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Abstract 

 
Increasing device densities allow designers to integrate more functionality onto a single 

piece of silicon. Many chip manufactures are using this flexibility to offer complete 

solutions that can be integrated onto a single device. FPGA manufacturers, such as Xilinx 

and Altera, have introduced FPGA architectures that contain a variety of embedded 

processing elements along with the device’s reconfigurable logic. One of the more recent 

processing elements that has been introduced by Xilinx is the PowerPC405 hard-core 

processor.  

 One of the challenging aspects of developing applications that target the PowerPC 

is the interfacing of the processor with the surrounding reconfigurable logic. We have 

implemented several versions of a FM3TR Waveform Application to exercise the various 

interfaces that enable communication between the processor and the surrounding FPGA 

fabric. These interfaces can be either shared or dedicated. Shared interfaces enable 

communication between the processor and multiple peripherals. Dedicated interfaces 

provide dedicated communication links between the processor and a single peripheral. 

Dedicated interfaces are less flexible, but can deliver higher performance than shared 

interfaces. Our results indicate that the performance of the FM3TR Waveform 

Application can be increased by as much as 60% just by choosing the interfaces that is 

most appropriate for the implementation. This demonstrates that the performance of 

FPGA applications that use the embedded processor are dramatically effected by the 
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mechanisms that are chosen to enable communication between the processor and its 

surrounding resources. 
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Chapter 1 

Introduction 

 Advancements in silicon technologies continually increase the number of 

transistors that can be integrated into a single device. Many designers have begun using 

this new integration potential to fabricate complete systems on a single silicon fabric. 

This new design practice, referred to as System-on-Chip (SoC), aims to integrate multiple 

board level components into a single silicon die. 

 As SoC architectures continue to receive attention from the embedded systems 

community, FPGA manufacturers such as Xilinx are responding with a new generation of 

FPGA architectures that contain a variety of embedded resources.  One of several 

recentadditions to Xilinx’s Virtex family architecture is the embedded PowerPC405 core. 

The motivation for the integration of the processor core onto the fabric of the FPGA is 

the idea that most FPGAs contained within an embedded system require some level of 

interaction with an external processor. Moving this processor into the fabric of the FPGA 

eliminates bottlenecks associated with communicating through off-chip interfaces.  

 Integrating a general-purpose processor into the fabric of the FPGA eliminates the 

need for off-chip interfaces, but creates a need for on-chip interfaces that provide 

efficient communication between the processor and the reconfigurable resources. The 

existence of such an interface is critical to the successful integration of the processor core 

into an FPGA implementation. 
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 In this thesis, we present a study that investigates various mechanisms that 

interface the Virtex II Pro’s PowerPC405 with the surrounding FPGA fabric. These 

mechanisms utilize the On-Chip Memory (OCM) and the Processor Local Bus (PLB) 

interfaces of the PowerPC405. Both of these interfaces enable communication between 

the PowerPC405 and its surrounding reconfigurable resources. However, the mechanisms 

used by each interface are very different. For instance, the OCM interface provides a 

dedicated interface to the surrounding FPGA fabric, while the PLB provides a shared 

interface. A dedicated interface provides a higher performance relative to the shared 

interface, however, the share interface offers greater flexibility in interfacing peripherals 

to the processor. These are the types of tradeoffs that will be the focus of this 

investigation. 

 The results of the investigation provide an accurate characterization of the 

advantages and disadvantages of the interfaces that provide the communication fabric 

between the PowerPC405 and the surrounding architecture on a Xilinx Virtex-II Pro 

FPGA. To serve as a basis for comparison we present multiple implementations of an 

FM3TR waveform application, each using a different interface.  

 The outline of the remainder of this thesis is as follows. 

 Chapter 2 begins with an introduction to FPGAs and how they compare to other 

available technologies. It then gives an introduction to SoC, including the various 

mechanisms used to interface entities that exist within SoC architectures. 
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It then describes the extension of SoC into platform FPGAs, specifically, the Virtex-II 

Pro FPGA. The reader is then introduced to the concept of Software Defined Radios 

(SDRs) and how using SoC architectures can facilitate their development.  Finally, a 

survey of related work on SoC and the Virtex-II Pro FPGA is presented. 

 Chapter 3 begins with a detailed discussion of the FM3TR waveform application. 

We then discuss the platform that was used to implement multiple FM3TR waveform 

application implementations. Finally, we present the design and performance 

expectations of each implementation.  

 Chapter 4 presents the performance results of the interfaces that were discussed in 

Chapter 3. These performance results are presented in terms of speed, complexity and 

resource utilization. The results are then analyzed to determine circumstances that 

warrant the use of a particular interface. 

 Chapter 5 gives conclusions and suggestions for future work.  
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Chapter 2 

Background 

This chapter establishes fundamental concepts necessary to understand the focus 

of this research. The topics that will be discussed include system on chip, FPGA 

technologies, general-purpose processors, on chip communication architectures, and 

software defined radios. 

 

2.1 Modern Day Processing Elements 

 

 Modern day engineers have several devices to choose from as the implementation 

fabric for their application. These devices can be classified as either general purpose, 

application specific hardware, or reconfigurable hardware. 

 General-purpose hardware is a term used to describe devices that are capable of 

understanding instructions that are issued by a programmer. The hardware contained 

within the device is designed to provide moderate performance in a wide range of 

applications. A programmer can issue a command to tell the device to perform any one of 

its pre-determined instructions at any given time. This type of hardware comes in many 

different flavors, some of which are more heavily optimized for specific application 

domains. For instance, a general-purpose processor (GPP) is a microprocessor that has 

been optimized to offer moderate performance in a wide range of application domains. A 
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digital signal processor (DSP) is a microprocessor that has been optimized to offer better 

than moderate performance for a narrow range of digital signal processing applications.  

 General-purpose hardware is suitable for a variety of applications. As a result of 

this flexibility, general-purpose hardware may fail to provide an implementation platform 

that is capable of meeting the system requirements for higher performance applications. 

In instances that require the highest performance, designers use application specific 

hardware. Application specific hardware usually takes the form of an application specific 

integrated circuit (ASIC). ASICs are optimized for high performance with respect to a 

specific application. Unlike general-purpose hardware, ASICs can only perform the 

specific function they were designed to perform.  

 Reconfigurable hardware attempts to couple the performance of ASICs with the 

flexibility of general-purpose hardware. The most common type of reconfigurable 

hardware uses an array of field programmable gates. These gates can be configured to 

perform specific boolean operations. The gates are interconnected through the device’s 

reprogrammable interconnect fabric.  

 

2.1.1 Field Programmable Gate Arrays 

 

 Field Programmable Gate Arrays (FPGAs) are integrated circuits that can be 

customized by the end user for a specific application. Figure 1 presents a general 

architecture overview of Xilinx’s Virtex-II Pro Platform FPGA. The fundamental 
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building block of an FPGA is the configurable logic block (CLB). CLBs are blocks of 

logic whose functionality can be changed by reconfiguring the contents of the block 

itself.  A single CLB contains 4 slices and 2 tri-state buffers. Each slice is identical to the 

others slices that are contained within the CLB. A single slice, seen in Figure 2, provides 

two function generators, two storage elements, arithmetic logic gates, multiplexers, and 

fast carry logic. The function generators may be configured as 4-input look-up tables 

(LUTs), as 16-bit shift registers, or as 16-bit distributed SelectRAM+ memory. In 

addition, either storage element may be configured as an edge-triggered D-type flip-flop 

or a level sensitive latch. Each CLB has its own internal interconnect, as well as the 

ability to access general routing resources. 

 

Figure 1: Virtex-II Pro Architecture Overview [20] 
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Although Configurable Logic Blocks remain the fundamental building block of an 

FPGA, increasing device densities has allowed manufacturers to integrate additional 

heterogeneous resources into their FPGA architectures. Modern FPGA devices, such as 

the Virtex-II Pro, contain other reconfigurable elements such as BlockRAMs, multipliers, 

and general-purpose processors.  Each BlockRAM provides an 18Kb dual-ported 

memory structure with two independently clocked and independently controlled 

synchronous ports that access a common storage area.  Each multiplier element provides 

an 18-bit by 18-bit signed multiplier. They are optimized for high speed operations and  

 

Figure 2: Virtex-II Pro Slice Configuration [17] 
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have low power consumption compared to an equivalent multiplier implementation using 

CLBs. Finally hard processor macros, such as the PowerPC405, provide a multi-stage 

instruction pipeline capable of executing stored instructions. 

 These heterogeneous elements are interconnected using the FPGAs general 

routing matrix. The general routing matrix is made up of a network of interconnected 

routing switches. Programming elements that wish to communicate connect to a routing 

switch. Paths are then established between these routing switches. The connection of 

programmable elements to routing switches, as well as the establishment of routes 

between them, is the responsibility of the CAD tools.  

 All reconfigurable elements contained within the FPGA are controlled by values 

that have been stored in static memory cells. These values are loaded into the memory 

cells at the time of configuration. To reconfigure elements within the FPGA, new values 

must be loaded into the appropriate memory cells [17]. 

 

2.2 System-On-Chip 

 

Advances in the semi-conductor industry continue to increase circuit density of 

silicon devices. This increasing potential has prompted many designers to consider the 

integration of multiple board level components onto a single silicon device, a concept that 

has been termed System-On-Chip. This type of component integration has the potential to 

offer increased reliability, increased performance, lower resource utilization, and lower 
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cost. However, such a high level of transistor density makes successful design and 

verification of these systems difficult.  

 To facilitate the design of SoC systems, many designers are steering clear of full 

custom design approaches. Instead, designers are choosing to build their systems using 

existing components that have well-defined contents and interfaces.  This re-use of 

existing components lowers development costs and time to market.  

 One of the major challenges associated with SoC design methods is providing 

efficient communication between the components. Developing efficient communication 

architectures for SoC systems is a challenging task.  

 

2.2.1 Communication Architectures for SOC 

 

 In order to effectively use the hardware components contained within a 

SoC, an efficient SOC communications architecture is critical. SoC communication 

architectures provide a medium that on-chip components can use to communicate with 

each other. Although this communication fabric is critical to the operation of the device, 

its existence does not provide any additional computational functionality. 

 

 

 

 



 

18  

2.2.2 Shared Interfaces Versus Dedicated Interfaces 

 

SoC communication architectures can consist of shared interfaces, dedicated 

interfaces, or a mixture of both. A shared interface is an interface that is shared between 

multiple entities. An example is the bus topology, seen in Figure 7, which uses a data bus 

to serve as the vehicle that two entities use to communicate. One entity acts as the bus 

master, and the other as a slave. The bus master is the controlling entity and is the only 

device capable of presenting commands.  The slave responds to commands presented to 

it, either by accepting data from, or presenting data to the master. Multiple entities that 

assume master or slave roles can connect to a single bus. However, communication may 

only occur between a single master and a single slave at any given instance in time.  

 

Figure 3: Shared Bus Topology [7] 

 
One problem that is evident with shared interfaces is the fact that not all entities 

can communicate at the same time. In many implementations of bus topologies, several 
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entities are capable of mastering the bus. However, it is impossible for more than one of 

those to master the bus at any given time. As a result, if two bus masters need to 

communicate with other entities at the same time, one would have to wait for the other to 

finish before it could start its communication. This uncertainty makes the performance of 

bus topologies extremely undeterministic. 

 In a dedicated interface, there is a dedicated communication link between a single 

master and a single slave. As a result of this dedicated link, the hardware required to 

manage multiple connections to the interface is not needed. This makes the management 

of the connection simpler, and the performance of the connection higher when compared 

to shared interfaces.  

