

NORTHEASTERN UNIVERSITY

Graduate School of Engineering

Thesis Title: Enabling Communications Between an FPGA’s Embedded Processor and
its Reconfigurable Resources

Author: Joshua Noseworthy

Department: Electrical and Computer Engineering

Approved for Thesis Requirement of the Master of Science Degree

____________________________________ ____________
Thesis Advisor: Prof. Miriam Leeser Date

____________________________________ ____________
Thesis Reader: Prof. Stefano Basagni Date

____________________________________ ____________
Thesis Reader: Sarah Leeper Date

____________________________________ ____________
Thesis Reader: Prof. Xinping Zhu Date

____________________________________ ___________
Department Chair: Prof. Stephen McKnight Date

Graduate School Notified of Acceptance:

____________________________________ ___________
Dean: Prof. Yaman Yener Date

Copy Deposited in Library:

_______________________________ ___________________
Reference Librarian Date

ii

Enabling Communications Between an FPGA’s
Embedded Processor and its Reconfigurable Resources

A Thesis Presented

by

Joshua Noseworthy

to

The Department of Electrical and Computer Engineering

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Electrical Engineering

in the field of

Electrical Engineering

Northeastern University

Boston, Massachusetts

August 2005

iii

Copyright 2005 by Joshua Noseworthy

All Rights Reserved

1

Acknowledgements

 I would like to extend my deepest gratitude and appreciation to my advisor

Professor Miriam Leeser. Her guidance and instruction has played an invaluable part in

both my undergraduate and graduate studies.

 It has been a pleasure to work with my colleagues in the Rapid Prototyping Lab at

Northeastern University. They have provided a friendly, encouraging, and supportive

environment for me to work in.

 I would also like to extend my appreciation to Mercury Computer System for

funding my research. I would like to specifically recognize Graham Bardouleau and

Sarah Leeper for their willingness to answer any questions that I may have had.

 Finally I would like to recognize the best family anyone could ever ask for,

especially my parents Ed and Karen, and girlfriend Jennifer. I could not have done this

without their unconditional love, support, and understanding.

2

Abstract

Increasing device densities allow designers to integrate more functionality onto a single

piece of silicon. Many chip manufactures are using this flexibility to offer complete

solutions that can be integrated onto a single device. FPGA manufacturers, such as Xilinx

and Altera, have introduced FPGA architectures that contain a variety of embedded

processing elements along with the device’s reconfigurable logic. One of the more recent

processing elements that has been introduced by Xilinx is the PowerPC405 hard-core

processor.

 One of the challenging aspects of developing applications that target the PowerPC

is the interfacing of the processor with the surrounding reconfigurable logic. We have

implemented several versions of a FM3TR Waveform Application to exercise the various

interfaces that enable communication between the processor and the surrounding FPGA

fabric. These interfaces can be either shared or dedicated. Shared interfaces enable

communication between the processor and multiple peripherals. Dedicated interfaces

provide dedicated communication links between the processor and a single peripheral.

Dedicated interfaces are less flexible, but can deliver higher performance than shared

interfaces. Our results indicate that the performance of the FM3TR Waveform

Application can be increased by as much as 60% just by choosing the interfaces that is

most appropriate for the implementation. This demonstrates that the performance of

FPGA applications that use the embedded processor are dramatically effected by the

3

mechanisms that are chosen to enable communication between the processor and its

surrounding resources.

4

Contents

Acknowledgements ... 1

Abstract.. 2

Contents ... 4

List of Figures.. 7

List of Tables ... 8

1 Introduction.. 9

2 Background .. 12

2.1 Modern Day Processing Elements .. 12

2.1.1 Field Programmable Gate Arrays.. 13

2.2 System On-Chip.. 16

2.2.1 Communication Architectures for SoC... 17

2.2.2 Shared Interfaces Versus Dedicated Interfaces... 18

2.3 Platform FPGAs.. 19

2.3.1 The PowerPC Processor Block ... 20

2.3.2 The PowerPC Processor Core ... 21

2.3.3 The On-Chip Memory Controller ... 22

5

2.3.4 Interfacing to the Processor Block .. 23

2.3.5 The CoreConnect Architecture.. 23

2.3.6 The On-Chip Memory Interface.. 25

2.3.7 The Software/Hardware Interface ... 27

2.3.8 Processor Centric Versus Logic Centric ... 28

2.4 Software Defined Radios .. 30

2.4.1 The FM3TR Proposed Reference Waveform.. 32

2.5 Related Work .. 33

2.5.1 The Single-chip Gigabit Mixed-version IP Router .. 33

f2.5.2 Software Decelerators.. 36

2.5.3 PLB vs. OCM Comparison Using The Packet Processor System..................... 39

2.5.4 Energy Efficient Synthesis Using Platform FPGAs.. 47

2.5.5 The Novelty of Our Approach .. 48

2.6 Summay .. 51

 Experimental Setup ... 52

3.1 Development Tools.. 52

3.2 The FM3TR Waveform Application .. 54

3.2.1 FM3TR Modulation .. 55

3.2.2 Digital Up-Conversion .. 58

3.3 Application Overview... 60

3.4 Data Formatting and Storage .. 61

3.4.1 Calculation and Storage of Pulse Values .. 62

3.5 Asynchronous First-In-First-Out Queues ... 63

3.6 The FM3TR Modulator Implementation .. 66

3.7 The Digital Up-Converter Implementation... 68

6

3.8 Experiments ... 69

3.8.1 Simplifications .. 69

3.8.2 Implementation Platform... 71

3.8.3 Objectives.. 74

3.8.4 Implementation Class 1... 76

3.8.5 Implementation Class 2... 79

3.8.6 Implementation Class 3... 81

3.9 Summary .. 83

4 Experimental Results .. 85

4.1 The Programmable Interval Timer ... 85

4.2 Implementation Results .. 87

4.3 Analysis of Results .. 89

4.3.1 The OCM Interface Analysis ... 89

4.3.2 The PLB Interface Analysis .. 90

 4.3.2.1 The Processor Local Bus... 90

 4.3.2.2 The On-Chip Peripheral Bus ... 94

4.4 Summary .. 95

5 Conclusion and Future Work ... 96

5.1 Conclusion ... 96

5.2 Future Work .. 97

Bibliography .. 99

7

List of Figures

Figure 1 : Virtex-II Pro Architecture Overview

Figure 2 : Virtex-II Pro Slice Configuration

Figure 3 : Shared Bus Topology

Figure 4 : Processor Block Architecture

Figure 5 : PowerPC Hardware Organization

Figure 6 : Single-chip Gigabit Mixed-version IP Router Prototype A

Figure 7: Single-chip Gigabit Mixed-version IP Router Prototype B

Figure 8: Architecture of Packet Processor Reference System

Figure 9: DUC Core Architecture

Figure 10: FM3TR Application Architecture

Figure 11: Asynchronous FIFO Example

Figure 12: FM3TR Modulator State Machine

Figure 13: Architecture Overview for Implementation Subclass 1.a and 1.c

Figure 14: Architecture Overview for Implementation Subclass 1.b

Figure 15: Architecture Overview for Implementation Subclass 2a

Figure 16: Architecture Overview for Implementation Subclass 2.b

Figure 17: Architecture Overview for Implementation Subclass 2.c, 2.d, 2.e, and 2.f

Figure 18: Architecture Overview for Implementation Subclass 3.a

Figure 19: Architecture Overview for Implementation Subclass 3.b

8

List of Tables

Table 1: Resource Consumption of FSM Logic Implementation

Table 2: Resource Savings Relative to the Equivalent Logic Implementation

Table 3 : Performance Results for Software Implementation of FSMs

Table 4: Packet Processor Reference System Design Details by Case

Table 5: Operating Frequencies of the Packet Processor Test Cases

Table 6: Overall Performance Measurements

Table 7: Data Movement Results for TC2

Table 8: Test Completion Measurement Results

Table 9: Implementation Configurations

Table 10: Implementation Performance Results

9

Chapter 1

Introduction

 Advancements in silicon technologies continually increase the number of

transistors that can be integrated into a single device. Many designers have begun using

this new integration potential to fabricate complete systems on a single silicon fabric.

