduce HSI sensor size and weight, and the latter can lead to reductions

in data storage/downlink and processing requirements. Unfortunately, some of these

techniques push additional processing requirements closer to the HSI sensor itself,

wherever it may be operating.

With the shrinking size of highly-capable remote sensing platforms (UAVs, mi-

crosatellites, etc.) and the equally-shrinking power and payload weight capacity,

the processing performance per Watt of power must improve to compensate, or the

capabilities of the remote sensing system may be diminished.
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2.1.4 Covariance

The calculation of covariance is a necessary step in many HSI data processing/target

detection algorithms, such as matched filtering and anomaly detection [7]. In some

applications, several covariance calculations may be performed per frame of imagery

and can be a limit to performance. In this research, the calculation of the sample

covariance was parallelized and performed on a Xilinx ML605 FPGA evaluation board

with a Xilinx Virtex 6 FPGA. The performance of this covariance coprocessor was

characterised, and the estimated improvement in SWaP was quantified by comparison

with a CPU-based processing platform.

2.2 Covariance and HSI Data Processing Pipelines

Covariance is used in many HSI data processing algorithms. Because we are us-

ing pixel data from a three-dimensional data cube to compute covariance, we are

calculating the sample covariance matrix, defined as:

Σj,k =
1

N − 1

N∑
i=1

(xij − x̂j)(xik − x̂k), (2.1)

Here, for our HSI data, i represents the pixel number and N the number of pixels.

j and k are the band numbers. x̂j and x̂k represent the means of bands j and k,

respectively, over all image pixels.

HSI data processing algorithms are not typically implemented as a single step,

but as several steps in a larger processing “pipeline”. One example of a processing

pipeline that involves multiple covariance matrix computations is presented in [11].
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In that work, the sample covariance matrix is first computed in order to perform

anomaly detection on an HSI data cube to detect all pixels that are anomalous (po-

tential targets). These pixels are excluded from a second sample covariance matrix

computation. This second covariance matrix is then used as the background covari-

ance for the final target detection algorithm. This is known as Target Free Back-

ground Estimation (TFBE). Processing pipelines like these benefit from a covariance

coprocessor with low size, weight, and power.

2.2.1 Processing Hardware

Several different kinds of hardware can be used to compute covariance, and in some

cases the remaining HSI data processing steps in the pipeline. Although this research

is focused on FPGA-based hardware, it is important that we understand the tradeoffs

and relative strengths and limitations of other types of processing hardware. A short

summary of this hardware is provided in this section.

Central Processing Units (CPUs)

CPUs are commonly used for all processing steps when processing HSI data offline on

the ground, where SWaP is not as much a concern. Processing at this level requires

that the sensor provide more raw, unprocessed data as well. The performance of

CPU-based computing clusters have been compared to FPGAs [12]. The conclusion

of this research was that clusters are better suited for cases where the data is already

located on the ground, whereas FPGAs are better for obtaining a rapid response on
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the platform/payload.

For airborne systems, such as full-size UAVs, CPUs are used, but the scope and

throughput of the processing may be reduced. For example, smaller single-board

computers (SBCs) may be used instead of a standard-sized PC. These SBCs reduce

SWaP, but typically do not have as powerful a CPU. Regardless, HSI processing at

this level can enable a reduction in the amount of data that must be sent to the

ground.

Graphics Processing Units (GPUs)

GPUs can provide a substantial improvement in processing performance. HSI data

processing requires a large number of single or double-precision matrix multiplica-

tions, an operation at which GPUs excel. Recent research has shown that GPUs

can provide HSI data processing performance that is equivalent to several nodes in

a CPU-based computing cluster [8]. However, GPUs are typically higher in power

consumption than DSPs and FPGAs, resulting in increased heat dissipation. This

may be a problem for airborne and spaceborne platforms, where power and thermal

management capacities are limited.

GPU manufacturers have become more focused recently in reducing power con-

sumption, and the latest GPU families from NVIDIA have been designed to have

reduced power consumption [13]. CPUs with integration GPU cores, and the poten-

tial for radiation hardened GPUs in the future will further the adoption of GPU-based

processing on these platforms.
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Digital Signal Processors (DSPs)

As the name implies, DSPs are commonly used in signal processing applications,

such as audio/video processing, filtering, and compression, as well as fast Fourier

transforms (FFTs). Many DSPs also have floating point capability, and like a mi-

crocontroller, can communicate with external peripherals. They often consume less

power than CPUs, GPUs, and FPGAs. DSPs have been used to perform covariance

calculations to accelerate algorithm performance [14].

DSP manufacturers are aware of the potential SWaP benefits of the DSP to the

aerospace market, and are currently ahead of GPU manufacturers when it comes to

enabling accelerated signal processing in space. High-reliability, radiation-tolerant

DSPs for space applications are already on the market. Texas Instruments (TI), a

major DSP manufacturer, recently announced a next-generation radiation-hardened

DSP with 32 and 64-bit floating point support that is currently being qualified to the

highest reliability standard for aerospace/military, “QML Class V.” At a recent trade

show, TI mentioned that floating point operations typically performed on a higher-

power FPGA can be offloaded onto their new product, reducing system power [15].

Field-Programmable Gate Arrays (FPGAs)

FPGAs can provide an improvement in processing performance, and additional ben-

efits for SWaP-constrained platforms. FPGAs consist of a reprogrammable “fabric”

that can be reconfigured as design and algorithm requirements change. One major

strength of FPGAs is that they are very commonly used to interface with sensors
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Figure 2.3: Example HSI Payload

of all kinds, including HSI sensors. This places the FPGA in a unique position to

both receive the HSI image cube and process it in one device. If the entire pro-

cessing pipeline can be implemented in the FPGA, this removes the requirement

for additional CPU/GPU/DSP-based hardware, and can offer an improvement in

SWaP. FPGA manufacturers, such as Xilinx and Microsemi also have integrated

DSP capabilities into their FPGA products. FPGAs have also been available as

radiation-tolerant, high-reliability devices for several years.

Of these four types of processing hardware, FPGAs provide a unique advantage.

They can perform a wide variety of high-performance processing, including DSP

operations, as well as interface directly with high data rate camera hardware and

navigation electronics.
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2.3 Related Work

There is some related work in the field that discusses the computation of covariance in

several types of hardware. In [14], four DSPs were chosen to perform the covariance

calculations for 80 channels of data in a multi-beam echo sounding application. FP-

GAs were also used in their processing hardware to perform digital down-conversion

(DDC) and other tasks.

Research by Martelli, et al. [16] recognized that covariance computation can be

a bottleneck for some systems. They implemented covariance computation on an

FPGA to compute a 6x6 covariance matrix used by a linear SVM classifier in a pedes-

trian detection application. Their research utilized fixed-point data representations

and six features during the covariance computation. This would be the equivalent of

processing six hyperspectral bands.