 

2.3 Platform FPGAs 

 

 FPGA manufactures, such as Xilinx, have begun introducing FPGAs with 

architectures capable of providing complete on-chip solutions. In addition to the more 

traditional CLB arrays, these platform FPGA architectures contain embedded memories, 

processors, clock managers, arithmetic units, high speed i/o etc. These heterogeneous 

architectures benefit from the extension of traditional SoC techniques onto the fabric of 

the FPGA. The Virtex-II Pro FPGA is one of the more recent platform FPGA 

architectures that have been introduced by Xilinx. In addition to containing the traditional 
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elements that are characteristic of previous Platform FPGA generations, the Virtex-II Pro 

contains the PowerPC405 Processor Block. 

 

2.3.1 The PowerPC405 Processor Block  

 

The processor block, seen in Figure 4, contains the PowerPC405 core, specially designed 

logic that interfaces the core with the surrounds CLBs, block RAMs, and general-purpose 

routing resources. The number of processor blocks that are present is dependent on the 

specific Virtex-II Pro device. 

 

 

Figure 4: Processor Block Architecture [20] 
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2.3.2 The PowerPC405 Processor Core  

 

The PowerPC405 (PowerPC405), seen in Figure 5, is a 0.13um implementation of IBM’s 

PowerPC 405D4 core that is engineered for low power consumption at a clock speed of 

up to 300MHz. This embedded core implements the PowerPC User Instruction Set 

Architecture (UISA), user-level registers, programming model, data types, and 

addressing modes for 32-bit fixed point operations.  

 The central processing unit (CPU) of the PowerPC405 implements a 5-stage 

pipeline consisting of fetch, decode, execute, write-back, and load write-back stages. The  

CPU has a single-issue execute unit containing the general-purpose register file, the 

arithmetic logic unit, and the multiply-accumulate unit. The execute unit supports all 32-

bit PowerPC UISA integer instructions in hardware. Floating-point calculations are not 

supported in hardware, but can be emulated using software. 

 The PowerPC405 contains a Memory Management Unit (MMU) that is capable 

of supporting a 4GB logical address space. The MMU is responsible for translating 

between logical and physical memory addresses. The address translations are handled by 

the MMU’s 64-entry translation look-aside buffer (TLB). To prevent TLB contention 

between data and instruction accesses, a 4-entry instruction and an 8-entry data shadow 

TLB are maintained.  

The PowerPC405 has separate instruction and data cache units. Each cache unit 

includes a processor local bus (PLB) master, cache arrays, and a cache controller. Cache 
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hits appear to the CPU as a single cycle memory access. Cache misses are translated into 

transactions over the PLB that are serviced by PLB devices.  

   

 

Figure 5: PowerPC Hardware Organization [15] 

 

2.3.3 The On-Chip Memory Controller 

 

 The On-Chip Memory (OCM) Controller is responsible for generating the 

processor’s OCM signals. These signal enable communication between the processor and 

the OCM BRAM. The PowerPC’s OCM signals are engineered to provide quick access 
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to a fixed amount of data and instruction memory. The OCM controller provides the 

processor with access to both the 64-bit Instruction Side BlockRAMs (ISBRAM) and the 

32-bit Data Side BlockRAMs (DSBRAM). The designer may choose to implement 

designs with various combinations of ISBRAM or DSBRAM. 

 

2.3.4 Interfacing to the Processor Block 

 

 The two interfaces that allow the processor block to communicate data to and 

from the FPGA fabric are the PLB and OCM interfaces. Each interface has advantages 

and disadvantages. For instance, although the PLB interface is capable of addressing 4GB 

of memory, the interface is share by multiple components. The OCM interface can 

provide higher performance through its sole dedication to a single device. This higher 

performance is contingent upon the interface being configured to address 64 kb of 

memory or less. If the OCM address space is configured to support anything more than 

64 kb, the performance advantage of the interface may  be compromised. 

 

2.3.5 The CoreConnect Architecture 

 

The PLB interface is engineered to communicate with a third party on-chip bus 

architecture. Developed by IBM, this architecture is referred to as the CoreConnect 

architecture. The CoreConnect Architecture is a hierarchical bus topology that has been 
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designed to provide efficient on-chip communications. The topology consists of 3 buses: 

the Processor Local Bus(PLB), the On-Chip Peripheral Bus (OPB), and the Device 

Control Register (DCR) Bus. Each bus and its associated IP are implemented on the 

FPGA’s fabric using re-configurable resources. Either the PLB or the DCR can be used 

in an implementation without the existence of the other. The OPB interfaces to the 

PowerPC405 through the PLB. Therefore, the PLB must be instantiated in designs that 

require use of the OPB. 

 The PowerPC405 uses the PLB to access devices that demand high 

performance, such as memory controllers. The PLB is a fully synchronous 64-bit data bus 

that supports read and write transfers between master and slave devices. Each PLB 

master is attached to the PLB through separate address, read-data, and write-data buses. 

PLB slaves are attached to the PLB through shared but decoupled, address, read-data, and 

write-data buses and a plurality of transfer and status control signals. Devices that wish to 

communicate over the PLB must first contact the PLB arbiter. The PLB arbiter will grant 

the device access to the PLB if either the bus is not in use, or the priority of the 

requesting device is higher than the priority of the device that is currently mastering the 

bus. If  neither of those two conditions is true, the device that is requesting access to the 

bus  will need to wait until either of those conditions becomes true. 

 The PowerPC405 uses the OPB to communicate with low speed devices, 

such as a Universal Asynchronous Receiver/Transmitter (UART). The OPB is a fully 

synchronous 32-bit data bus that functions independently of the PLB on a different level 
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of the bus hierarchy. The OPB does not interface directly to the PowerPC405 core. 

Instead an OPB to PLB bridge provides the interface between the two levels of hierarchy. 

Therefore, if an OPB master needs to communicate with the processor, it must do so by 

using the OPB to PLB bridge to generate the appropriate request on the PLB. Similarly, if 

the processor wants to communicate with a device on the OPB, it must do so by using the 

PLB to OPB bridge to generate the appropriate request on the OPB. 

 The DCR bus provides the ability to transfer data between the CPU’s 

general purpose registers and the DCR slave logic’s device control registers. The DCR 

bus allows control and status information to be communicated over a dedicated bus. 

Without the existence of the DCR, the OCM and PLB interfaces would be responsible for 

communicating the applications data as well as status and control information. This 

would cause the performance of the implementation to suffer. The existence of the DCR 

reduces contention over the OCM, PLB, and OCM interfaces,  

 

2.3.6 The On-Chip Memory Interface 

 

 The On-Chip Memory (OCM) interface serves as the interface between the Block 

RAMs and the OCM signals that are contained within the PowerPC405 processor core. 

An OCM controller provides non-cacheable access to instruction-side and data-side on-

chip memory.  The data-side OCM supports a 32-bit, bi-directional memory interface, 

and the instruction-side supports a 64-bit unidirectional interface. Unlike the PLB, the 
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OCM interface is a dedicated interface that has separate interfaces for instruction and 

data accesses. As a result, there is no arbiter that mediates connections to the bus. Each 

OCM controller is capable of addressing up to 16 MB of memory; however, the amount 

of BRAM contained within the device will limit the amount of memory than can be used. 

Furthermore, as the amount of memory connected to the OCM controller increases, the 

performance of the interface decreases. This performance decrease is a direct result of the 

increase in resources that are required to accommodate the additional BRAMs used to 

supply the memory.  

 The primary advantage of the OCM interface is that it guarantees a fixed latency 

of execution. This provides a higher level of determinism, making communication over 

the OCM interface a good choice for processor applications that must guarantee a 

specific rate of communication with the fabric. This of course assumes that the OCM 

interface is capable of delivering the required rate of communication.  

 Another advantage of the OCM interface is that it handles separate data and 

address for both the instruction and data side. This allows the processor to fetch both 

instructions and data through the OCM interface simultaneously. 

 The disadvantage of the processor’s OCM interface is that the interface is only 

capable of addressing a relatively small amount of memory. The data-side OCM 

(DSOCM) and instruction-side OCM (ISOCM) interfaces are physically capable of 

addressing 16MB of memory. However, the complexity of the routing that is needed to 

connect the BRAM to the OCM interface is directly proportional to the amount of OCM 
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that is used. As a result, the OCM interface performs best when it only has to service a 

small amount of BRAM. 

 Applications utilize the dual ported feature of the OCM’s BRAMs to 

communicate data between the processor and the fabric of the FPGA. This feature allows 

both the processor and hardware modules implemented on the fabric to independently 

write and read data to and from the BRAM (with some restrictions). Data is 

communicated between the two entities when one entity, such as the processor or a block 

of configured logic, reads data that has been placed in BRAM by the other entity. 

 

2.3.7 The Software/Hardware Interface 

 

 Previous sections have discussed the physical interfaces provide the connections 

between the PowerPC405 processor and the FPGA’s fabric. Almost equally important is 

initiation of communications through the interface. Specifically, how software 

instructions are able to drive logic that exists within the fabric of the FPGA. The 

PowerPC405 and its surrounding communication architecture is no different then any 

other processor system in the sense that it can be modeled as a single processing element 

that is capable of performing mathematical operations, writing data to memory, and 

reading data from memory.  The processor assumes that the devices that are connected to 

it are some form of memory element. When the processor executes a software instruction 

that requires it to communicate with one of its devices, the processor will present data 
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and its associated address on one of its buses. The higher bits of the address value will 

determine which bus the information appears on. Once the information has appeared on 

the appropriate bus, the devices connected to that bus are responsible for determining 

which device the processor wants to interact with. Each device that is connected to the 

processor has its own address decoder. When an address is presented on its interface, 

each device’s address decoder examines the higher bits of the address value. If the 

address value falls within the address range of the device that the address decoder is 

servicing, the address decoder will signal the device. The device will then collect the data 

off the bus and store the data in the location indicated by the lower bits of the address 

value. This storage location could reside in a register, on-chip memory, or even off-chip 

memory. The device will then will then perform the action that is indicated by the 

recently loaded values. This model is valid for both the OCM and PLB interfaces. 

 

2.3.8 Processor Centric versus Logic Centric 

 

 Processor centric and logic centric are terms used to characterize the flow of 

processed data within a specific implementation. In a processor centric system, the logic 

serves as the computational adjunct to the processor. This means that the logic will 

perform based on the commands issued by the processor. Processor centric systems are 

sequential machines that execute instructions in succession. As a result, scenarios will 
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arise where logic entities will exist in an idle state awaiting further instructions from the 

processor.  

 The goal of any FPGA implementation is to maximize the amount of processing 

that is occurring at any given time. In many instances, it would be unacceptable for logic 

within an FPGA to be idle unnecessarily. Furthermore, the processing capabilities of the 

FPGA could be limited by the processing capability of the processor that is at the center 

of the processor centric system. This would be extremely inefficient since the processing 

capabilities of the logic as a whole is far greater than a single processor core. As a result, 

processor center designs do not map well to FPGAs in most instances.  

 Alternatively, designers should consider a logic centric approach that uses the 

processor as a computational adjunct to the logic. Logic centric approaches facilitate the 

exploitation of parallelism that is often critical to achieving the most efficient 

implementations. In a logic centric approach, the logic issues commands to the processor. 

While the processor is responding to those commands, the logic can continue to work 

concurrently. 