This new design practice, referred to as System-on-Chip (SoC), aims to integrate multiple

board level components into a single silicon die.

 As SoC architectures continue to receive attention from the embedded systems

community, FPGA manufacturers such as Xilinx are responding with a new generation of

FPGA architectures that contain a variety of embedded resources. One of several

recentadditions to Xilinx’s Virtex family architecture is the embedded PowerPC405 core.

The motivation for the integration of the processor core onto the fabric of the FPGA is

the idea that most FPGAs contained within an embedded system require some level of

interaction with an external processor. Moving this processor into the fabric of the FPGA

eliminates bottlenecks associated with communicating through off-chip interfaces.

 Integrating a general-purpose processor into the fabric of the FPGA eliminates the

need for off-chip interfaces, but creates a need for on-chip interfaces that provide

efficient communication between the processor and the reconfigurable resources. The

existence of such an interface is critical to the successful integration of the processor core

into an FPGA implementation.

10

 In this thesis, we present a study that investigates various mechanisms that

interface the Virtex II Pro’s PowerPC405 with the surrounding FPGA fabric. These

mechanisms utilize the On-Chip Memory (OCM) and the Processor Local Bus (PLB)

interfaces of the PowerPC405. Both of these interfaces enable communication between

the PowerPC405 and its surrounding reconfigurable resources. However, the mechanisms

used by each interface are very different. For instance, the OCM interface provides a

dedicated interface to the surrounding FPGA fabric, while the PLB provides a shared

interface. A dedicated interface provides a higher performance relative to the shared

interface, however, the share interface offers greater flexibility in interfacing peripherals

to the processor. These are the types of tradeoffs that will be the focus of this

investigation.

 The results of the investigation provide an accurate characterization of the

advantages and disadvantages of the interfaces that provide the communication fabric

between the PowerPC405 and the surrounding architecture on a Xilinx Virtex-II Pro

FPGA. To serve as a basis for comparison we present multiple implementations of an

FM3TR waveform application, each using a different interface.

 The outline of the remainder of this thesis is as follows.

 Chapter 2 begins with an introduction to FPGAs and how they compare to other

available technologies. It then gives an introduction to SoC, including the various

mechanisms used to interface entities that exist within SoC architectures.

11

It then describes the extension of SoC into platform FPGAs, specifically, the Virtex-II

Pro FPGA. The reader is then introduced to the concept of Software Defined Radios

(SDRs) and how using SoC architectures can facilitate their development. Finally, a

survey of related work on SoC and the Virtex-II Pro FPGA is presented.

 Chapter 3 begins with a detailed discussion of the FM3TR waveform application.

We then discuss the platform that was used to implement multiple FM3TR waveform

application implementations. Finally, we present the design and performance

expectations of each implementation.

 Chapter 4 presents the performance results of the interfaces that were discussed in

Chapter 3. These performance results are presented in terms of speed, complexity and

resource utilization. The results are then analyzed to determine circumstances that

warrant the use of a particular interface.

 Chapter 5 gives conclusions and suggestions for future work.

12

Chapter 2

Background

This chapter establishes fundamental concepts necessary to understand the focus

of this research. The topics that will be discussed include system on chip, FPGA

technologies, general-purpose processors, on chip communication architectures, and

software defined radios.

2.1 Modern Day Processing Elements

 Modern day engineers have several devices to choose from as the implementation

fabric for their application. These devices can be classified as either general purpose,

application specific hardware, or reconfigurable hardware.

 General-purpose hardware is a term used to describe devices that are capable of

understanding instructions that are issued by a programmer. The hardware contained

within the device is designed to provide moderate performance in a wide range of

applications. A programmer can issue a command to tell the device to perform any one of

its pre-determined instructions at any given time. This type of hardware comes in many

different flavors, some of which are more heavily optimized for specific application

domains. For instance, a general-purpose processor (GPP) is a microprocessor that has

been optimized to offer moderate performance in a wide range of application domains. A

13

digital signal processor (DSP) is a microprocessor that has been optimized to offer better

than moderate performance for a narrow range of digital signal processing applications.

 General-purpose hardware is suitable for a variety of applications. As a result of

this flexibility, general-purpose hardware may fail to provide an implementation platform

that is capable of meeting the system requirements for higher performance applications.

In instances that require the highest performance, designers use application specific

hardware. Application specific hardware usually takes the form of an application specific

integrated circuit (ASIC). ASICs are optimized for high performance with respect to a

specific application. Unlike general-purpose hardware, ASICs can only perform the

specific function they were designed to perform.

 Reconfigurable hardware attempts to couple the performance of ASICs with the

flexibility of general-purpose hardware. The most common type of reconfigurable

hardware uses an array of field programmable gates. These gates can be configured to

perform specific boolean operations. The gates are interconnected through the device’s

reprogrammable interconnect fabric.

2.1.1 Field Programmable Gate Arrays

 Field Programmable Gate Arrays (FPGAs) are integrated circuits that can be

customized by the end user for a specific application. Figure 1 presents a general

architecture overview of Xilinx’s Virtex-II Pro Platform FPGA. The fundamental

14

building block of an FPGA is the configurable logic block (CLB). CLBs are blocks of

logic whose functionality can be changed by reconfiguring the contents of the block

itself. A single CLB contains 4 slices and 2 tri-state buffers. Each slice is identical to the

others slices that are contained within the CLB. A single slice, seen in Figure 2, provides

two function generators, two storage elements, arithmetic logic gates, multiplexers, and

fast carry logic. The function generators may be configured as 4-input look-up tables

(LUTs), as 16-bit shift registers, or as 16-bit distributed SelectRAM+ memory. In

addition, either storage element may be configured as an edge-triggered D-type flip-flop

or a level sensitive latch. Each CLB has its own internal interconnect, as well as the

ability to access general routing resources.