There has also been research into understanding the number of hyperspectral

bands needed for a given detection application to achieve good detection algorithm

performance. Costa [10] demonstrated that, depending on the detection algorithm

and band selection technique, the number of bands used for detection could be re-

duced as much at 50% with only a 12% drop in the probability of detection. This

research is relevant to the covariance coprocessor presented here, as the number of

AVIRIS bands used (50) is a subset of the available bands.
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2.4 Summary

This section provided a background on the sample covariance calculation and hy-

perspectal image processing. The concept of an HSI data processing pipeline was

introduced, and several types of hardware suitable for the calculation of covariance

were discussed. Elements of a typical hyperspectal imaging payload and the size,

weight, and power tradeoff were also presented. The next chapter discusses the

methodology and design of the covariance coprocessor.
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Chapter 3

Methodology and Design

While the construction of a covariance coprocessor is the primary goal of this re-

search, a holistic system design approach was taken around the coprocessor. The

design allows for additional processing steps to be added in the future, and supports

modifications to process HSI data from a variety of sources. This chapter describes

the methodology and resulting design.

3.1 Sample Covariance Algorithm Overview

The computation of sample covariance requires many multiply-accumulate opera-

tions (MACs). These operations map well to FPGAs. Recall the sample covariance

calculation in Equation (2.1). Every ith pixel intensity in spectral band j, xij, must

be multiplied against its intensity in band k, xik. This occurs after the mean of bands

j and k across all pixels are subtracted from these two intensity values, respectively.

The resulting product is accumulated over all the pixels in the image cube.

In the covariance calculation for our AVIRIS image cube, there are two areas

where parallelism can be exploited. First, some or all of the band-to-band inten-
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Figure 3.1: Xilinx ML605 Evaluation Board

sity products needed for a single pixel can be computed in parallel. Second, these

band-to-band products can be computed for several pixels in parallel. Both types of

parallelism were exploited in our research, and are covered later in this section.

3.2 Hardware Platform

The hardware platform used in this research is the Xilinx ML605 evaluation board

shown in Figure 3.1, which contains a Xilinx Virtex-6 LX240T FPGA. This FPGA

features 768 DSP48E1 slices, which are used by the adders and multipliers in our

implementation, as well as 14,976 Kb of internal block RAM used for data storage.

Additional hardware available on the ML605 used in this research is 32 MB of

BPI flash memory, 512 MB of DDR3 memory, and a PCI Express connector located

on the board’s edge. Also of interest for future work is the ML605’s support for two
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FPGA Mezzanine Cards (FMCs), which can be used for hardware interfacing.

The ML605 is well-suited for this research because of its highly capable FPGA,

onboard DDR3 memory for image storage, and PCI Express capability for image

cube loading and readback of processing results.

3.3 Algorithm Implementation

3.3.1 Data Interface and Middleware

Understanding the movement of data into and out of the covariance algorithm im-

plementation is as important as the implementation itself. If the implementation is

data-starved, then additional parallelization is not useful. PCI Express is used as the

means to provide data to the coprocessor from a host PC. To satisfy the need for PCI

Express data transfers, as well as control of the DDR3 memory on the ML605, the

open source framework OpenCPI is utilized. OpenCPI [4, 5], is a middleware solu-

tion that is geared towards heterogeneous processing applications. OpenCPI enables

communications with a host PC over PCI express, as well as reading and writing to

the DDR3 memory on the ML605. The covariance implementation in this research

interfaces with and executes within OpenCPI. Figure 3.2 shows a block diagram of

the high-level design and relevant interfaces. The OCPI middleware, OCPI worker,

and OCPI control application were modified as needed to communicate with our

implementation.

The OCPI control application on the host PC is used for several tasks: writing the
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Figure 3.2: Design High Level Block Diagram

image cube to the DDR3 memory on the ML605, starting/stopping the coprocessor,

monitoring status, and retrieving the covariance result. The host PC and control

application were used as a control and diagnostics tool, and therefore are not actively

needed by the coprocessor during processing.

It is important to note that the image cube transferred to the ML605 memory from

the host PC is already mean-subtracted. Section 3.4.4 shows that significant FPGA

resources are available after implementation of our coprocessor. These resources can

be used to implement the subtraction of means in the future.

3.3.2 Datapath Interfaces

Although most HSI sensors output image data as either straight or two’s-complement

binary, single-precision floating point is used in our research to represent each of the
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50 band values for each pixel. This is to provide an improved dynamic range during

the covariance computation versus a fixed-point implementation. This means that

32 ∗ 50 = 1600 bits are needed to represent each pixel in our datapath.

OpenCPI provides a 128-bit wide data interface to the DDR3 memory that can

provide data every clock cycle, provided that several read requests are always in

flight. This information provides a lower bound of 13 clock cycles to transfer a pixel

between the DDR3 memory and the covariance implementation that is used to guide

the design of the final architecture.

Therefore, the coprocessor throughput is FPGA resource limited until it exceeds

a pixel processing throughput of one pixel
13 clock cycles

. This defines the interface and its capa-

bilities.

Datapath Implementation

A block diagram of the high-level datapath, interfaces, and initial algorithm imple-

mentation is provided in Figure 3.3. From the figure, the data and computational

requirements for the implementation can be seen. For this datapath:

• N pixels of single-precision HSI data are loaded from memory, each having 50

bands (1600N bits). N represents the number of pixels that will be processed

independently in parallel.

• 50 MACs are performed per clock cycle for each parallel pixel to compute

the inter-band products. The 50 multiplier results for each parallel pixel are
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Figure 3.3: Datapath Block Diagram

accumulated into the appropriate row of a 50 x 50 accumulator matrix. Each

parallel pixel has its own accumulator matrix.

• The next N pixels of HSI data must be pre-loaded during these 50 clock cycles

in order to avoid stalling the pipeline.

• Once all pixels are processed through the MACs, if N > 1, reduction sums are

performed serially to sum the N accumulator matrices needed to obtain the

final sample covariance matrix.

This algorithm implementation takes 50 clock cycles per pixel to complete, and

therefore its data throughput requirements can be satisfied by OpenCPI’s DDR3

interface. Additionally, it is possible to process up to b50/13c = 3 pixels in parallel
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without stalling the implementation’s pipeline. This implementation was therefore

selected for our design, and was coded in VHDL using the Xilinx ISE 14.1 software

suite. Initially, two pixels were chosen to be loaded and processed in parallel (N = 2).

Figure 3.4 shows a detailed diagram of the datapath of the design. N input pixels

are passed through a FIFO of depth two constructed from FPGA block memory. The

output of the FIFO is used by parallel multipliers, 50 per pixel, during which the

next N pixels are enqueued into the FIFO. This buffering keeps the OCPI DDR3

memory interface occupied with read requests, which maximizes its performance.

The multipliers consist of single-precision Xilinx multiplier IP cores. These mul-

tipliers are provided new data every clock cycle to compute products to sum into

the accumulator matrices for each parallel pixel. This requires 50N multipliers. The

first clock cycle provides data for the b1,1, b1,2, · · · , b50,50 band-band products for each

pixel. The second clock cycle provides the b2,1, b2,2, · · · , b2,50 products. Xilinx pro-

vides several options to control the speed and size of the multipliers in the FPGA

fabric. To minimize the size of the multipliers in FPGA lookup tables (LUTs) and

flip-flops (FFs), and maximize the utilization of DSP48E1 blocks, the maximum set-

tings for latency (6) and DSP48E1 blocks (3) per multiplier are used.