 The type of architecture that is chosen to provide communications between the 

processor and the FPGA’s fabric is often determined by the centricity of the design. The 

bus topology, discussed in Section 2.2.2, is representative of processor centric models. 

Processor centric implementations use the processor as the computational center of the 

application. As a result, the rest of the entities that exist within the implementation must 

be able to communicate with the processor so that they may respond appropriately to the 
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actions of the processor. The shared interface that is provided by the bus topology suits 

this model well because it gives a single processor the ability to communicate with 

multiple devices.  

 Dedicated interfaces are representative of logic centric implementations. Logic 

centric applications use the processor as a computational adjunct to the processing that is 

occurring within the logic of the FPGA. The role of the processor as an adjunct processor 

is specific and does not require that the processor be able to communicate with multiple 

devices. The use of dedicate interfaces for these types of scenarios saves resources that 

would otherwise be consumed by the mechanisms that enable the sharing of a single 

interfaces by multiple devices. Furthermore, use of a dedicated interface in the logic 

centric approach provides a higher level of determinism for the communications that 

occurs between the processor and the surrounding FPGA fabric. 

 

2.4 Software Defined Radios 

 

 A Software Defines Radio (SDR) is a collection of hardware and software 

technologies that enable reconfigurable system architectures for wireless networks and 

user terminals. SDR provides an efficient and comparatively inexpensive solution to the 

problem of building multimode, multiband, and multifunctional wireless devices that can 

be updated, adapted, or enhanced using software upgrades [10]. 
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 SDR has generated a tremendous interest in the wireless communications industry 

for the wide ranging economic and deployment benefits it offers. Many companies 

struggle to keep up with the diverse technologies that exist within the industry and the 

high rate at which these technologies evolve. SDR aims to reduce these problems by 

providing radio platforms that can be easily reconfigured. Such a platform would allow 

companies to build radios that could survive generations of evolving communication 

standards. This saves companies enormous amounts of financial resources by allowing 

them to update existing infrastructures instead of replacing them. 

 In addition to providing a means to update existing systems, reconfigurable radios 

are beneficial in scenarios where radio users may be traveling between different radio 

domains. For instance, consider a cellular phone user that is traveling between the US and 

Europe. If a SDR implementation of the cellular phone were possible, a person traveling 

from the US to Europe could simple reconfigure his/her phone to work with the cellular 

phone networks in the country that he/she is traveling to. 

 The high performance and high reconfigurability requirements of SDR make 

FPGA architectures a good implementation fabric for many SDR applications. SDR 

processing tasks such as modulation, de-modulation, up-conversion, and down-

conversion benefit from the high performance that is offered by modern FPGA 

architectures. In addition, the high level of reconfigurability associated with FPGAs 

makes it possible to configure the FPGA with instances of these processing tasks that are 

most appropriate for the current communications environment.  
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 In addition to FPGAs, general-purpose processors (GPPs) play an important role 

in most software defined radio systems. In addition to executing data processing tasks 

that contribute to the actual output of the radio, GPPs are used in the initialization and 

configuration of the various hardware components that constitute the radio. The FPGA 

and GPP usually exist with an SDR system as two separate entities interconnected by an 

off-chip communications architecture. However, the introduction of FPGA architectures 

that contain embedded processors, such as the Virtex-II Pro, has prompted some SDR 

system designers to beginning integrating functionality of the two separate entities onto a 

single piece of silicon. 

 

2.4.1 The FM3TR Proposed Reference Waveform 

 

Future Multi-Band, Multi-Waveform, Modular, Tactical Radio Waveform 

(FM3TR) is an international cooperative effort between the United States, Germany, 

France, and the United Kingdom to develop a reconfigurable communications system for 

ground and airborne applications. The result of this effort is a relatively simple and 

unclassified waveform that can be used to demonstrate interoperability between various 

software defined radios [1]. The processing requirement of the waveform itself is 

relatively low when compared to industrial waveforms, such as WCDMA. The simplicity 

and low processing requirements of FM3TR are appropriate for our application because 
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they allow us to focus on studying the architectural issues associated with FPGA 

development using embedded processors and not implementation issues. 

 

2.5 Related Work 

 

 As the complexity of IC designs continue to increase, more and more designers 

are adopting SoC design methodologies to accommodate the integration of components 

into a single piece of silicon. This is true for both FPGA and ASIC designers. The 

following discussions present a brief survey of applications that have been mapped to 

SoC platforms. 

 

2.5.1 The Single-chip Gigabit Mixed-version IP Router 

 

 Gordon Brebner has developed an SOC application intended for use with 

computer networks that contain a mixture of IPv4 and IPv6 workstations. The platform 

makes extensive use of the PowerPC405 core on the Virtex-II Pro FPGA. [2]  

 The purpose of the platform is to harness programmable logic in novel ways to 

build a Mixed-version IP Router (MIR) that will route packets between IPv4 and IPv6 

networks. Prototype A uses a processor centric architecture, illustrated in Figure 6. That 

basic organization is that there are four gigabit Ethernet ports implemented in logic and 

attached to Rocket I/O transceivers via a 32-bit interface, and one processing hub that is 
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implemented using the PowerPC. All packets received by the router must pass through 

the hub before any further transmission. Communication of packets between ports and 

the hub is via dedicated dual ported buffers that have been connected to the processor’s 

OCM interface.  

 Prototype B, seen in Figure 7, uses a logic centric architecture to process the 

system’s incoming packets. In this scenario, a subset of the packet processing occurs in 

the exchange module. Specifically, IPv4 packets that just need to pass through or IPv4 

packets that are headed for IPv6 tunnels are handled in logic. All other IPv4 packets, and 

all IPv6 packets are handled by the processor. 

 

 

 

Figure 6 : Single-chip Gigabit Mixed-version IP Router Prototype  A [2] 
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Figure 7 : Single-chip Gigabit Mixed-version IP Router Prototype  B [2] 

 
 The difference between the implementations of Prototypes A and B is in 

how the packet processing is handled. Prototype A uses a processor centric approach that 

requires all of the incoming packets to be processed by the processor. In this scenario, the 

rate at which the system can process data is limited by the rate at which the processor can 

process data. Furthermore, the processor core is an inherently sequential device, meaning 

that the possibility of exploiting computational parallelism doesn’t exist. Although the 

model may work well for the requirements of the MIR implementation, scalability may 

be an issue due to the fact that the processing capabilities of the implementation is limited 

by a single processing entity. 

Prototype B uses a logic centric approach. In this approach, the processor 

performs a subset of the overall packet processing. If the packet falls into a specific 
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category, the packet is processed by the processor. Otherwise the packet gets processed 

by logic. In this scenario, the processing capabilities of the system are not limited by the 

sequentiality of the processor. The processing of packets by the processor and the logic 

can occur concurrently. This allows the implementation to take advantage of the 

parallelism that is inherently characteristic of FPGA architectures. 

 

2.5.2 Software Decelerators 

 

 In the paper, titled Software Decelerators, the authors describe a logic centric 

design technique where processing tasks are offloaded from the logic to the processor of 

a Virtex-II Pro FPGA [4].  This technique is described by the authors using the term 

“software decelerator”. The term implies that a processing task offloaded from logic to a 

processor yields no gain in performance, but may result in an implementation that uses 

the FPGA’s resources more efficiently. The argument for software decelerators is a 

consequence of the fact that the PowerPC core exists in the fabric of the FPGA regardless 

of whether or not it is used in a given design implementation.  As a result, using the 

processor for processing tasks with liberal timing constraints may free up logic for use 

elsewhere in the design. 

 To ensure that software decelerators provide their anticipated benefits, the authors 

present a list of considerations that should be reviewed prior to the design of the software 

decelerator. Some of these considerations are: 
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1. The overall area consumed by the software decelerator should not exceed the 

area consumed by the equivalent logic implementation unless there are valid 

arguments to do so. 

2. The resource consumption of the interface between the processor and the logic 

should be minimized. 

3. The designer should be able to acquire accurate timing and resource 

utilization information for the logic centric system. The information that is 

acquired should include those tasks that are being performed by the processor.  

The authors provide a case study to illustrate the benefits of software decelerators. 

The case study emphasizes the use of the embedded processor as finite state machine. 

Finite state machines (FSMs) play critical roles in the control of many hardware 

implementations. Their complexity is a function of the number of states they implement, 

as well  as the complexity of the logic equations used to trigger state changes. Despite 

their potential complexity, their timing constraints, in comparison to the rest of the 

system, are relatively relaxed. As a result, FSMs can be good candidates for execution on 

the Virtex-II Pro’s embedded processor. 

The case study presented by the authors describes three FSMs that are used for 

network related applications. The first FSM application, rs232echo, is a RS232 protocol-

handling machine. This application serves as a repeater that broadcasts all of its received 

inputs on its output. The second application handled the Media Independent Interface 
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(MII) of an Ethernet MAC. Finally, the third application FSM, tx_host_io, handles the 

host interface to a 10G Ethernet MAC.  

The results of the logic implementations of the FSMs are shown in Table 1. These 

figures show the amount of resources needed to guarantee the FSMs were able to perform 

at the rate required by the application. Table 2 shows the resource savings that result from 

executing the FSMs in the embedded processor. These values are relative to the 

respective values in Table 1. Although the processor implementations consistently result 

in resource savings, Table 3 indicates that the performance requirement for the tx_host_io 

application cannot be met by a software implementation. This leads the authors to 

conclude that FSMs with high performance constraints are not candidates for execution 

on the embedded processor and should be implemented using only the logic resources of 

the FPGA, while FSMs with low performance requirements are good candidates for 

execution on the embedded processor. 

 

Table 1 :  Resource Consumption  of  FSM Logic Implementations [4] 
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Table 2 : Resource Savings Relative to the Equivalent Logic Implementation [4] 

 

 

 

Table 3 : Performance Results for Software Implementations of FSMs [4]  

 

2.5.3 PLB vs. OCM Comparison Using The Packet Processor System 

 

 The Xilinx application note, PLB vs. OCM Comparison Using The Packet 

Processor Software, uses a packet processing application to compare the performance 

tradeoffs of the PowerPC405 Processor Local Bus and On-Chip Memory interfaces [5]. 

The application’s implementation is a modified implementation of the application 

presented in [11]. The objectives for the study of the packet processor application 

include: 
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1. Identify performance penalties for the OCM and PLB interfaces that 

result from the system’s current configuration. 

2. Compare the performance that results from fetching instructions 

through the PLB interface versus fetching instructions through the 

OCM interface. 

3. Compare the performance of the PLB-attached packet buffers versus  

the OCM-attached packet buffers. 

4. Compare the application performance of the PowerPC405 processor 

when operating at the same clock frequency as the PLB and OCM 

interfaces versus the performance of the application when the 

processor is operating at a faster clock frequency then the PLB and 

OCM interfaces.  

Figure 8 shows the architecture of the packet processor system used in the 

study. The system uses two Packet Processing Engines (PPEs): one connected to 

DSOCM  BRAM and the other connected to PLB BRAM. Depending on which 

processor is producing packets, the PowerPC405 will receive packets through 

either its PLB or OCM interface. Upon reception of a packet, the PowerPC405 

will examine the contents of the packet to determine the packet’s destination. If 

the packet is destined for the PowerPC405, the processor will send an 

acknowledgement to the packet processor that the packed originated from. If the 
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packet is not destined for the PowerPC405, the processor forwards that packet to 

the other packet processor.  