Figure 1: Virtex-II Pro Architecture Overview [20]

15

Although Configurable Logic Blocks remain the fundamental building block of an

FPGA, increasing device densities has allowed manufacturers to integrate additional

heterogeneous resources into their FPGA architectures. Modern FPGA devices, such as

the Virtex-II Pro, contain other reconfigurable elements such as BlockRAMs, multipliers,

and general-purpose processors. Each BlockRAM provides an 18Kb dual-ported

memory structure with two independently clocked and independently controlled

synchronous ports that access a common storage area. Each multiplier element provides

an 18-bit by 18-bit signed multiplier. They are optimized for high speed operations and

Figure 2: Virtex-II Pro Slice Configuration [17]

16

have low power consumption compared to an equivalent multiplier implementation using

CLBs. Finally hard processor macros, such as the PowerPC405, provide a multi-stage

instruction pipeline capable of executing stored instructions.

 These heterogeneous elements are interconnected using the FPGAs general

routing matrix. The general routing matrix is made up of a network of interconnected

routing switches. Programming elements that wish to communicate connect to a routing

switch. Paths are then established between these routing switches. The connection of

programmable elements to routing switches, as well as the establishment of routes

between them, is the responsibility of the CAD tools.

 All reconfigurable elements contained within the FPGA are controlled by values

that have been stored in static memory cells. These values are loaded into the memory

cells at the time of configuration. To reconfigure elements within the FPGA, new values

must be loaded into the appropriate memory cells [17].

2.2 System-On-Chip

Advances in the semi-conductor industry continue to increase circuit density of

silicon devices. This increasing potential has prompted many designers to consider the

integration of multiple board level components onto a single silicon device, a concept that

has been termed System-On-Chip. This type of component integration has the potential to

offer increased reliability, increased performance, lower resource utilization, and lower

17

cost. However, such a high level of transistor density makes successful design and

verification of these systems difficult.

 To facilitate the design of SoC systems, many designers are steering clear of full

custom design approaches. Instead, designers are choosing to build their systems using

existing components that have well-defined contents and interfaces. This re-use of

existing components lowers development costs and time to market.

 One of the major challenges associated with SoC design methods is providing

efficient communication between the components. Developing efficient communication

architectures for SoC systems is a challenging task.

2.2.1 Communication Architectures for SOC

 In order to effectively use the hardware components contained within a

SoC, an efficient SOC communications architecture is critical. SoC communication

architectures provide a medium that on-chip components can use to communicate with

each other. Although this communication fabric is critical to the operation of the device,

its existence does not provide any additional computational functionality.

18

2.2.2 Shared Interfaces Versus Dedicated Interfaces

SoC communication architectures can consist of shared interfaces, dedicated

interfaces, or a mixture of both. A shared interface is an interface that is shared between

multiple entities. An example is the bus topology, seen in Figure 7, which uses a data bus

to serve as the vehicle that two entities use to communicate. One entity acts as the bus

master, and the other as a slave. The bus master is the controlling entity and is the only

device capable of presenting commands. The slave responds to commands presented to

it, either by accepting data from, or presenting data to the master. Multiple entities that

assume master or slave roles can connect to a single bus. However, communication may

only occur between a single master and a single slave at any given instance in time.

Figure 3: Shared Bus Topology [7]

One problem that is evident with shared interfaces is the fact that not all entities

can communicate at the same time. In many implementations of bus topologies, several

19

entities are capable of mastering the bus. However, it is impossible for more than one of

those to master the bus at any given time. As a result, if two bus masters need to

communicate with other entities at the same time, one would have to wait for the other to

finish before it could start its communication. This uncertainty makes the performance of

bus topologies extremely undeterministic.

 In a dedicated interface, there is a dedicated communication link between a single

master and a single slave. As a result of this dedicated link, the hardware required to

manage multiple connections to the interface is not needed. This makes the management

of the connection simpler, and the performance of the connection higher when compared

to shared interfaces.

2.3 Platform FPGAs

 FPGA manufactures, such as Xilinx, have begun introducing FPGAs with

architectures capable of providing complete on-chip solutions. In addition to the more

traditional CLB arrays, these platform FPGA architectures contain embedded memories,

processors, clock managers, arithmetic units, high speed i/o etc. These heterogeneous

architectures benefit from the extension of traditional SoC techniques onto the fabric of

the FPGA. The Virtex-II Pro FPGA is one of the more recent platform FPGA

architectures that have been introduced by Xilinx. In addition to containing the traditional

20

elements that are characteristic of previous Platform FPGA generations, the Virtex-II Pro

contains the PowerPC405 Processor Block.

2.3.1 The PowerPC405 Processor Block

The processor block, seen in Figure 4, contains the PowerPC405 core, specially designed

logic that interfaces the core with the surrounds CLBs, block RAMs, and general-purpose

routing resources. The number of processor blocks that are present is dependent on the

specific Virtex-II Pro device.

Figure 4: Processor Block Architecture [20]

21

2.3.2 The PowerPC405 Processor Core

The PowerPC405 (PowerPC405), seen in Figure 5, is a 0.13um implementation of IBM’s

PowerPC 405D4 core that is engineered for low power consumption at a clock speed of

up to 300MHz. This embedded core implements the PowerPC User Instruction Set

Architecture (UISA), user-level registers, programming model, data types, and

addressing modes for 32-bit fixed point operations.

 The central processing unit (CPU) of the PowerPC405 implements a 5-stage

pipeline consisting of fetch, decode, execute, write-back, and load write-back stages. The

CPU has a single-issue execute unit containing the general-purpose register file, the

arithmetic logic unit, and the multiply-accumulate unit. The execute unit supports all 32-

bit PowerPC UISA integer instructions in hardware. Floating-point calculations are not

supported in hardware, but can be emulated using software.

 The PowerPC405 contains a Memory Management Unit (MMU) that is capable

of supporting a 4GB logical address space. The MMU is responsible for translating

between logical and physical memory addresses. The address translations are handled by

the MMU’s 64-entry translation look-aside buffer (TLB). To prevent TLB contention

between data and instruction accesses, a 4-entry instruction and an 8-entry data shadow

TLB are maintained.

The PowerPC405 has separate instruction and data cache units. Each cache unit

includes a processor local bus (PLB) master, cache arrays, and a cache controller. Cache

22

hits appear to the CPU as a single cycle memory access. Cache misses are translated into

transactions over the PLB that are serviced by PLB devices.

Figure 5: PowerPC Hardware Organization [15]

2.3.3 The On-Chip Memory Controller

 The On-Chip Memory (OCM) Controller is responsible for generating the

processor’s OCM signals. These signal enable communication between the processor and

the OCM BRAM. The PowerPC’s OCM signals are engineered to provide quick access

23

to a fixed amount of data and instruction memory. The OCM controller provides the

processor with access to both the 64-bit Instruction Side BlockRAMs (ISBRAM) and the

32-bit Data Side BlockRAMs (DSBRAM). The designer may choose to implement

designs with various combinations of ISBRAM or DSBRAM.

2.3.4 Interfacing to the Processor Block

 The two interfaces that allow the processor block to communicate data to and

from the FPGA fabric are the PLB and OCM interfaces. Each interface has advantages

and disadvantages. For instance, although the PLB interface is capable of addressing 4GB

of memory, the interface is share by multiple components. The OCM interface can

provide higher performance through its sole dedication to a single device. This higher

performance is contingent upon the interface being configured to address 64 kb of

memory or less. If the OCM address space is configured to support anything more than

64 kb, the performance advantage of the interface may be compromised.