FPGA block RAMs are used to implement storage of the accumulator matrices,

and Xilinx single-precision adder cores are used for the additions. As with the parallel

multipliers, 50N adders are used. The block RAMs are configured as simple dual-port

RAMs. Dual-port RAMs are necessary because of the latency of the single-precision
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adders. The read address of the block RAMs are set to follow the current row of the

band-to-band products being output by the multipliers. The write address is set to

follow the row corresponding to the sum being output by the adders. Therefore, the

write address lags behind the read address by the adder latency, and no read-write

collisions occur. To minimize the LUT and FF size of the adders, the maximum

settings for latency (11) and DSP48E1 blocks (2) are used.

Once all pixels in the image have been processed through the datapath, the N

accumulator matrices must be added together and divided by Npix − 1 to obtain the

final covariance matrix. Because the number of pixels is large (Npix = 512 ∗ 614 =

314, 368), a serial sum of N2
b = 2500 accumulator matrix values takes a small amount

of time compared to the MACs. Therefore, this sum is performed serially and only

requires a single adder.

The results of this serial sum are provided directly to a divider that divides by

Npix−1 to produce one entry of the 50x50 covariance matrix each clock. This data is

provided as an output of our datapath, along with an enqueue signal that is used by

the OCPI worker shown in Figure 3.2 to schedule writes to the ML605 DDR3 memory.

Once the sample covariance is fully enqueued to the OCPI worker, a request for a

new image is made, and the process repeats.

Table 3.1 lists the ISE-estimated resource utilizations of the multiplier, adder, and

divider cores used in the design, along with their latency and predicted maximum

frequencies (fmax). In Section 3.4.4, we present the total resource utilization of our
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Table 3.1: IP Core Summary From ISE

Single-precision
Core

# LUTs # FFs # DSP48Es Latency fmax (MHz)

Multiplier 107 114 3 6 429
Adder 287 337 2 11 380
Divider 1,071 1,366 0 28 433

design.

Control Implementation

Internal control logic is necessary to ensure the proper operation of the design.

The logic cores used in the design for multiplications, additions, and divisions, are

equipped with “data ready” signals that indicate that the result is ready. These are

connected to the “new data” input signals of the next mathematical logic core, along

with the associated data whenever possible. An example of this type of control logic

connection is between the output of the serial adder to the serial divider at the end

of the sample covariance calculation.

This type of simple connection is not possible for every aspect of the design, and so

additional control logic is necessary. VHDL code was written to control the request

for a new image, the input pixel FIFOs, the data ready signal to the multipliers,

and read and write addresses that are used by the partial covariance block RAMs.

Because the partial covariance data held in the block RAMs will persist from image-

to-image, a block RAM output reset signal was used in the control logic to ensure

that the first input to the adders from the block RAMs is zero on each new image.
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Code was also written to control the serial additions and divisions that occurs at the

end of the sample covariance calculation, and the enqueue signals that are provided

to the next-higher level of the coprocessor design.

3.4 Integration with OpenCPI

As mentioned in Section 3.3.1, OpenCPI (OCPI) was adopted as a middleware so-

lution for the ML605 that allows the design to utilize the PCI Express interface,

as well as provides a DDR3 interface that can meet the design data throughput re-

quirements [4, 5]. OCPI also offers powerful control features that can be used to

control the coprocessor from the host PC, which greatly improved the testability of

the coprocessor. These control features will be covered in Chapter 4.

With the standalone covariance VHDL code completed and tested, it was then

integrated with OCPI. Figure 3.5 shows a simplified block diagram of the OCPI

hierarchy, as it exists on the ML605. The ML605 represents the overall platform.

Within that platform, OCPI creates several container and infrastructure constructs.

One of the containers holds the user’s application(s), and another adapts these ap-

plication(s) to the ML605 hardware platform, with the help of the infrastructure.

For example, OCPI user applications can utilize the ML605 external PCIe interface

through an abstracted interface at the application container level. Access to the

ML605 DDR3 memory is provided by a separate DDR3 device worker, that can be

included if needed.
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At the deepest level within OCPI are workers, which perform tasks and obey

standard OCPI data and control interfaces. This represents where our covariance

design is implemented. The standard interfaces used in OCPI are known as the

Worker Control Interface (WCI), Worker Streaming Interface (WSI), Worker Message

Interface (WMI), Worker Memory Interface (WMemI), and Worker Time Interface

(WTI). For our application, the WCI and WMemI interfaces are the most important,

as they allow control of our coprocessor and status of its operation (WCI), and

movement of data to and from the DDR3 memory (WMemI).

With the need for an OCPI worker identified, two major options are considered:

1. Turn the existing VHDL design code into a standalone OCPI worker, compat-

ible with OCPI control and data interfaces.
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2. Instantiate the design in an existing worker that already obeys these interfaces.

To maintain simplicity, the second option was chosen, and an existing OCPI

worker was identified that enabled a rapid solution. The “WMemiTestWorker 1” was

identified as the worker to interface with our design. This worker was designed to test

the DDR3 memory over the WMemI interface, and therefore already demonstrated

proper worker-based operation of the WMemI interface. This worker was selected

for modification to integrate with the covariance VHDL design.

3.4.1 OCPI Worker Modification

Much of the OCPI source code is written in Bluespec System Verilog (BSV), a high-

level language than can be compiled into efficient and synthesizable Verilog code [17].

BSV uses “interface” constructs to represent the boundaries of modules, and “meth-

ods” to drive data across these interfaces, as shown in Figure 3.6. These methods

have “ready” and “enable” signals that control when they are allowed to execute.

A simple Verilog “wrapper” is used to adapt our VHDL design to the BSV OCPI

worker that requires these interface constructs. We call this wrapper “CovIF.”

To allow CovIF to exchange pixel and covariance data with our VHDL design, it

must extend an existing BSV interface, or create one of its own. Because our data

transfers behave much like FIFOs, an existing BSV FIFO interface was extended.

The wrapper acts as a virtual FIFO, asserting empty when new pixel data is needed,

and full otherwise. A separate covariance FIFO added to MemiTestWorker is filled

1From OCPI repository: https://github.com/ShepardSiegel/ocpi/commit/3b64696
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by our VHDL covariance enqueue signal (passed through the wrapper), and drained

by the OCPI worker as the values are written to DDR3 memory. Figure 3.7 shows the

arrangement between the BSV OCPI worker, the Verilog wrapper, and our VHDL

design.

BSV’s implementation of atomic operations and rules simplifies the design of

this wrapper. The BSV FIFO interface methods, put and get each have a ready

signal, and these signals are connected directly to the virtual FIFO’s FULL N and

EMPTY N signals, respectively. This means that the put and get methods cannot

execute unless they are declared ready by the virtual FIFO.
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Because the BSV code is rule-based, if any code within a rule has a method that

cannot execute, then no other code in that rule will execute. Figure 3.8 shows a code

sample from MemiTestWorker that illustrates this concept. This eliminates the need

to write complicated control logic for data flow to/from the OCPI MemiTestWorker

and the Verilog virtual FIFO. A preliminary version of the virtual FIFO with its

adopted BSV FIFO interface was compiled and simulated prior to integration with

the WMemiTestWorker.