 

Figure 8: Architecture of the Packet Processor Reference System [5] 

 
 Each experiment that is performed in this study uses one of three different test 

cases. Each test case uses a different memory organization. The first test case stores the 
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instruction and program data for the PPC in PLB BRAM. The packet processor’s data is 

stored in ISOCM. The second test case stores all of the instructions in ISOCM BRAM. 

The program data and the packet processor’s data are stored in DSOCM BRAM. Finally, 

the third test case stores the instruction, program, and packet processor data in PLB 

BRAM. In all cases the D-Cache for the PLB interface has been disabled. The I-Cache 

for the PLB interface is enabled when appropriate. The different test cases and the clock 

frequencies at which they operate are summarized by Table 4 and Table 5. 

 

Table 4 : Packet Processor Reference System Design Details By Case [5] 

 

 
Table 5 : Operating Frequencies of the Packet Processor Test Cases 

 

Comparison 1 measures the elapsed time from the deassertion of the system reset 

to the high state of the transmission’s control signal. The measurement takes into account 
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all packet transfers as well as instruction fetching, and execution, which are common 

between all test cases. 

The analysis of Comparison 1 is summarized by Table 6. Case 1B is the fastest 

overall; however, Case 2B completes the first transfer quicker. Case 2B is initially faster 

because of the time that elapses before all of Case 1B’s instruction have made their way 

into the PPC cache. Once its instructions have been loaded into the cache, Case 1B 

operates slightly faster than Case 2B, and significantly faster than Case 3B.  This 

suggests that for the clock ratios used in Cases *B, the PLB interface is comparable to the 

ISOCM interface for applications where the program’s instruction can fit entirely in 

cache. 

Table 6 : Overall Performance Measurements 

 

 

 Comparison 2 measures the time it takes for one packet to be transferred from one 

area of memory to another. The move will occur through either the PLB or the OCM 
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interface, depending on the case. The measurement is made starting with the first packet 

byte on the read bus and ending with the last packet byte on the write bus. 

 The results of comparison 2 are summarized in Table 7. Once again, fetching 

instructions out of the i-cache is shown to deliver performance that is slightly greater than 

instruction fetches over the ISOCM interface. The results also suggest the data transfers 

through the DSOCM interface deliver greater performance than transfers through the 

PLB. This can be seen by comparing Cases 3A and 3B against the rest of the cases.  

Cases 3A and 3B do not reflect the true bandwidth of the PLB. In this particular 

case, the 64-bit PLB is transferring only one word (32 bits) of data at a time. If 64-bit 

transfers were done, the numbers in rows 3A and 3B would be approximately half of 

what they are. Making 64-bit transfers, however, requires assembly language instructions 

that some compilers do not take advantage of. This is a great example of why the 

processor should not be used for large data transfers. Instead, use the FPGA to do a DMA 

transfer. 
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Table 7 : Data Movement Resultsfor TC2 [8] 

 

 

 Finally, Comparison 3 measures the time it takes for the system to complete the  

diagnostic routine that is part of the implementation. The routine contains a mixture of 

data accesses that must be performed over both the PLB and OCM interfaces. In addition, 

some of the instructions that are fetched over the PLB will only be executed once. Other 

instructions will be frequently accessed, allowing the benefits of the cache to be utilized.  

 The results of Comparison 3 are summarized in Table 8. Cases 1B and 2B execute 

in roughly the same amount of time. This suggests that for applications where only a 

fraction of the instructions will fit in cache the ISOCM will provide comparable 

performance when the PLB operates at 100 MHz  and the ISOCM operates at 150 MHz.  



 

46  

Table 8 : Test Completion Measurment Results 

 

 The PLB versus OCM study discusses the main differences between the PLB and 

OCM interfaces by contrasting their attributes, as well as comparing the interfaces using 

a hardware reference system. The results of this study show the following: 

1. The OCM interface can provide comparable performance to the PowerPC‘s 

caches at 1:1 and 2:1 processor-to-clock-to-OCM clock ratios. 

2. Using OCM to reduce the amount of traffic on the PLB reduces cache thrashing in 

large applications. 

3. Operations that require determinism benefit from using the OCM interface 

because of its deterministic behavior. 

4. Applications that use less than 16KB of program and instruction data should run 

completely out of the PowerPC’s cache. 
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2.5.4 Energy Efficient Application Synthesis Using Platform FPGAs 

 

 In the paper, titled A Methodology  for Energy Efficient Application Synthesis 

Using Platform FPGAs, the authors argue that the design  choices that an FPGA 

application designer makes can have a dramatic impact on the power consumption of 

his/her application. The author’s analysis focuses on the buses that enable communication 

between the Virtex-II Pro’s PowerPC405 and the surrounding FPGA fabric. Specifically, 

the Processor Local Bus (PLB) and the On-Chip Memory (OCM) Bus [22]. 

 The paper presents an FFT software program that executes on the Virtex-II Pro’s 

PowerPC405. This program serves as a vehicle that enables power analysis of the 

processor’s PLB and OCM interfaces.  

 The study shows that executing the same FFT program on different configurations 

of the PowerPC405 processor core results in configurations that consume five times the 

time and energy costs of alternative configurations. Implementations that used the PLB 

bus with caching enabled dissipated the least amount of energy while implementations 

that use the PLB bus with caching disabled dissipate the highest amount of energy. 

Caching reduces the devices power consumption since most of the FFT processing 

executes within loops. The data that is operated on within an execution loop fits entirely 

in cache, This means that instruction and data can be fetched from the cache without 

generating transactions on the PLB.  Communications over the PLB also introduces 

overhead that is not present with communications through the OCM interface. This 
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overhead increases the energy dissipation on the PLB further as the PowerPC spends 

more time waiting for instructions and data to be fetched over the PLB bus.  

 

2.5.5 The Novelty of our Approach 

 

The Virtex-II Pro Mixed-version IP Router, discussed in Section 2.5.2, illustrates 

the differences between processor and logic centric processing models. Prototype A 

requires all incoming packets be processed by the PowerPC405. This is done to show that 

the performance a processor centric system is clearly bounded by the capabilities of the 

processor. Prototype B uses a logic centric approach where the processor services 

specific requests that are generated in logic. These requests are generated for specific 

types of packets that are received by the system. If a packet requires the processor, the 

logic can dispatch that packet to the processor and begin processing the next packet. As a 

result, the logic and the processor can operate concurrently. This approach eliminates the 

processor as the limiting factor of the system’s performance. 

Prototype A of the Mixed-version IP Router is similar to our implementations in 

the sense that the processor can be the limiting factor in the performance of our 

application. The input samples of our application are modulated by the PowerPC405 

before being converted to a passband signal by the DUC. However, the PowerPC405 

used in our implementations is responsible for servicing a single data buffer, while the 

PowerPC405 used in Prototype A services multiple data input buffers. In addition, our 



 

49  

implementations consider the possibility of using the PLB interface to the processor to 

service the application’s input buffers in place of the OCM interface. The Mixed-version 

IP Router only considers the processor’s OCM interface in either Prototype A or 

Prototype B. 

The FSM based design technique using software decelerators, discussed in 

Section 2.5.3, describes scenarios where logic centric systems can use embedded 

processors to execute FSMs. Application designers who choose to adopt this design 

technique must ensure the processor is capable of delivering the performance needed to 

operate the FSM at the correct rate. Studies show that in most cases the performance 

delivered by the Virtex-II Pro’s PowerPC405 is more than adequate for a variety of FSM 

processor implementations. This is a consequence of the fact that the rate at which most 

applications transition between states is lower than the rate at which data is processed.   

Using the FSM as a software decelerator is similar to our approach. Much like the 

authors of  [4], we do not expect the use of the PowerPC405 yield any performance gains 

for our implementation. However, the possibility does exist that an equivalent hardware 

implementation of the software application could consume more of the FPGA’s 

resources. A motivation for using the software implementation in such a scenario is that it 

frees up the FPGA’s logic for tasks that have higher performance requirements than those 

tasks executing on the PowerPC405. 

 The comparison study that is performed using the packet processor software is 

similar to our research. Both studies are intended to evaluate the performance of the 
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PowerPC405’s PLB and OCM interface. The comparison study, presented in [5], uses the 

PowerPC405 to execute a packet processing application that will either forward an 

incoming packet or acknowledge the receipt of a packet. The packet is forwarded by 

copying the value of the packet to a new location in memory. The computational 

requirements of our FM3TR modulation application are greater than those of the packet 

processing application. As a result of this, we feel that the results of our investigation will 

offer comparison results from an applicat7ion that is more representative of the types of 

real-world applications that might target the PowerPC405. Furthermore, the results that 

are presented in [5] are based on simulation models. Our results are obtained through 

measurement using actual hardware. 

 The power analysis study, discussed in section 2.5.5, presents a comparison of the 

PLB and OCM interfaces from the perspective of their power consumption. While our 

investigation does not include power measurements, it is important to note that the 

configuration of a particular interface may alter the applications power consumption. 

Using the work presented in [22], the power consumption of an interface can be used as 

the deciding factor between two interfaces that perform satisfactory. 
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2.6 Summary 

 

This chapter begins with an introduction to FPGAs and how they differ from other 

modern processing elements. It then introduces System-on-Chip architectures and 

discusses how the concept of SoC is extended to the architecture of an FPGA. Next, the 

architecture of the Virtex-II Pro is introduced, and the devices’ embodiment of SoC 

concepts is discussed. The chapter then introduces the notion of a Software Defined 

Radio and the roles that FPGAs play in the implementation of an SDR. Finally, a survey 

of related work is presented. 
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Chapter 3 

Experimental Setup 

 

In this chapter, we describe an application that performs FM3TR’s modulation 

and digital up-conversion (DUC) functions. We then describe the algorithms that are used 

to modulate and up-convert the digital data that is fed into our application. Next we 

describe the software implementation of the modulator and the hardware implementation 

of the digital up-converter. We then describe the interfaces that are used to interface the 

modulator with the digital up-converter. Finally we describe multiple instances of the 

same application that were developed to analyze tradeoffs associated with the use 

different interfaces. 

 

3.1 Development Tools 

  

The implementation of the FM3TR Waveform Application was subdivided into 

two separate problems: the implementation of the modulator and the implementation of 

the DUC. Each implementation utilizes a separate design flow. In the final stages of the 

design process, the implementation of the modulator and the DUC were merged together 

to form a complete application. 
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 The implementation of the modulator required the use of Xilinx’s Embedded 

Development Kit (EDK). The EDK is a development environment that provides 

application designers with the tools necessary to build embedded processor systems that 

make use of the Virtex-II Pro’s PowerPC405.  

 The steps within the EDK that are necessary to build the embedded processor 

system include: hardware platform creation, software platform creation, and software 

application creation. The hardware platform is defined by the Microprocessor Hardware 

Specification (MHS) file. The MHS file defines our system architecture, memory 

modules, and embedded processors. It also defines the system’s connectivity as well as 

the configurable options and the address map for each memory module in our   system.

 The Platform Generator (platgen) parses the MHS file and generates the 

appropriate netlists and HDL wrappers. These files are then imported into Xilinx’s ISE 

Project Navigator, where they are instantiated in the application. 

 The software platform is defined by the Microprocessor Software Specification 

(MSS) file. The MSS file defines driver and library customization parameters for 

peripherals, standard input/output devices, interrupt handler routines and other software 

features. The Library Generator (libgen) tool parses the MSS file and configures the 

libraries and drivers that are required for the application. 

 Software application creation involves the creation of the FM3TR Modulator that 

executes on the embedded processor. The code is written in C. Once the source files are 

created, they are compiled and linked to generate executables in the Executable and Link 
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(ELF) Format. GNU compiler tools for the PowerPC405 are used in our implementations, 

but tools from other vendors are available as well. 