2.3.5 The CoreConnect Architecture

The PLB interface is engineered to communicate with a third party on-chip bus

architecture. Developed by IBM, this architecture is referred to as the CoreConnect

architecture. The CoreConnect Architecture is a hierarchical bus topology that has been

24

designed to provide efficient on-chip communications. The topology consists of 3 buses:

the Processor Local Bus(PLB), the On-Chip Peripheral Bus (OPB), and the Device

Control Register (DCR) Bus. Each bus and its associated IP are implemented on the

FPGA’s fabric using re-configurable resources. Either the PLB or the DCR can be used

in an implementation without the existence of the other. The OPB interfaces to the

PowerPC405 through the PLB. Therefore, the PLB must be instantiated in designs that

require use of the OPB.

 The PowerPC405 uses the PLB to access devices that demand high

performance, such as memory controllers. The PLB is a fully synchronous 64-bit data bus

that supports read and write transfers between master and slave devices. Each PLB

master is attached to the PLB through separate address, read-data, and write-data buses.

PLB slaves are attached to the PLB through shared but decoupled, address, read-data, and

write-data buses and a plurality of transfer and status control signals. Devices that wish to

communicate over the PLB must first contact the PLB arbiter. The PLB arbiter will grant

the device access to the PLB if either the bus is not in use, or the priority of the

requesting device is higher than the priority of the device that is currently mastering the

bus. If neither of those two conditions is true, the device that is requesting access to the

bus will need to wait until either of those conditions becomes true.

 The PowerPC405 uses the OPB to communicate with low speed devices,

such as a Universal Asynchronous Receiver/Transmitter (UART). The OPB is a fully

synchronous 32-bit data bus that functions independently of the PLB on a different level

25

of the bus hierarchy. The OPB does not interface directly to the PowerPC405 core.

Instead an OPB to PLB bridge provides the interface between the two levels of hierarchy.

Therefore, if an OPB master needs to communicate with the processor, it must do so by

using the OPB to PLB bridge to generate the appropriate request on the PLB. Similarly, if

the processor wants to communicate with a device on the OPB, it must do so by using the

PLB to OPB bridge to generate the appropriate request on the OPB.

 The DCR bus provides the ability to transfer data between the CPU’s

general purpose registers and the DCR slave logic’s device control registers. The DCR

bus allows control and status information to be communicated over a dedicated bus.

Without the existence of the DCR, the OCM and PLB interfaces would be responsible for

communicating the applications data as well as status and control information. This

would cause the performance of the implementation to suffer. The existence of the DCR

reduces contention over the OCM, PLB, and OCM interfaces,

2.3.6 The On-Chip Memory Interface

 The On-Chip Memory (OCM) interface serves as the interface between the Block

RAMs and the OCM signals that are contained within the PowerPC405 processor core.

An OCM controller provides non-cacheable access to instruction-side and data-side on-

chip memory. The data-side OCM supports a 32-bit, bi-directional memory interface,

and the instruction-side supports a 64-bit unidirectional interface. Unlike the PLB, the

26

OCM interface is a dedicated interface that has separate interfaces for instruction and

data accesses. As a result, there is no arbiter that mediates connections to the bus. Each

OCM controller is capable of addressing up to 16 MB of memory; however, the amount

of BRAM contained within the device will limit the amount of memory than can be used.

Furthermore, as the amount of memory connected to the OCM controller increases, the

performance of the interface decreases. This performance decrease is a direct result of the

increase in resources that are required to accommodate the additional BRAMs used to

supply the memory.

 The primary advantage of the OCM interface is that it guarantees a fixed latency

of execution. This provides a higher level of determinism, making communication over

the OCM interface a good choice for processor applications that must guarantee a

specific rate of communication with the fabric. This of course assumes that the OCM

interface is capable of delivering the required rate of communication.

 Another advantage of the OCM interface is that it handles separate data and

address for both the instruction and data side. This allows the processor to fetch both

instructions and data through the OCM interface simultaneously.

 The disadvantage of the processor’s OCM interface is that the interface is only

capable of addressing a relatively small amount of memory. The data-side OCM

(DSOCM) and instruction-side OCM (ISOCM) interfaces are physically capable of

addressing 16MB of memory. However, the complexity of the routing that is needed to

connect the BRAM to the OCM interface is directly proportional to the amount of OCM

27

that is used. As a result, the OCM interface performs best when it only has to service a

small amount of BRAM.

 Applications utilize the dual ported feature of the OCM’s BRAMs to

communicate data between the processor and the fabric of the FPGA. This feature allows

both the processor and hardware modules implemented on the fabric to independently

write and read data to and from the BRAM (with some restrictions). Data is

communicated between the two entities when one entity, such as the processor or a block

of configured logic, reads data that has been placed in BRAM by the other entity.

2.3.7 The Software/Hardware Interface

 Previous sections have discussed the physical interfaces provide the connections

between the PowerPC405 processor and the FPGA’s fabric. Almost equally important is

initiation of communications through the interface. Specifically, how software

instructions are able to drive logic that exists within the fabric of the FPGA. The

PowerPC405 and its surrounding communication architecture is no different then any

other processor system in the sense that it can be modeled as a single processing element

that is capable of performing mathematical operations, writing data to memory, and

reading data from memory. The processor assumes that the devices that are connected to

it are some form of memory element. When the processor executes a software instruction

that requires it to communicate with one of its devices, the processor will present data

28

and its associated address on one of its buses. The higher bits of the address value will

determine which bus the information appears on. Once the information has appeared on

the appropriate bus, the devices connected to that bus are responsible for determining

which device the processor wants to interact with. Each device that is connected to the

processor has its own address decoder. When an address is presented on its interface,

each device’s address decoder examines the higher bits of the address value. If the

address value falls within the address range of the device that the address decoder is

servicing, the address decoder will signal the device. The device will then collect the data

off the bus and store the data in the location indicated by the lower bits of the address

value. This storage location could reside in a register, on-chip memory, or even off-chip

memory. The device will then will then perform the action that is indicated by the

recently loaded values. This model is valid for both the OCM and PLB interfaces.

2.3.8 Processor Centric versus Logic Centric

 Processor centric and logic centric are terms used to characterize the flow of

processed data within a specific implementation. In a processor centric system, the logic

serves as the computational adjunct to the processor. This means that the logic will

perform based on the commands issued by the processor. Processor centric systems are

sequential machines that execute instructions in succession. As a result, scenarios will

29

arise where logic entities will exist in an idle state awaiting further instructions from the

processor.

 The goal of any FPGA implementation is to maximize the amount of processing

that is occurring at any given time. In many instances, it would be unacceptable for logic

within an FPGA to be idle unnecessarily. Furthermore, the processing capabilities of the

FPGA could be limited by the processing capability of the processor that is at the center

of the processor centric system. This would be extremely inefficient since the processing

capabilities of the logic as a whole is far greater than a single processor core. As a result,

processor center designs do not map well to FPGAs in most instances.

 Alternatively, designers should consider a logic centric approach that uses the

processor as a computational adjunct to the logic. Logic centric approaches facilitate the

exploitation of parallelism that is often critical to achieving the most efficient

implementations. In a logic centric approach, the logic issues commands to the processor.