WMemiTestWorker’s BSV code was further modified to read the proper number

of 128-bit data words from the DDR3 memory and write the covariance values to

DDR3 at the end of each execution. Dataflow over WMemI is controlled using

WMemI read requests, read responses, and write requests. Read requests are sent

with the desired memory address, and the read response (when it arrives) contains

the 128-bits of data. Write requests are issued with the address and data all at once.

WMemI read and write requests originate from the modified MemiTestWorker, since

this worker contains the WMemI interface instance as well as the interface instance

for the covariance module.

OCPI does not currently “guard” the WMemI read response channel, which

means that the data attached to a read response must be stored immediately, or

it will be lost. As mentioned in Section 3.3.2, it is desirable to maximize the number

of DDR3 read requests in flight, but our covariance module is not always ready to

receive and store all read response data the moment it is received. Therefore, guard-
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i n t e r f a c e Put p ;
//method put ( ) a s s e r t s ENQ and DIN
// to v i r t u a l FIFO only when FULL N i s
// a s s e r t e d by the v i r t u a l FIFO and the
// put ( ) method i s c a l l e d by the BSV module
method put (DIN) enable (ENQ) ready (FULL N ) ;

e n d i n t e r f a c e

// e x p l i c i t r u l e s : wci . i s O p e r a t i n g && i s T e s t i n g
//must be t r u e f o r r u l e to f i r e
r u l e w r i t e a l g ( wci . i sOperat ing && i s T e s t i n g ) ;

// g e t data from DDR3 read response FIFO
// i m p l i c i t r u l e f o r f i r s t ( ) : rdRespFifo not empty
l e t aData = rdRespFifo . f i r s t ;

// send to v i r t u a l FIFO ( covar iance VHDL)
// uses method put ( ) from i n t e r f a c e Put
// i m p l i c i t r u l e f o r put ( ) : v i r t u a l FIFO not f u l l
cov . streamP . put ( aData ) ;

// dequeue data from rdRespFifo
// i m p l i c i t r u l e f o r deq ( ) : rdRespFifo not empty
rdRespFifo . deq ;

// increment read responses dequeue cnt
wmemiRdRespDeq <= wmemiRdRespDeq + 1 ;

endru le

Figure 3.8: BSV Rule and Method Control
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ing was added for the WMemI read response channel. This ensures that a sufficient

number of DDR3 read requests can be in flight, while ensuring that data contained

in the read responses is not lost if the covariance module is not ready for the data.

This guarding was accomplished using a FIFO to store WMemI read response

data until it is needed. A read response FIFO depth of 16 was selected to match

a corresponding OCPI WMemI data FIFO. This change necessitated a need for a

system that ensures that no more than 16 requests are in flight at a given time. This

system uses a simple metric, (read requests made - read responses dequeued from

FIFO) to decide when to send a new read request. The counters used in this metric

are reset at the end of every processed image. The system is illustrated in Figure 3.9.

Final modifications were made to the OCPI worker to allow for control during
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testing. WCI control registers were modified to allow setting the number of pixels

to be read from memory, the maximum number of read requests in flight, and the

number of times to loop the calculation. Continuous execution was added to assist

with real-time power measurements.

3.4.2 OCPI Software Modification

In addition to the OCPI BSV modifications, software modifications were made to

an OCPI C code utility called “swctl.” The utility’s capability to write to ML605

DDR3 memory was enhanced to load an input pixel data file and write it to the

DDR3 memory.

3.4.3 OCPI Build Script/Project Modification

The building of an OCPI-based design is accomplished through the use of the GNU

make tool and UNIX shell scripts. These scripts were modified to add additional

functionality and ease the building of the covariance coprocessor design. One script,

build fpgaTop was modified to include the Xilinx IP cores used in the covariance

design. To aid with FPGA design timing closure, this script was also modified to

optionally use the Xilinx SmartXplorer tool to run multiple MAP and PAR strategies

during a build. Xilinx project files used by OCPI were modified to include the IP

cores added to the design.
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Table 3.2: Coprocessor FPGA Resource Utilization

FPGA Resource Type Available
Covariance +
Virtual FIFO

Full Coprocessor

Slice Registers 301,440 51,082 (16%) 83,559 (27%)
Slice LUTs 150,720 38,940 (25%) 80,829 (53%)

RAMB36E1s 416 0 (0%) 39 (9%)
RAMB18E1s 832 308 (37%) 311 (37%)
DSP48E1s 768 502 (65%) 502 (65%)

3.4.4 FPGA Resource Utilization

The FPGA resource utilization of the covariance coprocessor is provided by the Xilinx

design tools. Resource utilizations for two phases of the design are provided here.

Table 3.2 provides the major resources required for the covariance implementation

with Verilog virtual FIFO, and for the fully-functional covariance coprocessor design

after integration with OCPI. It can be seen that the final design utilizes less than

55% of the total resources in each category, with the exception of the DSP48E1s.

This shows that the covariance calculation design is fully realizable in the ML605

platform with the OCPI middleware from an FPGA resource standpoint.

3.4.5 FPGA Timing Analysis

An FPGA timing analysis is provided by the Xilinx design tools during the build

process. There are several clock domains in the full coprocessor design, and each

must achieve a minimum specified frequency. Of most importance to our design

is the 125MHz clock domain. This is the clock domain in which the covariance
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calculation and OCPI MemiTestWorker operate. This clock domain, as well as all

others in the coprocessor design met their timing requirements. This shows that

the current parallelized covariance calculation design is fully realizable in the ML605

platform with the OCPI middleware from an FPGA timing standpoint.

3.5 Summary

This chapter described the methodology and design of the covariance processor. Fig-

ure 3.10 shows the final covariance coprocessor design. This includes the ML605,

OCPI middleware, Verilog wrapper, and the VHDL sample covariance implemen-

tation. Details of the data throughput, FPGA resource utilization, and maximum

operating frequency were provided. The OCPI middleware and BSV source code were

introduced, and the modifications made to both were discussed. The next chapter

covers the experimental setup and testing of the coprocessor.
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Chapter 4

Experimental Setup and Results

This chapter discusses the hardware, software, diagnostic tools, and other resources

used in the testing of the covariance coprocessor. The results of this testing are also

presented. This includes HDL simulation (validation) as well as MATLAB and C

validation of the sample covariance calculation. Runtime and power measurements

of the covariance coprocessor and comparison platform are also included.

4.1 Hardware Platforms

Two separate hardware platforms are used in this research. One serves as the host

PC for all of the ML605 covariance coprocessor experiments, and the second is used

as a reference platform for comparison. The coprocessor host PC is used as a control

and diagnostics tool, and therefore its CPU, memory, and storage are not actively

needed by the coprocessor during processing.