 The FM3TR Digital Up-Converter (DUC) is developed using a different design 

flow. First, Simulink is used to develop a model that is representative of our system. 

System Generator is then used to generate a VHDL description of our Simulink model, as 

well as to create the appropriate project files that enable the design to be imported into 

the Xilinx’s ISE Project Navigator.  

 In the final stages of the design flow the FM3TR Modulator and the FM3TR DUC 

are imported into Xilinx’s ISE Project Navigator. Implementation specific interfaces are 

then instantiated to connect the modulator and the DUC. Finally the design is 

synthesized, placed and routed. 

 

3.2 The FM3TR Waveform Application  

 

 Our application aims to demonstrate the advantages and disadvantages of the 

different interfaces that enable communication between the Virtex-II Pro’s FPGA fabric 

and its embedded processors. The demonstration will perform a subset of the processing 

tasks that are required in FM3TR Waveform Processing. Specifically, the application will 

perform the modulation and digital up-conversion that is associated with an FM3TR 

transmitter. The data that is to be modulated will be preloaded into the FPGA’s 

BlockRAM. Similarly, data that has resulted from this waveform processing will be 
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retrieved from the FPGA’s Block SelectRAM+. It should be noted that the goal of this 

thesis is to provide an accurate characterization of the advantages and disadvantaged of 

the interfaces that provide a communication fabric between the PowerPC405 and the 

surrounding FPGA fabric on a Xilinx Virtex-II Pro. The FM3TR Waveform Application 

is used as a vehicle to assist in the characterization of the different interfaces. As a result, 

the implementation details of the modulation and DUC will not be the main focus of this 

discussion.  

 

3.2.1 FM3TR Modulation 

 

 Digital modulation is the process by which digital information is used to alter the 

characteristic of a given carrier signal. A digital word is communicated to the receiver by 

transmitting its corresponding symbol on the channel for a predefined time interval, 

known as the symbol interval. The symbol transmission conveys a unique phase pattern 

that is associated with a specific digital word. The demodulator is able to determine 

which symbol was transmitted by examining the phase characteristics of the received 

signal. Since there is a one-to-one correspondence between transmitted symbols and 

digital words, the receiving side is able to determine which digital word was transmitted. 

 The specification for the FM3TR Waveform requires the use of Minimum Shift 

Keying (MSK) modulation. MSK is a continuous phase modulation technique that uses 

four signals (4-ary) each with a phase difference of 2π [1]. Thus a digital word 
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consisting of 2 bits can be transmitted during the symbol interval bT . The input to the 

MSK modulator consists of a stream of bits. Each bit is delivered to the modulator every 

bT interval and can assume a value of either –1 or 1 (as opposed to 0 or 1). This 

representation allows the receiver to distinguish between the reception of a binary 0 and 

the absence of a signal. The modulator divides its input stream into in-phase and 

quadrature components. The in-phase component, na2 , consists of all of the input’s even 

bits. The quadrature component, 12 +na , consists of all of the input’s odd bits. During each 

symbol interval, the modulator acquires an in-phase and quadrature value from its input.  

These in-phase and quadrature bits are use to produce a modulated signal according to the 

following equation: 

 

( ) ( ) ( )
















−−+








−= ∑∑

−∞=
+

−∞=

N

n
bbTn

N

n
bTn TnTtganTtgats 22 122    (1) 

where ( )tgT equals 

 ( )










 ≤≤

=
otherwise

Tt
T
t

tg b
bT

0

20
2

sin π
  

 

 The phase continuity of an MSK modulated signal, as seen in Equation 1, makes 

this modulation technique difficult to implement.  It can be seen that the maintenance of 

phase continuity requires the storage of all previous input values. This is due to the fact 
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that the instantaneous phase value of the carrier signal is a function of all previous phase 

values. As the length of the transmission grows, the required storage capacity of the 

system will approach infinity. As a result, the MSK modulation scheme in its current 

representation is not practical. We use a representation of MSK modulation that describes 

the modulated signal as a function of the modulator’s instantaneous input value and its 

last calculated phase value. This representation requires that one examine the complex 

envelope of the modulated signal [8].  

 The complex envelope describes the in-phase and quadrature components that are 

used to create the modulated signal. The complex envelope of the signal ( )ts  is  
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Instead of expressing zn as a function of all the modulators previous input values, zn can 

be expressed in terms of the modulator’s instantaneous input value and the last calculated 

value of zn. This is done by using Euler’s notation to express zn as the summation of a 

sine and a cosine as follows: 
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Notice than zn = {-j,j} for even values of N, and zn = {-1,1} for odd values of N. Thus the 

value of zn will change by a factor of ±j each time its value is calculated. The factor by 

which zn changes by is positive if 0≥∑ −∞=

N

l la and negative if 0<∑ −∞=

N

l la . As a result, 

( )
nnn

j
n ajzAez 1

2
−== π  and Equation 2 becomes  

( ) ( )bTnn nTtgajzts −= −1'
       ( 2 ) 

where n is the current bit number ranging from ∞≤≤∞− n . The complex envelope can 

then be applied to the carrier multiplying ( )ts'  and cfje π2 together. The real part of this 

product is the signal that gets transmitted over the airwaves. One can see that MSK 

modulation technique described by Equation 4 only requires the storage of the most 

recent value of zn. This technique allows the MSK modulation scheme to be implemented 

on a platform that contains a finite amount of memory.  

 

3.2.2 Digital Up Conversion 

 

 Digital Up-Conversion is the process by which a complex digital baseband signal 

is converted to a real passband signal. The device that is responsible for this conversion is 
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referred to as a Digital Up-Converter (DUC). In a DUC, the input signal is sampled at a 

relatively low sampling rate, typically Tb, the symbol rate of the digital modulator. The 

baseband signal is filtered and converted to a higher sampling rate before being 

modulated onto the higher frequency carrier.  

Figure 9 shows the architecture of the DUC that was used in our investigation. The 

complex input signals are passed through three stages of filtering, each of which performs 

a sampling change and the associated low pass interpolation filtering . The three filtering 

stages include: 

• Pulse Shaping FIR Filter P(z) provides a sampling rate increase of 2 and 

performs Nyquist pulse shaping. 

• Compensation FIR Filter C(z) provides a sampling rate increase of 2 and 

is used to compensate for the passband distortion of the 3rd stage’s 

cascaded integrator-comb (CIC) filter. 

• Cascaded Integrator-Comb Filter The CIC is used to cause a sampling 

rate increase from 4 to a maximum of 1448. 

The complex output stream of the filtering stages is up-converted to its final frequency 

band by passing the complex output stream through a mixer. The mixer multiplies each 

value of the complex output stream with the appropriate output value of the local 

oscillator.  The sinusoidal signal values that are produced by the local oscillator are 

generated using a Direct Digital Synthesizer (DDS). The outputs are then combined to 

form the final DUC passband result [14]. 
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Figure 9: DUC Core Architecture [14] 

  

 

3.3 Application Overview 

 

 Our application, seen in Figure 10, implements FM3TR modulation and its 

associated digital up conversion using the reconfigurable logic and embedded processors 

contained within a Virtex-II Pro Platform FPGA. Data is place into the initial First In 

First Out (FIFO) Queue 0 via a source that is external to the FPGA, such as a waveform 

encoder. The modulator then pulls the data out of the FIFO 0 and performs MSK 

modulation. The signal values that result from the modulation are pushed into FIFO 1. 
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The DUC pulls the modulated signal values out of FIFO 1 and converts them to a real 

passband signal. Finally, the DUC pushes the real passband signal into FIFO 2. The data 

can then be used to drive the inputs of a device external to the  FPGA, such as a digital-

to-analog converter. 

 

Figure 10: FM3TR Application Architecture 

 

3.4 Data Formatting and Storage 

 

 In our experimental setup, the data samples that feed the input to our FM3TR 

modulator are generated using a MATLAB script. The script produces an array of 
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numbers that can assume the value of either -1 or 1. The input samples are represented as 

8-bit two’s complement values which are stored on the PowerPC405 using the char type. 

The input samples are packed into 32-bit words prior to being stored in BlockRAMs. 

This allows 4 sample values to be stored in each location in BlockRAMs.  In our 

experiments, the bitstream used to configure the FPGA contains the information 

necessary to initialize the appropriate BlockRAMs with the correct input sample values. 

As a result, the loading of the input sample values into the FPGA’s BlockRAMs is 

implicit with the configurations of the FPGA.  

 The output values of the modulator are represented using 16-bit two’s 

complement values with a 15-bit fractional part. These values are represented on the 

PowerPC405 using the short type. 

 

3.4.1 Calculation and Storage of Pulse Values  

 

The calculation of the sinusoidal pulse that is used to modulate the incoming data 

samples is performed according to the following equation: 
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where Tb equals the reciprocal of the modulation. The modulation rate is mandated by the 

FM3TR specification to be 25,000 symbols per second. The number of samples per 

symbol is chosen as 4 for this application. 
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 The values of the sinusoidal pulse are specific to the modulation parameters of a 

specific implementation and only need to be re-calculated if those parameters change. 

The same pulse values will be used in all subsequent implementations of the FM3TR 

Application. As a result, we initialize the pulse values during the configuration of the 

FPGA on all implementations. 

 

3.5 Asynchronous First-In-First-Out Queues  

 

Applications that use the embedded processor often clock the reconfigurable logic 

and the processor core at different rates. In addition, the execution time of any given 

software application can differ between successive executions as a consequence of traffic 

on the PLB and OPB, software interrupts, etc. This makes synchronous data transfers 

between the processor’s memory and other logic entities difficult. As a result, we use 

asynchronous FIFOs to mediate connections between the processor’s memory and the 

surrounding logic 

Asynchronous FIFO’s can be implemented using the Virtex-II Pro’s dual-ported 

BlockRAM [18]. The entity that produces data writes the data into the BlockRAMs 

through the appropriate port. The entity that consumes data reads the contents of the 

BlockRAMs through the appropriate port. Additional logic is needed to maintain flags 

that will tell either entity when the FIFO is full, empty, etc. The independence between 

the two ports of the BlockRAMs allows data to be produced and consumed at different 
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clock rates. This can be seen in Figure 11. Data that is pushed into the FIFO will be 

presented on the output port of the FIFO after N clock cycles. Notice that in this example 

the rate at which data is being pushed into the FIFO is less than the rate at which data is 

being pulled from the FIFO. This corresponds to a consumption rate that is higher than 

the production rate. Eventually the FIFO will empty, making any additional data that gets 

consumed invalid. To avoid this situation, asynchronous FIFOs have FULL and EMPTY 

flags. If the FIFO’s FULL flag is asserted, the producer will know that the FIFO cannot 

accept any additional data. The producer will then respond appropriately. Similarly, if the 

FIFO’s EMPTY flag is asserted, the consumer will know that the FIFO has no additional 

data to present. The consumer will then respond appropriately. This description of the 

Asynchronous FIFO is based on an ideal model. The actual Asynchronous FIFO 

implementations that exist within our implementation differ in their use of memory and 

handshaking.  

 

 

Figure 11: Asynchronous FIFO Example 

 

 Our application uses three Asynchronous FIFOs. FIFO 0, seen in Figure 10, 

mediates transfer of data between the application’s data source and the modulator that is 
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running on the PowerPC405. In a production version of this application, this source 

would most likely be a waveform encoder. However, this investigation focuses solely on 

the modulation and up-conversion stages of waveform processing. In our experiments, 

this FIFO is modeled using BlockRAMs. The contents of the BlockRAMs  are initialized 

with the appropriate sample values at the time of configuration. The initialized values are 

representative of the sample values that would be produced by an FM3TR encoder. The 

values are stored as 8-bit 2’s compliment numbers.  As a result, no handshaking is 

required for this FIFO. 