While the processor is responding to those commands, the logic can continue to work

concurrently.

 The type of architecture that is chosen to provide communications between the

processor and the FPGA’s fabric is often determined by the centricity of the design. The

bus topology, discussed in Section 2.2.2, is representative of processor centric models.

Processor centric implementations use the processor as the computational center of the

application. As a result, the rest of the entities that exist within the implementation must

be able to communicate with the processor so that they may respond appropriately to the

30

actions of the processor. The shared interface that is provided by the bus topology suits

this model well because it gives a single processor the ability to communicate with

multiple devices.

 Dedicated interfaces are representative of logic centric implementations. Logic

centric applications use the processor as a computational adjunct to the processing that is

occurring within the logic of the FPGA. The role of the processor as an adjunct processor

is specific and does not require that the processor be able to communicate with multiple

devices. The use of dedicate interfaces for these types of scenarios saves resources that

would otherwise be consumed by the mechanisms that enable the sharing of a single

interfaces by multiple devices. Furthermore, use of a dedicated interface in the logic

centric approach provides a higher level of determinism for the communications that

occurs between the processor and the surrounding FPGA fabric.

2.4 Software Defined Radios

 A Software Defines Radio (SDR) is a collection of hardware and software

technologies that enable reconfigurable system architectures for wireless networks and

user terminals. SDR provides an efficient and comparatively inexpensive solution to the

problem of building multimode, multiband, and multifunctional wireless devices that can

be updated, adapted, or enhanced using software upgrades [10].

31

 SDR has generated a tremendous interest in the wireless communications industry

for the wide ranging economic and deployment benefits it offers. Many companies

struggle to keep up with the diverse technologies that exist within the industry and the

high rate at which these technologies evolve. SDR aims to reduce these problems by

providing radio platforms that can be easily reconfigured. Such a platform would allow

companies to build radios that could survive generations of evolving communication

standards. This saves companies enormous amounts of financial resources by allowing

them to update existing infrastructures instead of replacing them.

 In addition to providing a means to update existing systems, reconfigurable radios

are beneficial in scenarios where radio users may be traveling between different radio

domains. For instance, consider a cellular phone user that is traveling between the US and

Europe. If a SDR implementation of the cellular phone were possible, a person traveling

from the US to Europe could simple reconfigure his/her phone to work with the cellular

phone networks in the country that he/she is traveling to.

 The high performance and high reconfigurability requirements of SDR make

FPGA architectures a good implementation fabric for many SDR applications. SDR

processing tasks such as modulation, de-modulation, up-conversion, and down-

conversion benefit from the high performance that is offered by modern FPGA

architectures. In addition, the high level of reconfigurability associated with FPGAs

makes it possible to configure the FPGA with instances of these processing tasks that are

most appropriate for the current communications environment.

32

 In addition to FPGAs, general-purpose processors (GPPs) play an important role

in most software defined radio systems. In addition to executing data processing tasks

that contribute to the actual output of the radio, GPPs are used in the initialization and

configuration of the various hardware components that constitute the radio. The FPGA

and GPP usually exist with an SDR system as two separate entities interconnected by an

off-chip communications architecture. However, the introduction of FPGA architectures

that contain embedded processors, such as the Virtex-II Pro, has prompted some SDR

system designers to beginning integrating functionality of the two separate entities onto a

single piece of silicon.

2.4.1 The FM3TR Proposed Reference Waveform

Future Multi-Band, Multi-Waveform, Modular, Tactical Radio Waveform

(FM3TR) is an international cooperative effort between the United States, Germany,

France, and the United Kingdom to develop a reconfigurable communications system for

ground and airborne applications. The result of this effort is a relatively simple and

unclassified waveform that can be used to demonstrate interoperability between various

software defined radios [1]. The processing requirement of the waveform itself is

relatively low when compared to industrial waveforms, such as WCDMA. The simplicity

and low processing requirements of FM3TR are appropriate for our application because

33

they allow us to focus on studying the architectural issues associated with FPGA

development using embedded processors and not implementation issues.

2.5 Related Work

 As the complexity of IC designs continue to increase, more and more designers

are adopting SoC design methodologies to accommodate the integration of components

into a single piece of silicon. This is true for both FPGA and ASIC designers. The

following discussions present a brief survey of applications that have been mapped to

SoC platforms.

2.5.1 The Single-chip Gigabit Mixed-version IP Router

 Gordon Brebner has developed an SOC application intended for use with

computer networks that contain a mixture of IPv4 and IPv6 workstations. The platform

makes extensive use of the PowerPC405 core on the Virtex-II Pro FPGA. [2]

 The purpose of the platform is to harness programmable logic in novel ways to

build a Mixed-version IP Router (MIR) that will route packets between IPv4 and IPv6

networks. Prototype A uses a processor centric architecture, illustrated in Figure 6. That

basic organization is that there are four gigabit Ethernet ports implemented in logic and

attached to Rocket I/O transceivers via a 32-bit interface, and one processing hub that is

34

implemented using the PowerPC. All packets received by the router must pass through

the hub before any further transmission. Communication of packets between ports and

the hub is via dedicated dual ported buffers that have been connected to the processor’s

OCM interface.

 Prototype B, seen in Figure 7, uses a logic centric architecture to process the

system’s incoming packets. In this scenario, a subset of the packet processing occurs in

the exchange module. Specifically, IPv4 packets that just need to pass through or IPv4

packets that are headed for IPv6 tunnels are handled in logic. All other IPv4 packets, and

all IPv6 packets are handled by the processor.

Figure 6 : Single-chip Gigabit Mixed-version IP Router Prototype A [2]

35

Figure 7 : Single-chip Gigabit Mixed-version IP Router Prototype B [2]

 The difference between the implementations of Prototypes A and B is in

how the packet processing is handled. Prototype A uses a processor centric approach that

requires all of the incoming packets to be processed by the processor. In this scenario, the

rate at which the system can process data is limited by the rate at which the processor can

process data. Furthermore, the processor core is an inherently sequential device, meaning

that the possibility of exploiting computational parallelism doesn’t exist. Although the

model may work well for the requirements of the MIR implementation, scalability may

be an issue due to the fact that the processing capabilities of the implementation is limited

by a single processing entity.

Prototype B uses a logic centric approach. In this approach, the processor

performs a subset of the overall packet processing. If the packet falls into a specific

36

category, the packet is processed by the processor. Otherwise the packet gets processed

by logic. In this scenario, the processing capabilities of the system are not limited by the

sequentiality of the processor. The processing of packets by the processor and the logic

can occur concurrently. This allows the implementation to take advantage of the

parallelism that is inherently characteristic of FPGA architectures.

2.5.2 Software Decelerators

 In the paper, titled Software Decelerators, the authors describe a logic centric

design technique where processing tasks are offloaded from the logic to the processor of

a Virtex-II Pro FPGA [4]. This technique is described by the authors using the term

“software decelerator”. The term implies that a processing task offloaded from logic to a

processor yields no gain in performance, but may result in an implementation that uses

the FPGA’s resources more efficiently. The argument for software decelerators is a

consequence of the fact that the PowerPC core exists in the fabric of the FPGA regardless

of whether or not it is used in a given design implementation. As a result, using the

processor for processing tasks with liberal timing constraints may free up logic for use

elsewhere in the design.