The reference PC was chosen specifically to model processing hardware that is

typical of SWaP-constrained payloads. It is a single-board computer (SBC) with

limited external interfaces and small physical footprint. Table 4.1 lists the hardware
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Table 4.1: Hardware Platforms for Testing

Host PC Reference PC

Model Custom Congatec conga-BM67
Motherboard/

Carrier
Asus Sabertooth P67

ACTIS Computer
KCAC-0320

CPU
Intel Core i7

2600K, 3.4 GHz
Intel Core i7

2710QE (SV), 2.1 GHz
Memory 16GB DDR3 512MB DDR3

Disk Drive 128GB HDD 12GB USB
OS Red Hat Linux CentOS Linux

Coprocessor ML605 None

details of the two platforms.

4.2 Diagnostic Tools and Software

Diagnostic tools and software were used for validation and measurement. Validation

of hardware includes ensuring that the FPGA is performing the proper operations

at the proper time, and that the operations themselves are producing the expected

results. This is accomplished through HDL simulations, as well as real-time mea-

surements performed by diagnostic tools, such as the ChipScope Pro package from

Xilinx. This tool provides an Integrated Logic Analyzer (ILA) that runs within the

FPGA and can be configured to capture any signal of interest. Our modified OCPI

“swctl” tool is also used on the Host PC to collect information from the coprocessor

via the WCI interface that is used to assess proper performance.

Software is used to evaluate coprocessor performance. Both MATLAB and C code

were used to evaluate the performance of just the sample covariance calculation. C
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Table 4.2: Software Used in Testing

Host PC Reference PC

Sample Covariance Validation MATLAB, C
HDL Validation ModelSim

Coprocessor Validation OCPI, ChipScope,
MATLAB

Sample Covariance Performance C
Coprocessor Performance OCPI, ChipScope

code was used on the reference platform for this calculation to provide a point for

comparison with our full covariance processor. Both OCPI and ChipScope Pro were

used to measure performance metrics of the final coprocessor design in real-time

during its operation. Table 4.2 lists the software tasks, and the software tool and

platform on which they operated.

4.3 Design Validation

This section will focus on the validation of the sample covariance calculation. The

scope of the software validation is limited to assessing the relative error between the

hardware implementation and a MATLAB implementation.

4.3.1 Hardware Validation in Software

A “design for test” approach was taken during the design of the hardware implemen-

tation, keeping in mind that the VHDL code will later be validated using a testbench.

Prior to integration with OCPI, the design was fully tested with a testbench written

in VHDL to validate performance and accurate computation. Figure 4.1 gives a di-
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Figure 4.1: Hardware Validation Testbench Diagram

agram of the testbench setup. This testbench instantiates the design, provides HSI

data to the design, and accepts the output sample covariance matrix.

MATLAB was used to generate both a full 512x614x50-band hyperspectral test

image from actual AVIRIS data, as well as a smaller 10-pixel dataset that was used

for early rapid testbenching. These were stored in a text file that was read by the

testbench, and provided to our design in the same 128-bit wide format as the DDR3

memory interface. Output covariance results from the design were accepted by the

testbench, and stored into a data file for later validation.

ModelSim was used to simulate the testbench for both the 10-pixel and full-image

cases, with the latter taking over an hour to simulate. The 10-pixel case was used

for testing, and was extremely useful in catching code bugs and control logic issues.

The full-image case was used to validate the final design once, before integration

with OCPI for the higher-level coprocessor design. A snapshot of a 10-pixel sim-



4.3. DESIGN VALIDATION 40

0 2 4 6 8 0

... ... ... ... 0000000000000000C708B30046AC0100

...X... CE19888F

0 1 1 1 1 1 0

0 0

0 0 1 2 3 4 5 6 7

00000000 4F... C... 4F... 4D... C... C... C... C...

... X... 4E... C... 4E... C... C... C... C... C...

XXXXXXXX

XXXXXXXX

00000000

00000000

/covtb/uut/pixCnt 0 2 4 6 8 0

/covtb/uut/pixReqOut

/covtb/uut/pixIn ... ... ... ... 0000000000000000C708B30046AC0100

/covtb/uut/pixValidIn

/covtb/uut/mul_data_en

/covtb/uut/gen_fp_mult(0)/sp_mult/result ...X... CE19888F

/covtb/uut/gen_sigma_RAM64br(0)/sigma_RAM64br/wea 0 1 1 1 1 1 0

/covtb/uut/gen_sigma_RAM64br(0)/sigma_RAM64br/addra 0 0

/covtb/uut/gen_sigma_RAM64br(0)/sigma_RAM64br/addrb 0 0 1 2 3 4 5 6 7

/covtb/uut/gen_sigma_RAM64br(0)/sigma_RAM64br/doutb 00000000 4F... C... 4F... 4D... C... C... C... C...

/covtb/uut/gen_fp_add(0)/sp_add/result ... X... 4E... C... 4E... C... C... C... C... C...

/covtb/uut/ser_sum_in_a XXXXXXXX

/covtb/uut/ser_sum_in_b XXXXXXXX

/covtb/uut/ser_sum_nd

/covtb/uut/ser_sum_rdy

/covtb/uut/ser_sum_result 00000000

/covtb/covOutEnq

/covtb/covOut 00000000

0 ps 4000000 ps

Figure 4.2: Ten Pixel Hardware Simulation

ulation is shown in Figure 4.2. This figure at a high level shows that: two pixels

are prefetched on the data interface (pixIn) at the beginning of execution, the block

RAM (sigma RAM64br) read and write addresses (addrb and addra, respectively)

change in a staggered manner, avoiding collisions in our accumulator, and that a

steady stream of results from the adder (sp add) is maintained. The start of the

serial operations (sum and divide) can also be seen in this figure, as well as the final

covariance output and enqueue signal (covOut, covOutEnq).

MATLAB scripts were written to load the covariance matrix output of the test-

bench into a MATLAB variable that is used to validate the results. Because our

datapath uses single-precision values, verification of our implementation in MAT-

LAB required some additional work. Associativity is not guaranteed in floating point
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arithmetic: sometimes (x + y) + z 6= x + (y + z). Because of the parallel pixel pro-

cessing, our implementation performs additions in a different order than MATLAB’s

built-in covariance function cov(). In single-precision, this is enough to prevent a

simple one-to-one comparison of the covariance matrices to validate correctness.

To deal with this, a custom MATLAB script was written to perform a covariance

calculation in the same exact manner as the FPGA hardware. The pseudocode for

this script is provided in Algorithm 1. This algorithm emulates the parallel nature of

the HW computation, and also ensures that the scalar division occurs at the end of

the sum of products, as is done in hardware. It also attempts to maintain the same

ordering of the additions in the dot products as the hardware.