 FIFO 1, seen in Figure 2, mediates the transfer of symbols between the modulator 

and the DUC. FIFO 1 exists because of the possibility that the modulator and the DUC 

could produce and consume symbols at different rates. FIFO 1 is implemented by 

connecting one of the processor’s memory interfaces to port A of FIFO 1’s BlockRAMs. 

The software executing on the PPC writes symbols into FIFO 1 through the appropriate 

interface. When all symbols have been written to BlockRAMs, the DUC is signaled to 

begin processing. 

 The DUC is connected to Port B of FIFO 1’s BlockRAMs through an interface 

that we designed. In its initial state, the memory interface continuously polls a specific 

location in this BlockRAMs. When the value that is stored at this location changes to the 

appropriate value, the memory interface begins presenting the DUC with valid data. 

 FIFO 2 is implemented using a customized memory interface and BlockRAMs. In 

its initial state, the memory interface waits for the qualification of the first DUC output 
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value. This qualification tells the memory interface that the DUC’s output data is valid. 

Once this initial qualification has occurred, the interface continually writes qualified 

output values to the BlockRAMs on successive ticks of the clock. This continues until the 

DUC begins presenting unqualified output values or the storage capacity of the 

BlockRAMs is reached. 

 

3.6 The FM3TR Modulator Implementation 

 

 The FM3TR modulator is implemented in software using the embedded PowerPC 

processor that is contained within the Virtex II-Pro FPGA. The functionality of the 

FM3TR modulator is described using the C Programming language. This description is 

then compiled by a GNU C compiler and the resulting code is downloaded into the 

BlockRAMs of the FPGA. This compiled code can then be executed on the embedded 

processor.  

 The FM3TR modulator is implemented using the three-state state machine seen in 

Figure 12. In its initial state, the modulator presents the initial pulse values on the output 

of the modulator. This pulse serves as the reference point, allowing the phase difference 

between the initial pulse and subsequent pulses to be known. After the presentation of the 

initial pulse values, the modulator waits to be signaled to advance into the next state. In a 

production implementation of this application, this signal would be generated by some 

entity that is controlling then processing for the entire radio. Since this entity does not 
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exist in our implementations, this signal value is mapped to a specific location in 

BlockRAMs. The BlockRAMs location value is initialized at the time of configuration to 

the value that will initiate the state change. This initialization will cause the modulator to 

advance into the wait state immediately following the presentation of the initial pulse 

value. 

 

Figure 12: FM3TR Modulator State Machine 

 
While in the wait state, the modulator waits for input samples to become 

available. Once this occurs, the modulator advances into its run state. 

Upon entering its run state, the modulator begins modulating the input samples. 

Two samples are removed from FIFO 0 once every 2Tb intervals. Input samples removed 

from FIFO 0 during even multiples of Tb are used in the creation of the in-phase 
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component of the output signal. Input samples removed from the FIFO during odd 

multiples of Tb are used in the creation of the quadrature component of the output signal. 

Each sample value is mapped to a positive or negative pulse. The sign of the pulse  

depends on whether the current input sample value causes a positive or negative phase 

change on the output of the modulator. The transmission of a single pulse requires that 9 

output sample values be communicated through the appropriate modulator output in a 

time period equal to 2Tb, or 4 samples per symbol interval.  

After processing of the sample window is complete, the modulator returns to its 

wait state where it waits for new data to become available. This process repeats itself 

until the user terminates the application.  

 

3.7 The Digital Up-Converter Implementation 

 

 The implementation of the Digital Up-Converter is provided by v1.4 of the 

Digital Up-Converter IP Core from Xilinx. This core is made available through v6.3 of 

Xilinx’s System Generator (SysGen) software. The SysGen software allows the DUC to 

be parameterized using MathWork’s Simulink Environment. The core is then translated 

into a VHDL description by the SysGen software. All parameters that are set in the 

Simulink environment are maintained through the translation process. Once translation is 

complete, the core is then instantiated in the design.  
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Symbol values are read out of FIFO 1 and presented to the in-phase and 

quadrature inputs of the DUC for processing. When processing is complete, qualified 

values of the passband signal will appear on the output of the DUC on successive clock 

cycles. The values that appear on the output of the DUC are pushed into FIFO 2.  

 

3.8 Experiments 

 

 Section 3.7 presented the reader with a logical explanation of our FM3TR 

Waveform Application. Section 3.8 explains the application’s implementations at the 

physical level. Factors that effect the physical level implementation include 

simplifications that can be made as a result of this being a controlled experiment and the 

FPGA’s board environments.  

 

3.8.1  Simplifications 

 

 Implementations of the FM3TR Waveform Application are intended to serve as a 

vehicle for the study of the various interfaces that enable communication between the 

PowerPC and the FPGA’s reconfigurable elements. As a result, simplifications were 

made to reduce the complexity of our implementations’ design. Although they are valid 

for the purpose of our investigations, the simplifications could not be made if any of our 

implementations were to be deployed in production systems. 
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 Any implementation that is intended for use in a SDR environment should be 

capable of stream based processing. In its current form, our application is not capable of 

processing in stream-based environments. Implementations that implement applications 

that are representative of the FM3TR Wave Application organize the incoming data 

stream into successive windows of samples. These windows are then operated on 

sequentially by a single processor, or concurrently by multiple processors. The windows 

of data are then organized back into a single stream of data once processing is complete. 

It should be noted that in order for this type of processing to work, the processing entities 

must be able to accept data from their input and present data to their output at rates 

consistent with those in the application specifications.  

In their current forms, our implementations are only capable of processing the 

initial window of the stream based processing technique described by the previous 

paragraph. It was determined that the processing of the initial window was sufficient for 

our study. The ability to process successive sample windows after the initial sample 

window would need to be incorporated into our implementations before they could be 

deployed in production systems. 

 The FIFOs used in our implementations behave differently at the physical level 

then those described in Section 3.4. The FIFO implementations described in Section 3.4 

maintain pointers to the newest and the oldest elements in the FIFO. These pointers are 

called PTR_LAST, and PTR_FIRST respectively. When the consuming entity asks the 

FIFO for the next element, the FIFO will present the element that is pointed to by 
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PTR_LAST. PTR_LAST is then incremented and now points to the second oldest point 

in the FIFO. Similarly, when the producing entity wishes to add an element to the FIFO 

the element is stored in the location pointed to by PTR_NEW. PTR_NEW is then 

incremented. When PTR_NEW= PTR_LAST, the EMPTY flag is asserted and the FIFO 

is considered EMPTY. When PTR_NEW = PTR_LAST – 1 the FULL flag is asserted 

and the FIFO is considered EMPTY. If either pointer equals the last address managed by 

the BRAM providing the FIFO implementation, the next incrementation of that pointer 

will cause the pointer to wrap around to the first address of the BRAM. The management 

of these pointers and status flags is performed by the FIFO’s control logic. 

 In our implementations, the FIFOs’ control logic is different. The window of 

samples that are operated on fit entirely in one BRAM module. As a result, the control 

logic needed to implement the circular buffer and generate the status flags does not exist. 

 

3.8.2 Implementation Platform  

 

 This application was implemented using a ML310 Development Board from 

Xilinx. The ML310 contains a single Virtex-II Pro P30 FPGA device. The limitations of 

the ML310 that were most influential in the design of our application was the lack of 

board I/O, inability to create a shared memory space between the FPGA and a host 

computer, and the existence of a single non-programmable  oscillator.  
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 In a production version of this implementation, data would need to be streamed 

into and out of the FPGA. Without the purchasing of additional equipment, the ML310 

development board cannot support input or output from any external I/O source or sink. 

As a result, any data that is to be processed must be loaded into the FPGA during the time 

of configuration. Once the data has been processed, it is stored in BlockRAMs. The data 

can then be transferred to a PC for verification through a RS232 connection. These 

limitations make it difficult to support the stream-based environment that is required for 

FM3TR Waveform Processing. As a result, our implementation can only process a 

relatively small amount of data at a time. 

 The inability to create a shared memory space between a host computer and the 

FPGA can make development difficult. The presence of a shared memory space between 

a host machine and the FPGA would facilitate the transfer of processed data back to the 

host machine for verification. Since this shared memory space does not exist the transfer 

is performed using the FPGA’s Universal Asynchronous Receiver Transmitter (UART). 

Using the UART requires use of the Virtex-II Pro’s second PowerPC processor, a second 

PLB instance, additional BlockRAMs, and an OPB instance. Although the use of these 

additional resources may have negatively impacted the performance of this application, 

they are necessary in order to overcome the limitations of the ML310 development board. 

 The ML310 Development Board contains a single 100 MHz on board oscillator. 

This oscillator is not programmable. Since the Digital Up-Converter Core is dependent 

on the frequency of the clock, the existence of a single non-programmable clock heavily 
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influenced our implementations. The output rate of the DUC’s output data is the product 

of the output rates of its Pulse Shaping Filter, Compensation Filter, and Cascaded-

Integrator Comb Filter. The Pulse Shaping Filter and the Compensation Filter each 

increase the data rate of the DUC by a factor of 2. The Cascaded-Integrator Comb Filter 

increases the data rate further by a factor of R, where R can range from 4 to 1448 

depending on the requirements of the implementation. Thus the total data rate increase of 

the DUC is equal to 4R. 

 A requirement of the DUC is that its clock pin must be driven at a rate that is 

greater than or equal to 4R. Since the frequency of our clock is fixed, the range of values 

that R can assume is limited. In our implementations R is set to 4, making the total rate 

change of the DUC equal to 16. 

 The rate at which data enters the DUC is a fraction of the rate of date leaving the 

DUC. Since FIFO 1 is responsible for presenting data to the DUC, its interface to the 

DUC must be clocked at the rate at which the DUC is accepting data. Since only one 

clock exists, a second clock had to be synthesized. This was done using one of the Virtex-

II Pro’s Digital Clock Managers (DCM). The new clock oscillates at one-sixteenth the 

rate of the ML310’s onboard oscillator’s .By clocking FIFO 1’s interface to the DUC at 

6.25 MHz, we were able to deliver the modulated samples to the DUC at the appropriate 

rate.  
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3.8.3 Objectives 

 

 The goal of any real time application implementation is the provision of interfaces 

between data intensive processing modules that supply seemingly infinite bandwidth and 

consume no device resources. Of course this goal is unachievable. The reality is that 

higher bandwidth interfaces consume more device resources than lower bandwidth 

interfaces. An interface design that enables communication between two data intensive 

processing modules is a trade off between bandwidth, resource consumption, and 

development time. 

 The purpose of our application is to serve as a vehicle for the study of the 

interfaces that enable communication between the PowerPC and the surrounding FPGA 

logic, as well as factors that can affect the performance of these interfaces. Earlier 

sections describe the interfaces in terms of their functionality and the types of data that 

they are capable of moving. Using our application, we created an experimental setup that 

allows us to observe the performance of each interface, and the effects that the interfaces 

have on each other. This experimental setup consists of multiple implementations of the 

same application. Each instance differs in the mechanisms that are used to transfer data 

between the processing components (i.e. the modulator and the digital-up-converter). . 