 To ensure that software decelerators provide their anticipated benefits, the authors

present a list of considerations that should be reviewed prior to the design of the software

decelerator. Some of these considerations are:

37

1. The overall area consumed by the software decelerator should not exceed the

area consumed by the equivalent logic implementation unless there are valid

arguments to do so.

2. The resource consumption of the interface between the processor and the logic

should be minimized.

3. The designer should be able to acquire accurate timing and resource

utilization information for the logic centric system. The information that is

acquired should include those tasks that are being performed by the processor.

The authors provide a case study to illustrate the benefits of software decelerators.

The case study emphasizes the use of the embedded processor as finite state machine.

Finite state machines (FSMs) play critical roles in the control of many hardware

implementations. Their complexity is a function of the number of states they implement,

as well as the complexity of the logic equations used to trigger state changes. Despite

their potential complexity, their timing constraints, in comparison to the rest of the

system, are relatively relaxed. As a result, FSMs can be good candidates for execution on

the Virtex-II Pro’s embedded processor.

The case study presented by the authors describes three FSMs that are used for

network related applications. The first FSM application, rs232echo, is a RS232 protocol-

handling machine. This application serves as a repeater that broadcasts all of its received

inputs on its output. The second application handled the Media Independent Interface

38

(MII) of an Ethernet MAC. Finally, the third application FSM, tx_host_io, handles the

host interface to a 10G Ethernet MAC.

The results of the logic implementations of the FSMs are shown in Table 1. These

figures show the amount of resources needed to guarantee the FSMs were able to perform

at the rate required by the application. Table 2 shows the resource savings that result from

executing the FSMs in the embedded processor. These values are relative to the

respective values in Table 1. Although the processor implementations consistently result

in resource savings, Table 3 indicates that the performance requirement for the tx_host_io

application cannot be met by a software implementation. This leads the authors to

conclude that FSMs with high performance constraints are not candidates for execution

on the embedded processor and should be implemented using only the logic resources of

the FPGA, while FSMs with low performance requirements are good candidates for

execution on the embedded processor.

Table 1 : Resource Consumption of FSM Logic Implementations [4]

39

Table 2 : Resource Savings Relative to the Equivalent Logic Implementation [4]

Table 3 : Performance Results for Software Implementations of FSMs [4]

2.5.3 PLB vs. OCM Comparison Using The Packet Processor System

 The Xilinx application note, PLB vs. OCM Comparison Using The Packet

Processor Software, uses a packet processing application to compare the performance

tradeoffs of the PowerPC405 Processor Local Bus and On-Chip Memory interfaces [5].

The application’s implementation is a modified implementation of the application

presented in [11]. The objectives for the study of the packet processor application

include:

40

1. Identify performance penalties for the OCM and PLB interfaces that

result from the system’s current configuration.

2. Compare the performance that results from fetching instructions

through the PLB interface versus fetching instructions through the

OCM interface.

3. Compare the performance of the PLB-attached packet buffers versus

the OCM-attached packet buffers.

4. Compare the application performance of the PowerPC405 processor

when operating at the same clock frequency as the PLB and OCM

interfaces versus the performance of the application when the

processor is operating at a faster clock frequency then the PLB and

OCM interfaces.

Figure 8 shows the architecture of the packet processor system used in the

study. The system uses two Packet Processing Engines (PPEs): one connected to

DSOCM BRAM and the other connected to PLB BRAM. Depending on which

processor is producing packets, the PowerPC405 will receive packets through

either its PLB or OCM interface. Upon reception of a packet, the PowerPC405

will examine the contents of the packet to determine the packet’s destination. If

the packet is destined for the PowerPC405, the processor will send an

acknowledgement to the packet processor that the packed originated from. If the

41

packet is not destined for the PowerPC405, the processor forwards that packet to

the other packet processor.

Figure 8: Architecture of the Packet Processor Reference System [5]

 Each experiment that is performed in this study uses one of three different test

cases. Each test case uses a different memory organization. The first test case stores the

42

instruction and program data for the PPC in PLB BRAM. The packet processor’s data is

stored in ISOCM. The second test case stores all of the instructions in ISOCM BRAM.

The program data and the packet processor’s data are stored in DSOCM BRAM. Finally,

the third test case stores the instruction, program, and packet processor data in PLB

BRAM. In all cases the D-Cache for the PLB interface has been disabled. The I-Cache

for the PLB interface is enabled when appropriate. The different test cases and the clock

frequencies at which they operate are summarized by Table 4 and Table 5.

Table 4 : Packet Processor Reference System Design Details By Case [5]

Table 5 : Operating Frequencies of the Packet Processor Test Cases

Comparison 1 measures the elapsed time from the deassertion of the system reset

to the high state of the transmission’s control signal. The measurement takes into account

43

all packet transfers as well as instruction fetching, and execution, which are common

between all test cases.

The analysis of Comparison 1 is summarized by Table 6. Case 1B is the fastest

overall; however, Case 2B completes the first transfer quicker. Case 2B is initially faster

because of the time that elapses before all of Case 1B’s instruction have made their way

into the PPC cache. Once its instructions have been loaded into the cache, Case 1B

operates slightly faster than Case 2B, and significantly faster than Case 3B. This

suggests that for the clock ratios used in Cases *B, the PLB interface is comparable to the

ISOCM interface for applications where the program’s instruction can fit entirely in

cache.

Table 6 : Overall Performance Measurements

 Comparison 2 measures the time it takes for one packet to be transferred from one

area of memory to another. The move will occur through either the PLB or the OCM

44

interface, depending on the case. The measurement is made starting with the first packet

byte on the read bus and ending with the last packet byte on the write bus.

 The results of comparison 2 are summarized in Table 7. Once again, fetching

instructions out of the i-cache is shown to deliver performance that is slightly greater than

instruction fetches over the ISOCM interface. The results also suggest the data transfers

through the DSOCM interface deliver greater performance than transfers through the

PLB. This can be seen by comparing Cases 3A and 3B against the rest of the cases.

Cases 3A and 3B do not reflect the true bandwidth of the PLB. In this particular

case, the 64-bit PLB is transferring only one word (32 bits) of data at a time. If 64-bit

transfers were done, the numbers in rows 3A and 3B would be approximately half of

what they are. Making 64-bit transfers, however, requires assembly language instructions

that some compilers do not take advantage of. This is a great example of why the

processor should not be used for large data transfers. Instead, use the FPGA to do a DMA

transfer.

45

Table 7 : Data Movement Resultsfor TC2 [8]

 Finally, Comparison 3 measures the time it takes for the system to complete the

diagnostic routine that is part of the implementation. The routine contains a mixture of

data accesses that must be performed over both the PLB and OCM interfaces. In addition,

some of the instructions that are fetched over the PLB will only be executed once. Other

instructions will be frequently accessed, allowing the benefits of the cache to be utilized.

 The results of Comparison 3 are summarized in Table 8. Cases 1B and 2B execute

in roughly the same amount of time. This suggests that for applications where only a

fraction of the instructions will fit in cache the ISOCM will provide comparable

performance when the PLB operates at 100 MHz and the ISOCM operates at 150 MHz.