Data: input image cube
Result: covariance matrix, Σ
for i over all bands do

for j over all bands do
Construct vector of odd-numbered pixels for single band i;
Construct vector of odd-numbered pixels for single band j;
Perform dot product and store;
Construct vector of even-numbered pixels for single band i;
Construct vector of even-numbered pixels for single band j;
Perform dot product and store;
Add dot products to obtain Σij

end

end
Divide matrix by scalar Nbands − 1;

Algorithm 1: Initial MATLAB HW Validation Algorithm

For the 10 pixel test image, this MATLAB algorithm provided a covariance ma-

trix that exactly matched that of the HDL simulation. When executed to validate

the full 512x614x50 image cube, it did not provide the same results. After investi-
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gation, it was determined that MATLAB performs optimizations in the dot product

calculations once the input vectors are of larger sizes. This was altering the order of

the additions in the dot products and thus changing the validation results. Because

validation of a full image against the HDL simulation is crucial to verification of the

design, a different MATLAB algorithm was constructed. Algorithm 2 gives the final

MATLAB validation algorithm.

Data: input image cube
Result: covariance matrix, Σ
for i over all bands do

for j over all bands do
Set A, B, tA, tB to zero;
Construct vector of odd-numbered pixels for single band i;
Construct vector of odd-numbered pixels for single band j;
A = elementwise product of vectors;
Construct vector of even-numbered pixels for single band i;
Construct vector of even-numbered pixels for single band j;
B = elementwise product of vectors;
for k over length of A,B do

Accumulate kth value of A into tA;
Accumulate kth value of B into tB;

end
Σij = tA+ tB;

end

end
Divide matrix by scalar Nbands − 1

Algorithm 2: Final MATLAB HW Validation Algorithm

This version, although extremely inefficient for MATLAB to execute, did provide

an exact match to the HDL simulation results for both the 10 pixel and full image

cube cases. This confirmed the expected operation of the hardware implementation

over a full-sized image.
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A C version of the validation algorithm was structured similarly to the hardware

architecture, and also provided an exact match for a full-sized image. The algorithm

is provided below in Algorithm 3

Data: input image cube
Result: covariance matrix, Σ
for pixel xk, k = 0, 2, 4, . . . , Npix do

Construct two pixel vectors;
−→a ← xk;
−→
b ← xk+1;
for i over all bands do

for j over all bands do
αij = aiaj;
βij = bibj;

end

end

end
for i← 0, 1, . . . , Nbands − 1 do

for j ← 0, 1, . . . , Nbands − 1 do
Σij = αij + βij;
Σij = Σij/Nbands − 1;

end

end
Algorithm 3: C HW Validation Algorithm

Relative Error Analysis

Single precision floating point has been used successfully in HSI data processing,

and has yielded acceptable performance [9]. However, in addition to validating the

proper implementation of the hardware architecture, it is also of interest to compare

the single-precision results of this implementation to results with double-precision.

This can be done by computing the relative error of the covariance computed in
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single-precision versus double-precision. Relative error in this case is defined as:

η =
|xd − xs|
|xd|

, (4.1)

where xd is the double-precision result, and xs the single-precision result.

Equation (4.1) is used to compute relative error of the covariance matrix of the full

512x614x50 AVIRIS image cube. For this calculation, the single-precision covariance

matrix obtained from the HDL simulation was used. The double-precision covari-

ance matrix was calculated using MATLAB’s cov() function. Figure 4.3 provides a

histogram of the relative error. All but two of the 2500 covariance values have less

than 0.2% relative error versus a double-precision implementation. The maximum

relative error was approximately 1.2%.

4.3.2 Validation in Hardware

In Section 4.3.1, software tools were used to validate the hardware design prior to

integration with OCPI, and it was determined that the relative error of our imple-

mentation is small when compared with a double-precision implementation. Because

of the complexity of the OCPI middleware, validation of the full covariance coproces-

sor (OCPI+Covariance) did not occur via software HDL simulations, but instead at

the hardware level once our covariance implementation was integrated with OCPI.

Because our design and its Verilog wrapper/FIFO were validated by simulation, and

because the interfaces between OCPI and our design were well-defined ahead of time,

this “bottom up” integration was straightforward. This section discusses the testing
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that was performed on the fully-integrated hardware design.

Validation of DDR3 Memory Interface

In Section 3.3.2 we noted that it is important to keep the OCPI’s DDR3 device worker

filled with read requests in order to maximize the data throughput of the interface.

It is also important that the read responses (requested data) are captured when they

are available, or they will be lost. Both of these were validated in hardware. This

was performed by monitoring the WCI control registers in the coprocessor during the

first initial test runs.

The MemiTestWorker provided in OCPI, by default, keeps count of the number of

memory read requests, read responses, and write requests in its set of WCI registers,

listed in Table 4.3. These registers are used in the validation of the DDR3 memory

interface. The shaded rows indicate registers that were added or modified in our

modified MemiTestWorker to assist in this validation, and to help control overall

coprocessor operation.

Validation of the DDR3 was performed using the modified OCPI tools to: pro-

gram the FPGA bitstream to the ML605’s FPGA, configure and start the OCPI

middleware and MemiTestWorker, write the HSI image cube to the ML605 DDR3

memory, and command the coprocessor to begin the calculation. As mentioned

in Section 3.4.1, it was necessary to add guarding to the read response channel on

MemiTestWorker’s side of the DDR3 interface. The need for guarding was discovered

during this testing, as data loss was encountered.
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Table 4.3: WCI Registers in Modified MemiTestWorker

Address Name Function Read/Write

0x00 tstCtrl Unused RW
0x04 seqLen # of 128-bit words per image cube RW
0x08 wmemi.status Status of DDR3 device worker R
0x0C loopCount # of image cubes processed by coprocessor R
0x10 errorCount Unused R
0x14 loopDuration Duration of last coprocessor loop (# clocks) R
0x18 numLoops # of times to loop coprocessor (0 =∞) RW
0x1C wmemiWrReq # of WMemI write requests issued R
0x20 wmemiRdReq # of WMemI read requests issued R
0x24 wmemiRdResp # of WMemI read responses received R
0x28 testStatus Test Status (0=stopped, 1=running) R
0x2C maxRdReqInFlight Max. # of WMemI read requests in flight RW
0x30 testStart Write to begin coprocessor image processing W
0x34 testStop Write to stop coprocessor image processing W

The ChipScope Pro diagnostic tool was used to confirm the source of the data

loss, and confirm proper operation after read response guarding was added. Figure

4.4 shows an ILA capture from ChipScope Pro of the 128-bit DDR3 memory read

responses before guarding. The value outlined in red is an occurrence of valid data

that is arriving earlier than it should, indicating that valid data just prior has been

dropped. Figure 4.5 shows a capture of the same section of DDR3 read responses

after guarding was added. The pixel data that was previously dropped can be seen

in green, and proper performance of the DDR3 memory interface was validated.
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Figure 4.5: Read Responses After Added Guarding

Validation of Covariance Coprocessor

During the validation of the DDR3 interface, it was clear that the proper pixel values

were being enqueued to the Verilog wrapper that contains the covariance module.

Validation of the coprocessor as a whole required executing a test loop, verifying

the expected number of WMemI write requests, and checking the contents of DDR3

memory to where the covariance was written.

The input image cube pixels and covariance result reside in different locations in

the DDR3 memory. The DDR3 memory space for the ML605 is shown in Figure 4.6.