 The first step is identifying the areas in our design where efficient communication 

between the PowerPC and the FPGA’s logic is critical. In our application, there is at least 

one interface that exchanges data between the PowerPC and the surrounding logic. This 
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interface is responsible for presenting data to the digital up-converter input at an 

appropriate rate. Depending on the implementation, the potential exists for other 

interfaces to play a critical role in the performance of this type of application.  

 The data transfer between the modulator and the DUC occurs when the DUC 

pulls modulated signal values from FIFO 1, as described in earlier sections. The 

BlockRAMs that implement FIFO 1 have the ability to be connected to either the 

PowerPC405’s OCM or PLB interface. BlockRAMs that are connected to the 

PowerPC405 through the PLB interface can reside on either the PLB or the OPB. Our 

experiment includes three different implementations that implement FIFO 1 using 

BlockRAMs that have been connected to the processor through the DSOCM, PLB, or 

OPB. With these implementations, we are able to compare these interfaces in terms of 

available bandwidth, resource consumption, and development complexity.  

 The interface mechanism is not the only design choice that affects the 

performance of the data transfer between the modulator and the DUC. In addition to 

having access to a sufficient amount of memory for the storage of both the modulated and 

unmodulated data, the PowerPC405 must also be able to store the instructions that are 

performing the modulation. Furthermore, the processor requires use of a stack and/or a 

heap to maintain the state of the processor, as well as to accommodate potential memory 

allocations. The maintenance of these data structures results in the consumption of 

additional memory beyond what is needed for the storage of both data and instruction. 

The allocation of memory for instruction storage and the maintenance of the stack and/or 
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heap can impact the performance of the interface that is communicating signal values to 

FIFO 1. This performance impact occurs when the modulated data is communicated to 

FIFO 1 through an interface that is being used for instruction fetches, stack/heap 

management, or both. This scenario exists when the PLB interface has been configured to 

communicate instruction and data over the same bus. If the situation were to arise where 

both instruction and data need to be communicated at the same time, the processor would 

stall. This stall results from the fact the either data or instruction can be communicated 

through the shared interface at any given instance in time, but not both. As a result, the 

PLB arbiter executes requests for transfers of both instructions and data sequentially. 

This forces the processor to wait until both requests are executed.  

 We now describe the implementations that have been developed to enable the 

comparison of the various interfaces to the PowerPC405. Each implements the FM3TR 

Waveform Processing Application. The differences in the implementations are the 

mechanisms that are used to communicate information between the processor and the 

FPGA’s reprogrammable resources. 

 

3.8.4 Implementation Class 1 

 

 Implementation class 1 uses the processor’s OCM interface to communicate 

modulated data to BlockRAM. Data samples and processor instructions are loaded into 

the appropriate memory at the time of configuration. The data samples are read from 
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DSOCM by the PowerPC405 and modulated according to the instructions being stored in 

instruction-side memory. After modulation, the data is written back into the DSOCM. 

The DUC removes the modulated signal values from Port B of the DSOCM beginning 

with the first value written to DSOCM and proceeding in succession from there on. The 

modulated signal is processed by the DUC and pushed into FIFO 2. 

 Implementation class 1 contains three implementations, a, b and c, seen in Figures 

13 and 14. Implementations a, b, and c use the same memory to store the applications’ 

instructions and the modulated data. The difference between the three implementations is 

the storage locations of the program data that is responsible for maintaining the 

processor’s stack and heap. Implementation subclass 1.b stores the stack/heap data in 

OCM BRAM. Implementation subclass 1.a store the stack/heap data in PLB BRAM. 

Implementation 1.c is identical to 1.a except that the cache is enabled in 1.c, but not in 

1.a. 

 A performance analysis of implementation subclass 1.b will demonstrate the 

performance that one can expect from an application that runs completely out of OCM 

BRAM. A performance analysis of implementation class subclass 1.a and 1.c will 

demonstrate how the relocation of the program data can affect the performance of an 

application.  
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Figure 13 : Architecture Overview for Implementation Subclass 1.a and 1.c 

 

 
Figure 14 : Architecture Overview for Implementation Subclass 1.b 

 
 

 



 

79  

3.8.5 Implementation Class 2 

 

 Implementation class 2 uses the PLB to transfer data between the modulator and 

FIFO 1. Data samples and instructions are loaded into the appropriate on-chip memory at 

the time of configuration. The modulator removes the sample values from DSOCM and 

performs the modulation. The sample values of the modulated signal are pushed into 

FIFO 1 through the PLB interface. The DUC removes the modulated signal values from 

FIFO 1 beginning with the first value written and proceeds in succession from there on. 

The modulated signal is processed by the DUC and pushed into FIFO 2. 

 Implementation class 2 contains 6 implementations. Implementation 2.a, shown in 

Figure 15, stores its program data in DSOCM BRAM. Implementation 2.b, shown in 

Figure 16, stores its program data in PLB BRAM. Instructions and program data for both 

implementations are stored in ISOCM BRAM and PLB BRAM respectively.  
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Figure 15 : Architecture Overview for Subclasses 2.a 

 

Figure 16 : Architecture Overview for Subclass 2.b 

  

 Implementations 2.c, 2.d, 2.e, and 2.f, seen in Figure 17, demonstrate the 

performance consequences of storing both data and instruction in PLB BRAM. The 

sharing of a single PLB between multiple memories will cause contention if the processor 
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attempts to communicate data and instruction over the PLB at the same time. This 

contention will need to be resolved by the PLB arbiter before either communication can 

proceed. Use of the processor’s cache can be used to speed up the performance of these 

implementations. By enabling the cache, communication over the PLB can be reduced 

significantly. This communication reduction is dependent on the locality of the data 

stored in PLB BRAM. 

 

Figure 17 : Architecture Overview For Subclasses 2.c, 2.d, 2.e, and 2.f 

 

3.8.6 Implementation Class 3 

  

 Implementation class 3 demonstrates the performance of the application when the 

modulated data is communicated to memory over the OPB. Data samples and instructions 

are loaded into the appropriate on-chip memory at the time of configuration. The 
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modulator removes the sample values from either PLB or ISOC BRAM and performs the 

modulation. The sample values of the modulated signal are pushed into FIFO 1 through 

the PLB interface. The PLB/OPB recognizes that the destination address of the 

modulated data and generates the appropriate transaction on the OPB. The DUC removes 

the modulated signal values from FIFO 1 beginning with the first value written and 

proceeds in succession from there on. The modulated signal is processed by the DUC and 

pushed into FIFO 2.  

 Implementation 3.a, shown in Figure 18, stores the processors instructions in 

ISOCM BRAM, the program data in DSOCM BRAM, and the modulated data in OPB 

BRAM.  

 Implementations 3.b and 3.c, shown in Figure 19, demonstrates the consequences 

of sharing the PLB, while communicating modulated data over the OPB. In 

Implementation 3.a, all of the memories are connected to separate interfaces, allowing for 

concurrent memory transfer. This is the best possible scenario given the implementation 

specification requiring the modulated data to be communicated over the OPB. The 

moving of instruction storage to the PLB in Implementation 3.b will create contention for 

the PLB bus. This contention is resolved in Implementation 3.c by enabling the i-cache. 
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Figure 18 : Architecture Overview of Implementation 3.a 

 
Figure 19 : Architecture Overview of Implementation 3.b and 3.c 

3.9 Summary 

 

This chapter begins with an explanation of FM3TR modulation and digital up-

conversion. We then give an overview of our FM3TR application including the software 

implementation of our FM3TR modulator and the hardware implementation of the digital 
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up-converter.  Finally we describe several implementations of our FM3TR application 

used to study the various interfaces that enable communication between the PowerPC405 

and the surrounding FPGA fabric on a Xilinx Virtex-II Pro. 



 

85  

 

Chapter 4 

Experimental Results 

 In this chapter we describe the results of this investigation. We begin by 

describing the technique that was used to measure the performance of our 

implementations. Next we present the performance results for each implementation that 

was discussed in Chapter 3. Finally we analyze the similarities and differences between 

the performance results for each implementation. 

. 

4.1 The Programmable Interval Timer (PIT) 

 

 Performance measurements are made for each implementation using the 

PowerPC405’s Programmable Interval Time. This timer is controlled by various software 

instructions that are executed on the PowerPC. Physically, the timer is a 32-bit register 

that is incremented synchronously with the PowerPC’s clock. A software task can be 

timed by initializing the timer with a value of 0, executing the software task, and then 

reading the value of the timer. This value will indicate the number of clock cycles that 

have elapsed since the timer was initialized to a zero value. The product of the timer’s 

values and clock period is the execution time of the software task. 
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 An implementation’s performance is measured in terms of the time it takes for the 

implementation’s modulation code to execute on the PowerPC processor. The 

computations that are performed within the modulation code are identical among the 

implementations. The only difference is the technique used to enable communications 

between the processor and the surrounding FPGA fabric.  

The modulation code’s execution time is measured by resetting the Programmable 

Interval Timer (PIT) to 0, executing the modulation code, and then reading the value of 

the PIT. The value of the PIT after the modulation code executes indicates the number of 

clock cycles that elapsed during the modulation.  

 Using the PIT to measure the execution time of the implementations effects the 

actual timing measurement. The discrepancy is due to the clock cycles that are consumed 

in the reading of the PIT register value. The number of clock cycles consumed by this 

operation is on the order of several cycles. Since the application’s cycle consumption is 

on the order of several thousand clock cycles, the error introduced by this timing method 

is negligible. Furthermore, since each execution is timed using the same technique, a 

relative comparison of all the implementations need not consider the performance 

penalties of the timing technique provided that the penalties incurred in each execution 

are identical.  
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4.2 Implementation Results 

 

 Once the clock cycle consumption of each implementation is measured, they are 

compared to one another. Since the computation in each implementation is identical, 

differences in execution cycles are attributed to the performance differences of the 

PowerPC’s interfaces. By comparing the execution cycles that are consumed by each 

implementation, we are able to determine which interfacing techniques work best. Tables 

8 and 9 show the results that were obtained from each of the implementations. Table 8 

shows the how each implementation’s memory is organized. Table 9 gives the 

performance results for the implementations of Table 8. It should be note that since the 

OCM interface is a non-cacheable interface, the enabling or disabling of the cache effects 

the PLB interface only. 

The values in the column titled Computation Cycles are obtained by measuring 

the number of clock cycles consumed by the execution of a modulation code version that 

does not save the result of each computation to memory. The values in the column titled 

Total Cycles are obtained by measuring the number of clock cycles consumed by the 

execution of a modulation code version that saves the result of each computation to 

memory. The values of the Communication Cycles are the difference between the values 

in the Total Cycles column and the Computation Cycles column. It should be noted that 

the values in the Communication Cycles column do not reflect the communication costs 

associated with instruction fetches. The values indicate the number of clock cycles 
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required to communicate the modulated data to memory. Instruction transfers are 

required for computation and thus are reflected by the values in the Computational 

Cycles column. Differences in the number of computational cycles between 

implementations are due to differences in instruction fetch times. 