46

Table 8 : Test Completion Measurment Results

 The PLB versus OCM study discusses the main differences between the PLB and

OCM interfaces by contrasting their attributes, as well as comparing the interfaces using

a hardware reference system. The results of this study show the following:

1. The OCM interface can provide comparable performance to the PowerPC‘s

caches at 1:1 and 2:1 processor-to-clock-to-OCM clock ratios.

2. Using OCM to reduce the amount of traffic on the PLB reduces cache thrashing in

large applications.

3. Operations that require determinism benefit from using the OCM interface

because of its deterministic behavior.

4. Applications that use less than 16KB of program and instruction data should run

completely out of the PowerPC’s cache.

47

2.5.4 Energy Efficient Application Synthesis Using Platform FPGAs

 In the paper, titled A Methodology for Energy Efficient Application Synthesis

Using Platform FPGAs, the authors argue that the design choices that an FPGA

application designer makes can have a dramatic impact on the power consumption of

his/her application. The author’s analysis focuses on the buses that enable communication

between the Virtex-II Pro’s PowerPC405 and the surrounding FPGA fabric. Specifically,

the Processor Local Bus (PLB) and the On-Chip Memory (OCM) Bus [22].

 The paper presents an FFT software program that executes on the Virtex-II Pro’s

PowerPC405. This program serves as a vehicle that enables power analysis of the

processor’s PLB and OCM interfaces.

 The study shows that executing the same FFT program on different configurations

of the PowerPC405 processor core results in configurations that consume five times the

time and energy costs of alternative configurations. Implementations that used the PLB

bus with caching enabled dissipated the least amount of energy while implementations

that use the PLB bus with caching disabled dissipate the highest amount of energy.

Caching reduces the devices power consumption since most of the FFT processing

executes within loops. The data that is operated on within an execution loop fits entirely

in cache, This means that instruction and data can be fetched from the cache without

generating transactions on the PLB. Communications over the PLB also introduces

overhead that is not present with communications through the OCM interface. This

48

overhead increases the energy dissipation on the PLB further as the PowerPC spends

more time waiting for instructions and data to be fetched over the PLB bus.

2.5.5 The Novelty of our Approach

The Virtex-II Pro Mixed-version IP Router, discussed in Section 2.5.2, illustrates

the differences between processor and logic centric processing models. Prototype A

requires all incoming packets be processed by the PowerPC405. This is done to show that

the performance a processor centric system is clearly bounded by the capabilities of the

processor. Prototype B uses a logic centric approach where the processor services

specific requests that are generated in logic. These requests are generated for specific

types of packets that are received by the system. If a packet requires the processor, the

logic can dispatch that packet to the processor and begin processing the next packet. As a

result, the logic and the processor can operate concurrently. This approach eliminates the

processor as the limiting factor of the system’s performance.

Prototype A of the Mixed-version IP Router is similar to our implementations in

the sense that the processor can be the limiting factor in the performance of our

application. The input samples of our application are modulated by the PowerPC405

before being converted to a passband signal by the DUC. However, the PowerPC405

used in our implementations is responsible for servicing a single data buffer, while the

PowerPC405 used in Prototype A services multiple data input buffers. In addition, our

49

implementations consider the possibility of using the PLB interface to the processor to

service the application’s input buffers in place of the OCM interface. The Mixed-version

IP Router only considers the processor’s OCM interface in either Prototype A or

Prototype B.

The FSM based design technique using software decelerators, discussed in

Section 2.5.3, describes scenarios where logic centric systems can use embedded

processors to execute FSMs. Application designers who choose to adopt this design

technique must ensure the processor is capable of delivering the performance needed to

operate the FSM at the correct rate. Studies show that in most cases the performance

delivered by the Virtex-II Pro’s PowerPC405 is more than adequate for a variety of FSM

processor implementations. This is a consequence of the fact that the rate at which most

applications transition between states is lower than the rate at which data is processed.

Using the FSM as a software decelerator is similar to our approach. Much like the

authors of [4], we do not expect the use of the PowerPC405 yield any performance gains

for our implementation. However, the possibility does exist that an equivalent hardware

implementation of the software application could consume more of the FPGA’s

resources. A motivation for using the software implementation in such a scenario is that it

frees up the FPGA’s logic for tasks that have higher performance requirements than those

tasks executing on the PowerPC405.

 The comparison study that is performed using the packet processor software is

similar to our research. Both studies are intended to evaluate the performance of the

50

PowerPC405’s PLB and OCM interface. The comparison study, presented in [5], uses the

PowerPC405 to execute a packet processing application that will either forward an

incoming packet or acknowledge the receipt of a packet. The packet is forwarded by

copying the value of the packet to a new location in memory. The computational

requirements of our FM3TR modulation application are greater than those of the packet

processing application. As a result of this, we feel that the results of our investigation will

offer comparison results from an applicat7ion that is more representative of the types of

real-world applications that might target the PowerPC405. Furthermore, the results that

are presented in [5] are based on simulation models. Our results are obtained through

measurement using actual hardware.

 The power analysis study, discussed in section 2.5.5, presents a comparison of the

PLB and OCM interfaces from the perspective of their power consumption. While our

investigation does not include power measurements, it is important to note that the

configuration of a particular interface may alter the applications power consumption.

Using the work presented in [22], the power consumption of an interface can be used as

the deciding factor between two interfaces that perform satisfactory.

51

2.6 Summary

This chapter begins with an introduction to FPGAs and how they differ from other

modern processing elements. It then introduces System-on-Chip architectures and

discusses how the concept of SoC is extended to the architecture of an FPGA. Next, the

architecture of the Virtex-II Pro is introduced, and the devices’ embodiment of SoC

concepts is discussed. The chapter then introduces the notion of a Software Defined

Radio and the roles that FPGAs play in the implementation of an SDR. Finally, a survey

of related work is presented.

52

Chapter 3

Experimental Setup

In this chapter, we describe an application that performs FM3TR’s modulation

and digital up-conversion (DUC) functions. We then describe the algorithms that are used

to modulate and up-convert the digital data that is fed into our application. Next we

describe the software implementation of the modulator and the hardware implementation

of the digital up-converter. We then describe the interfaces that are used to interface the

modulator with the digital up-converter. Finally we describe multiple instances of the

same application that were developed to analyze tradeoffs associated with the use

different interfaces.

3.1 Development Tools

The implementation of the FM3TR Waveform Application was subdivided into

two separate problems: the implementation of the modulator and the implementation of

the DUC. Each implementation utilizes a separate design flow. In the final stages of the

design process, the implementation of the modulator and the DUC were merged together

to form a complete application.

53

 The implementation of the modulator required the use of Xilinx’s Embedded

Development Kit (EDK). The EDK is a development environment that provides

application designers with the tools necessary to build embedded processor systems that

make use of the Virtex-II Pro’s PowerPC405.

 The steps within the EDK that are necessary to build the embedded processor

system include: hardware platform creation, software platform creation, and software

application creation. The hardware platform is defined by the Microprocessor Hardware

Specification (MHS) file. The MHS file defines our system architecture, memory

modules, and embedded processors. It also defines the system’s connectivity as well as

the configurable options and the address map for each memory module in our system.