For this design, the memory is byte-addressable and partitioned into 28 pages of 219

bytes each (128 MB total). After a loop of execution, swctl confirmed that the correct

number of write requests to DDR3 were reflected in the worker register. The swctl

program was then used to set the DDR3 page register and perform a readback of

the 10,000 byte covariance matrix. This data was compared to the HDL simulation
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Figure 4.6: ML605/OCPI DDR3 Memory Space and Contents

results. The data matched, and therefore proper operation of the final design was

validated. To confirm proper loop-to-loop operation, several loops of execution were

performed, using the loopCount control register, and the resulting covariance was

also found to be correct.

4.4 Coprocessor Performance

4.4.1 Runtime Performance

With the full coprocessor operating as designed, measurements were then made to

determine the runtime of the coprocessor for the 512x614x50 image cube. The WCI

loopDuration register in the modified OCPI worker was used to record the number

of clock cycles that the covariance module takes to perform the computation for

each loop of execution. These clock cycles include the movement of pixel data to

the covariance module from ML605 DDR3 memory, and the movement of covariance

results to ML605 DDR3 memory. The movement of the image cube from the Host

PC to the ML605 DDR3 memory is not included.
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On average, the coprocessor took 10,286,763 clock cycles to process a full image

cube, or 82.3 ms. This corresponds to slightly over 12 image cubes per second

processing throughput. The image cube requires approximately 1.57 GFLOP to

compute, and therefore the coprocessor currently achieves 19.1 GFLOPS.

4.4.2 Power Consumption and Energy

Power consumption of the coprocessor was measured in two ways. The first method

utilized the built-in capability of the ML605 evaluation board to monitor several of

its power supply currents. This is accomplished through the use of the FPGA system

monitor and additional circuitry present on the ML605.

The system monitor is a feature of the Virtex-6 FPGA that, when enabled, can

perform analog-to-digital conversion of external signals. The ML605 is instrumented

with five current-sense circuits that output an analog voltage proportional to the

current passing through a current-sense resistor. This voltage is sampled by the

FPGA system monitor and used to calculate the power consumption of the corre-

sponding voltage rail. The OCPI ML605 middleware was modified to enable the

system monitor in our coprocessor.

Figure 4.7 provides a photo of the typical current-sense circuit on the ML605.

The large resistor (R365) is the current-sense resistor, and the IC beside it (U76)

is a differential amplifier that provides the analog voltage measured by the system

monitor. Table 4.4 provides a list of these voltage rails, along with the current-sense

resistor values and analog gain of the amplifiers. This information is used to compute
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Figure 4.7: ML605 Current Sense Circuit

Table 4.4: ML605 Voltage Rails with Current Sensing

Voltage Rail Desc. Voltage
Current Sense
Resistor Value

Gain

System Monitor
(C)urrent

and/or
(V)oltage

Monitoring

Main ML605
Power Input

12V 2mΩ 50V/V C,V

FPGA VCCAUX 2.5V 5mΩ 24.7V/V None
FPGA VCC1V5 1.5V 5mΩ 24.7V/V None
FPGA VCCINT 1.0V 5mΩ 24.7V/V C
FPGA VCC2V5 2.5V 5mΩ 24.7V/V None

the voltage rail power consumption. Note that supply currents for only two of the

five rails can be monitored by the system monitor.

The measurements from the system monitor are available in real-time using the

Xilinx ChipScope Pro diagnostic tool. The supply voltage and current for the main

ML605 +12V power input was monitored during coprocessor idle and active process-

ing states. These results are provided in Table 4.5. Additionally, the total ML605
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Table 4.5: ML605 +12V Supply Voltage, Current & Power Consumption

ML605
Power-On

Coprocessor
FPGA

Bitstream
Loaded

OCPI DDR3
Initialized

Coprocessor
Running

Voltage (V) 12.17 12.17 12.17 12.14
Current (A) 1.21 1.81 1.86 2.13
Power (W) 14.7 22.0 22.6 25.9
Energy (J) N/A N/A N/A 2.1

supply current was measured using a digital multimeter (DMM) wired in-line with

the ML605 power connector. These measurements agreed with the system monitor

measurements.

To obtain supply current measurements for the four FPGA supply rails in Table

4.4, a DMM was used to measure the current-sense circuit output voltages directly.

This allowed a determination of the FPGAs contribution to the ML605 total power,

and the increase in FPGA power during active processing. A breakdown of all voltage

rails measured and power consumption for each is provided in Table 4.6. The total

FPGA and ML605 power consumption, and the energy required for the covariance

calculation is also provided in this table. Note that the ML605 power consumption

increased by only 3.3W (15%) between idle and active processing states.

4.5 Comparison Platform Performance

The reference PC listed in Table 4.1 was used as a performance and power comparison

platform. This platform consists of a Congatec conga-BM67 Single Board Computer
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Table 4.6: FPGA & ML605 Power Summary

Supply Currents by Mode

Rail Voltage
ML605

Power-On

Coprocessor
FPGA

Bitstream
Loaded

OCPI
DDR3

Initialized

Coprocessor
Running

VCCAUX 2.5V 0.17A 0.86A 0.80A 0.81A
VCC1V5 1.5V ≈ 0A 1.03A 1.0A 0.95A
VCCINT 1.0V 1.87A 3.59A 4.03A 6.0A
VCC2V5 2.5V 0.05A 0.04A 0.04A 0.04A
ML605
Input

12.17V
12.14V

1.21A
-

1.81A
-

1.86A
-

-
2.13A

Total FPGA Power (W) 2.42 7.39 7.63 9.55
Total ML605 Power (W) 14.7 22.0 22.6 25.9

(SBC) mounted to an ACTIS Computer KCAC-0320 carrier board that provides

access to external peripherals and power. The BM67 contains a 2.1 GHz Intel Corei7

2710QE processor, 512MB of DDR3 memory, and runs CentOS Linux from flash

memory.

4.5.1 Runtime Performance

Measurements were made to determine the runtime of the SBC on the 512x614x50

image cube. A multithreaded version of Algorithm 3 was written to perform calcula-

tions in parallel, much like the HW coprocessor. Each thread processed an equal share

of the total number of pixels. Because the SBC platform’s quad-core Intel Corei7

processor [18] supports up to eight threads, both four- and eight-thread versions of

the code were executed. The code was compiled using gcc 4.7.2 with the -lpthread -lrt
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-m32 -march=corei7 -mfpmath=sse -Ofast -flto compiler flags. As with our FPGA-

based platform described in Section 3.3.1, the input pixel data is mean-subtracted

per (2.1).

On average, the SBC took 79ms to process a single image cube using 4 threads,

and 69ms using 8 threads. This corresponds to about 12.7 and 14.5 image cubes per

second processing throughput, respectively. These measurements place the compari-

son platform at 22.8 GFLOPS during the covariance calculation.

4.5.2 Power Consumption and Energy

Power measurements were performed with a digital multimeter wired in series with

the +12V DC power input to the SCB to measure average current. Measurements

were taken during an idle state and during the execution of the four- and eight-thread

code. The power measurements of the SBC and energy required for the covariance

computation are included in Table 4.7. The ML605 coprocessor power and energy

are included for comparison.