 

 

 

 

Table  9 : Implementation Configurations 

Implementation Instruction 
Location Stack/Heap Application Data I-Cache D-Cache 

1.a ISOCM DPLB BRAM DSOCM N/A DISABLED 
1.b ISOCM DSOCM DSOCM N/A N/A 
1.c ISOCM DPLB BRAM DSOCM N/A ENABLED 
2.a ISOCM DSOCM DPLB BRAM N/A ENABLED 
2.b ISOCM DPLB BRAM DPLB BRAM N/A ENABLED 
2.c IPLB BRAM DSOCM DPLB BRAM DISABLED DISABLED 
2.d IPLB BRAM DSOCM DPLB BRAM DISABLED ENABLED 
2.e IPLB BRAM DSOCM DPLB BRAM ENABLED DISABLED 
2.f IPLB BRAM DSOCM DPLB BRAM ENABLED ENABLED 
3.a ISOCM DSOCM OPB BRAM DISABLED DISABLED 
3.b IPLB BRAM DSOCM OPB BRAM DISABLED DISABLED 
3.c IPLB BRAM DSOCM OPB BRAM ENABLED DISABLED 
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Table 7 : Implementation Performance Results 

Implementation Computation 
Cycles 

Communication 
Cycles Total Cycles

1.a 7828 20566 28394 
1.b 7818 13468 21286 
1.c 7816 13462 21278 
2.a 8430 17752 26182 
2.b 8430 27716 36146 
2.c 16638 36887 53525 
2.d 15561 40400 55961 
2.e 6519 17659 24178 
2.f 6519 17742 24261 
3.a 7779 29225 37004 
3.b 17891 46238 64129 
3.c 16766 21312 38078 

 

4.3 Analysis of Results 

 

4.3.1 The OCM Interface Analysis 

 The results show that communicating to the fabric through the processors On-

Chip Memory (OCM) interfaces delivers the highest performance. This is illustrated by 

implementation 1.b, which communicates both instruction and data through the 

processor’s OCM interfaces. This implementation executes the entire processor 

application in under 23000 clock cycles. This is comparable to implementation 1.c, which  

executes in approximately the same amount of time using PLB BRAM to maintain the 

processor’s stack and heap. However, the performance delivered by 1.c is dependent on 

the processor’s ability to use its internal cache. When the cache is disabled, the processor 
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must use the fabric of the FPGA to communicate with   PLB BRAM. The need for this 

communication is the reason why implementation 1.a’s performance is poor when 

compared to 1.b and 1.c. When compared to other implementations of the same class, the 

results of implementations 2.a and 3.a are consistent with the results described in the 

analysis of Implementation Class 1. This leads us to conclude that the OCM interface 

provides the fastest communications between the processor and the fabric. 

It is interesting to note that the communication performance of a cache enabled 

PLB interface is comparable to the performance of the OCM interface. This observation 

may depend on the fact that the cache is capable of storing all of the data communicated 

through the PLB interface. If the size of the stored data is larger than the cache, the need 

to fetch data from BRAM may widen the performance gap between the OCM and the 

cache enabled PLB interface. Furthermore, if the locality of the data that is being 

communicated through the PLB interface is poor, the cache will not be of any use.  

  

4.3.2  The PLB Interface Analysis 

 

4.3.2.1 The Processor Local Bus 

The results indicate that using the PowerPC’s cache appropriately can drastically 

improve the performance of implementations that use the Processor Local Bus (PLB) 

interface to communicate to the FPGA’s fabric. Implementations that illustrate this fact 
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include 2.c, 2.d, 2.e, 2.f, 3.b, and 3.c. When we compare implementations 2.c, 2.d, 2.e, 

and 2.f to each other we see that the enabling of the I-Cache results in a reduction in 

execution time by more than 50%. Before the enabling of the I-Cache in 2.e and 2.f, the 

IPLB and the DPLB were fighting for control of the PLB. Enabling the I-Cache allows 

for the instructions to be fetched almost exclusively form the processor cache. This 

increases the performance of the application. Furthermore, the investigations in [21] 

show that using a cache enabled PLB interface to communicate data to the fabric 

consumes 5 times less power than an equivalent implementation that uses a PLB interface 

with the cache disabled, and 3 times less power than an implementation that uses the 

OCM interface. Though this analysis was done using a slightly different application, it is 

evident that using the cache to reduce communication over the FPGA fabric can result in 

a substantial power savings.  

 Performance improvements that result from the I-Cache are a consequence of the 

instruction’s temporal locality. Temporal locality is a consequence of the frequent 

execution of one instruction within a given window of instruction code. The modulation 

code executes a loop that maps each input sample to a pulse. Since the instructions of 

successive loop iterations are identical, the execution frequency of the instructions that 

exist within the loop are high. Furthermore, all of the instructions that execute within the 

loop can fit inside the I-Cache. If the loop code did not fit entirely in the cache, each loop 

iteration will result in several cache misses. These cache misses cause the application’s 
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performance to suffer. In our implementations the PowerPC can take advantage of 

temporal locality, but not spatial locality. 

 Spatial locality is a consequence of the fact that instructions are stored 

contiguously in memory. A cache can take advantage of spatial locality by loading the 

values of several contiguous memory locations into the cache each time a cache miss 

occurs. Since instructions are stored contiguously, the probability of the next instruction 

fetch resulting in a cache hit is high. Although the processors instructions exhibit spatial 

locality, the processor is configured by default to only load one word per cache miss. 

However, the user can change this cache policy so that up to eight words can be loaded 

into the cache each time the cache misses. We chose to allow the cache to follow its 

default policy of loading one word per cache miss.  

Implementations 2.d and 2.f are instances where use of the PowerPC’s cache can 

hurt. When compared to implementations 2.c and 2.e, it can be seen the enabling of the 

data-side cache hurts the performance of the implementations. This drop in performance 

is a consequence of the processor’s efforts to maintain cache coherency. An input sample, 

and the values of the modulated signal produced as a result of the input sample, plays no 

part in future computations. As a result, it can be said that the application’s data exhibits 

poor temporal locality. This poor locality makes the performance costs from having to 

write data to the cache and to the BRAM greater than any performance gain that results 

from the enabling of the cache.  It should be noted that the application’s data does exhibit 
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spatial locality. However, our implementations configure the PowerPC to take advantage 

of temporal locality, but not spatial locality.  

 In addition to data locality, another factor that makes maintaining cache 

coherency difficult is the fact that PLB BRAM can be shared between the processor and 

the logic. In instances where the processor communicates data to logic via PLB BRAM, 

the possibility exists that the data in the PLB BRAM is inconsistent with the data in the 

cache. A similar scenario exists when logic communicates data to the processor via the 

PLB BRAM. When logic writes data into PLB BRAM it may create an inconsistency 

with the values that are currently stored in the processors’ cache. To resolve these 

inconsistencies and still make use of the D-Cache, the processor’s cache should be 

flushed before the communication between the processor and the logic occurs.  

 Our experiments show that the D-Cache should be disabled in streaming 

applications that used the PLB BRAM to store application data. Configurations that use 

PLB BRAM to store the application’s stack/heap can benefit from enabling the D-Cache. 

This can be seen in a comparison of implementations 1.a and 1.c. Both implementations 

are identical except that 1.a executes the application with the D-Cache disabled, while 1.c 

executes the application with the cache enabled. It can be seen that the enabling of the D-

Cache reduces the execution time by approximately 7000 cycles. This suggests that 

spatial locality of the program data is sufficient to make its placement in cacheable 

memory beneficial to the performance of the application.  
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4.3.2.2 The On-Chip Peripheral Bus 

 Our experiments show that the On-Chip Peripheral Bus (OPB) is capable of 

offering reasonable performance when there are no devices that have to fight for control 

of the PLB. Implementations 3.a and 3.c indicate scenarios where the OPB offers 

performance that is comparable to the PLB. However, neither implementation execution 

suffers from bus contention. In 3.a, all data except for the application’s data is store in 

OCM BRAM. As a result, traffic appearing on the PLB and the OPB is always destined 

for OPB BRAM. In implementation 3.c, the instruction data has been moved to PLB 

BRAM. However, implementation 3.c’s enabling of the cache nearly eliminates any 

traffic on the PLB related to the communication of processor instructions. This is a 

consequence of the fact that all of the processor’s instructions are capable of fitting inside 

the PowerPC’s cache. Since the I-Cache is capable of retaining all of the processor’s 

instructions, the need to fetch instructions over the PLB does not exist.  

 Implementation 3.b is identical to 3.c except for the instruction cache in 3.b being 

disabled. This disabling of the cache forces both the processor instruction and 

application’s data to be fetched through the PLB interface of the processor. This creates 

contention on the PLB, drastically lowering the performance of the design.  

  Using the results of the execution of Implementation Class 3, we conclude that 

the performance OPB is reasonable provided that contention for the PLB is minimized. In 
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general , the PLB should be used to communicate data to and from the processor. Devices 

that only support OPB interfaces can be used with the OPB and still be expected to 

deliver reasonable performance.  However, as contention over the buses increases, the 

performance of the application will drop considerably.  

 

4.4 Summary 

 

 In this chapter we presented the performance results for all of our 

implementations. It can be seen that the OCM interfaces provide the fastest 

communication with the fabric. The PLB provides comparable performance to the OCM 

when the cache is enabled and the locality of the data is good. We also saw the using the 

PLB to service multiple peripherals lowers the performance of the interface. This 

performance hit can be reduced through use of the cache. Finally, we saw that the OPB 

delivers reasonable performance when the traffic on the PLB bus is low. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusion 

 The emergence of FPGA architectures that contain embedded processor leaves 

many designers with questions of how to use the various memories that exist within an 

embedded processor system efficiently. In this investigation we used a FM3TR 

Waveform application to provide a vehicle for the use of investigating the various 

interfaces between the FPGA and the processor. The results can be used to guide future 

applications that have similar data attributes. 

 This investigation shows that the performance of an application that uses the 

Virtex-II Pro’s embedded processor is affected by the types of interfaces that are chosen 

to communicate data between the processor and the fabric of the FPGA. It was seen that 

the OCM and PLB are both capable of providing high performance if used appropriately. 

Data that requires a high performance interface, but does not exhibit good locality should 

be communicated through the OCM interface. Data that exhibits good locality should be 

communicated through a cache-enabled PLB interface. Application designers that have 

reasons for communicating data with poor locality over the PLB should consider 

disabling the cache to eliminate the overhead associated with the maintenance of cache 

coherency. Communication over OPB delivers reasonable performance provided that the 

number of devices contending over the bus is low.  
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5.2 Future Work 

  

The results of our experiments show that data locality can dramatically increase 

the performance of a given implementation. Our implementations are configured to load 

a single word each time a cache miss occurs. Since the modulator’s input samples are 

stored in contiguous memory locations, loading multiple successive words into the cache 

each time a miss occurs increases the number of future memory accesses that result in 

cache hits. These performance benefits associated with spatial locality have not yet been 

investigated. Future implementations will investigate the performance benefits of 

configuring the PowerPC’s cache to take advantage of spatially local data. 

 This investigation describes the performance of the PowerPC’s interfaces in terms 

of the number of clock cycles required to communicate data from the processor to the 

surrounding FPGA fabric. In future studies of the PowerPC interfaces we hope to study 

the amount of FPGA resources that are consumed by the use of a specific interface. Such 

a study would enable application designers to decide if the performance benefits from 

using a particular interface outweigh the area costs. 

 We have seen that the application data’s lack of temporal locality hurts the 

performance of the application when the cache is enabled. The application data for image 

processing applications exhibit good temporal locality. This is because a single input 

sample contributes to multiple calculations. To explore these benefits, we hope to 

develop an image processing application that makes use of the PowerPC processor.   
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 Finally, the implementations presented in this investigation use the PowerPC to 

modulate data. Alternatively, the modulation could be performed entirely in logic. Such 

an implementation would allow us to compare a processor application with an equivalent 

logic implementation. This would help us determine scenarios in which the use of the 

processor application consumes less of the device’s area than the equivalent logic 

implementation.  
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