From these measurements, it can be seen that the SBC platform requires less

power and energy when idle than the ML605. This is due to frequency scaling of the

Corei7 CPU on the SBC, which lowers the clock frequency during idle states, reducing

power consumption. However, the SBC platform dissipates more than twice as much

power as the ML605 during active processing. The energy required for processing on

the SBC is about twice that of the ML605 coprocessor.
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Table 4.7: SBC Power and Energy vs. Coprocessor

SBC
Idle

SBC Running
4 Threads

SBC Running
8 Threads

ML605
Coprocessor

Voltage (V) 12 12 12 12.14
Current (A) 1.07 4.6 5.2 2.13

Power (W) 12.8 55.2 62.4 25.9
Processing
Energy (J)

N/A 3.8 4.3 2.1

4.6 Size, Weight, and Power Implications

The performance, power, and FLOPS measurements are further utilized to investi-

gate the attractiveness of both the covariance coprocessor and SBC from the SWaP

perspective. One such metric to consider is the number of FLOPS per Watt of power

consumed (FLOPS/W ). This is a popular metric in the field, but it omits the weight

portion of the system design, which is also of high importance for current and future

airborne and spaceflight processing systems. Therefore, we also consider another

metric, FLOPS/(W · kg) during the evaluation of these types of systems.

The ML605 and SBC were weighed to support this SWaP analysis, and the results

are provided in Table 4.8. For this analysis, the average power seen during processing

was used. This indicates that the ML605 performance in FLOPS/W is twice that of

the SBC, and 2.75 times the SBC in FLOPS/(W·kg).
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Table 4.8: ML605 and SBC SWaP Comparison

ML605 SBC

FLOPS 19.1G 22.8G
Power (W) 25.9 62.4
Mass (kg) 0.336 0.476

FLOPS/W 737M 365M
FLOPS/(W·kg) 2.2G 0.8G
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Chapter 5

Conclusions and Future Work

This research investigated and implemented a parallelized sample covariance calcu-

lation, targeted to an FPGA-based platform. This platform, the Xilinx ML605 was

chosen because of its potential for lower size, weight, and power. An open-source

middleware framework, OpenCPI, was utilized to extend this implementation into

a completed coprocessor. This coprocessor was tested and found to provide around

12 sample covariance calculations per second on 512x614x50 AVIRIS hyperspectral

image cubes. Performance was evaluated and found to be promising for use on SWaP-

constrained HSI platforms, providing a greater than 2X improvement in power and

energy dissipation over a CPU-based platform.

Contributions of our research include being the first coprocessor to perform FPGA-

based covariance calculations on HSI data having a large number of spectral bands

(50). This is considerably larger than related work, which processed the equivalent

of 6 spectral bands. Additionally, this is the first time that a VHDL/Verilog user

application has been successfully integrated and tested at this low a level inside the
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OpenCPI ML605 framework. We have shown that FPGA-based processing platforms

are an attractive option for the processing of HSI data, and are competitive from a

size, weight, and power perspective.

5.1 Future Work

Because the coprocessor has a large percentage of FPGA resources still available,

there is an opportunity to both expand the capabilities of this coprocessor platform

and change the placement of the coprocessor in a future system.

FPGAs are commonly used to interface with imaging sensors of all types. There-

fore, interesting future work will be to interface this coprocessor platform directly

with an HSI sensor. This provides an improved environment, as it eliminates the

need to transfer image data from the Host PC to the coprocessor. Only the results

will need to be transferred externally by the coprocessor.

One way to accomplish this is to use the FMC expansion connectors on the

ML605 board to interface with external cameras, using standard digital connections

for commercial and scientific cameras such as Camera Link. A COTS FMC Camera

Link interface board [19] has been purchased for use in future research to connect

to a camera. A new OCPI device worker needs to be written in BSV to handle the

interface with this expansion card and camera.

To improve the functionality of the covariance coprocessor, there are three major

areas for future work. The first is to add the mean computation and mean-subtraction
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steps of the sample covariance calculation to the hardware implementation. This

should be fairly straightforward to implement.

The second area is to change the input pixel format to use 16-bit 2’s complement

values for the pixels, and perform the conversion to floating-point inside the copro-

cessor. Because most cameras are 16-bits or less, this change would double the data

throughput of pixel data into the coprocessor.

The final area for future work is the addition of HSI processing steps after the

sample covariance calculation. The primary goals would be to add covariance matrix

inversion, followed by a hyperspectral matched filtering algorithm, such as Adaptive

Coherence/Cosine Estimator (ACE) [7].
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Appendix A

Glossary of Acronyms

ACE Adaptive Coherence/Cosine Estimator.

AVIRIS Airborne Visible/Infrared Imaging Spectrometer.

BRAM Block RAM.

BSV Bluespec System Verilog.

COTS Commercial Off-The-Shelf.

CPI Component Portability Infrastructure.

CPU Central Processing Unit.

DDC Digital Down-Conversion.

DDR Double Data Rate.

DMM Digital Multimeter.

DSP Digital Signal Processor.

FF Flip-Flop.

FFT Fast Fourier Transform.

FIFO First In First Out.

FLOPS Floating Point Operations Per Second.

FMC FPGA Mezzanine Card.
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FPGA Field-Programmable Gate Array.

GPS Global Positioning System.

GPU Graphics Processing Unit.

HDL Hardware Description Language.

HSI Hyperspectral Imaging.

ILA Integrated Logic Analyzer.

IMU Inertial Measurement Unit.

LUT Lookup Table.

MAC Multiply-Accumulate Operation.

OCPI OpenCPI.

PAR Place And Route.

PC Personal Computer.

PCI Peripheral Component Interconnect.

QML Qualified Manufacturer List.

RAM Random Access Memory.

SBC Single-Board Computer.

SVM Support Vector Machine.

SWaP Size, Weight, and Power.

TFBE Target Free Background Estimation.

UAV Unmanned Air Vehicle.

VHDL VHSIC Hardware Description Language.

VHSIC Very High Speed Integrated Circuit.

WCI Worker Control Interface.
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WMemI Worker Memory Interface.

WMI Worker Message Interface.

WSI Worker Streaming Interface.

WTI Worker Time Interface.
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Appendix B

HSI Image Cube Parameters

• AVIRIS data product ID: “f970619t01p02r02c”

• AVIRIS data product type: Atmospherically corrected reflectance

• AVIRIS data product site name: Cuprite

• Spatial dimensions: 512x614 pixels

• Total number of bands: 224

• Number of bands used: 50
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Appendix C

List of Software, Middleware,
Diagnostic Tools, and Operating
Systems

Software

• Xilinx ISE Design Suite 14.1 (Host PC)

• MATLAB 2011b (Host PC)

• OpenCPI “swctl” utility (Host PC)

Middleware

• OpenCPI (ML605)

Diagnostic Tools

• Xilinx ChipScope Pro (Host PC)

• ModelSim (Host PC)

Operating Systems

• Windows 7 64-bit (Host PC)

• Red Hat Linux Enterprise 5.9 64-bit (Host PC)

• CentOS 6.0 32-bit (Reference PC)
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