 The Platform Generator (platgen) parses the MHS file and generates the

appropriate netlists and HDL wrappers. These files are then imported into Xilinx’s ISE

Project Navigator, where they are instantiated in the application.

 The software platform is defined by the Microprocessor Software Specification

(MSS) file. The MSS file defines driver and library customization parameters for

peripherals, standard input/output devices, interrupt handler routines and other software

features. The Library Generator (libgen) tool parses the MSS file and configures the

libraries and drivers that are required for the application.

 Software application creation involves the creation of the FM3TR Modulator that

executes on the embedded processor. The code is written in C. Once the source files are

created, they are compiled and linked to generate executables in the Executable and Link

54

(ELF) Format. GNU compiler tools for the PowerPC405 are used in our implementations,

but tools from other vendors are available as well.

 The FM3TR Digital Up-Converter (DUC) is developed using a different design

flow. First, Simulink is used to develop a model that is representative of our system.

System Generator is then used to generate a VHDL description of our Simulink model, as

well as to create the appropriate project files that enable the design to be imported into

the Xilinx’s ISE Project Navigator.

 In the final stages of the design flow the FM3TR Modulator and the FM3TR DUC

are imported into Xilinx’s ISE Project Navigator. Implementation specific interfaces are

then instantiated to connect the modulator and the DUC. Finally the design is

synthesized, placed and routed.

3.2 The FM3TR Waveform Application

 Our application aims to demonstrate the advantages and disadvantages of the

different interfaces that enable communication between the Virtex-II Pro’s FPGA fabric

and its embedded processors. The demonstration will perform a subset of the processing

tasks that are required in FM3TR Waveform Processing. Specifically, the application will

perform the modulation and digital up-conversion that is associated with an FM3TR

transmitter. The data that is to be modulated will be preloaded into the FPGA’s

BlockRAM. Similarly, data that has resulted from this waveform processing will be

55

retrieved from the FPGA’s Block SelectRAM+. It should be noted that the goal of this

thesis is to provide an accurate characterization of the advantages and disadvantaged of

the interfaces that provide a communication fabric between the PowerPC405 and the

surrounding FPGA fabric on a Xilinx Virtex-II Pro. The FM3TR Waveform Application

is used as a vehicle to assist in the characterization of the different interfaces. As a result,

the implementation details of the modulation and DUC will not be the main focus of this

discussion.

3.2.1 FM3TR Modulation

 Digital modulation is the process by which digital information is used to alter the

characteristic of a given carrier signal. A digital word is communicated to the receiver by

transmitting its corresponding symbol on the channel for a predefined time interval,

known as the symbol interval. The symbol transmission conveys a unique phase pattern

that is associated with a specific digital word. The demodulator is able to determine

which symbol was transmitted by examining the phase characteristics of the received

signal. Since there is a one-to-one correspondence between transmitted symbols and

digital words, the receiving side is able to determine which digital word was transmitted.

 The specification for the FM3TR Waveform requires the use of Minimum Shift

Keying (MSK) modulation. MSK is a continuous phase modulation technique that uses

four signals (4-ary) each with a phase difference of 2π [1]. Thus a digital word

56

consisting of 2 bits can be transmitted during the symbol interval bT . The input to the

MSK modulator consists of a stream of bits. Each bit is delivered to the modulator every

bT interval and can assume a value of either –1 or 1 (as opposed to 0 or 1). This

representation allows the receiver to distinguish between the reception of a binary 0 and

the absence of a signal. The modulator divides its input stream into in-phase and

quadrature components. The in-phase component, na2 , consists of all of the input’s even

bits. The quadrature component, 12 +na , consists of all of the input’s odd bits. During each

symbol interval, the modulator acquires an in-phase and quadrature value from its input.

These in-phase and quadrature bits are use to produce a modulated signal according to the

following equation:

() () ()
















−−+








−= ∑∑

−∞=
+

−∞=

N

n
bbTn

N

n
bTn TnTtganTtgats 22 122 (1)

where ()tgT equals

 ()










 ≤≤

=
otherwise

Tt
T
t

tg b
bT

0

20
2

sin π

 The phase continuity of an MSK modulated signal, as seen in Equation 1, makes

this modulation technique difficult to implement. It can be seen that the maintenance of

phase continuity requires the storage of all previous input values. This is due to the fact

57

that the instantaneous phase value of the carrier signal is a function of all previous phase

values. As the length of the transmission grows, the required storage capacity of the

system will approach infinity. As a result, the MSK modulation scheme in its current

representation is not practical. We use a representation of MSK modulation that describes

the modulated signal as a function of the modulator’s instantaneous input value and its

last calculated phase value. This representation requires that one examine the complex

envelope of the modulated signal [8].

 The complex envelope describes the in-phase and quadrature components that are

used to create the modulated signal. The complex envelope of the signal ()ts is

() () () ()

() n

n

Aj
n

N

l
ln

N

n
bTn

N

n
bT

Aj

ez

aA

nTtgznTtgets

2/

2/'

π

π

=

=

−=−=

∑

∑∑

−∞=

−∞=−∞=

 (1)

Instead of expressing zn as a function of all the modulators previous input values, zn can

be expressed in terms of the modulator’s instantaneous input value and the last calculated

value of zn. This is done by using Euler’s notation to express zn as the summation of a

sine and a cosine as follows:

58

()









+








=

=

∑∑
−∞=

+
−∞=

N

l
l

N

l
ln

n
j

n

ajaz

Aez

122

2

2
sin

2
cos ππ

π

 (3)

Notice than zn = {-j,j} for even values of N, and zn = {-1,1} for odd values of N. Thus the

value of zn will change by a factor of ±j each time its value is calculated. The factor by

which zn changes by is positive if 0≥∑ −∞=

N

l la and negative if 0<∑ −∞=

N

l la . As a result,

()
nnn

j
n ajzAez 1

2
−== π and Equation 2 becomes

() ()bTnn nTtgajzts −= −1'
 (2)

where n is the current bit number ranging from ∞≤≤∞− n . The complex envelope can

then be applied to the carrier multiplying ()ts' and cfje π2 together. The real part of this

product is the signal that gets transmitted over the airwaves. One can see that MSK

modulation technique described by Equation 4 only requires the storage of the most

recent value of zn. This technique allows the MSK modulation scheme to be implemented

on a platform that contains a finite amount of memory.

3.2.2 Digital Up Conversion

 Digital Up-Conversion is the process by which a complex digital baseband signal

is converted to a real passband signal. The device that is responsible for this conversion is

59

referred to as a Digital Up-Converter (DUC). In a DUC, the input signal is sampled at a

relatively low sampling rate, typically Tb, the symbol rate of the digital modulator. The

baseband signal is filtered and converted to a higher sampling rate before being

modulated onto the higher frequency carrier.

Figure 9 shows the architecture of the DUC that was used in our investigation. The

complex input signals are passed through three stages of filtering, each of which performs

a sampling change and the associated low pass interpolation filtering . The three filtering

stages include:

• Pulse Shaping FIR Filter P(z) provides a sampling rate increase of 2 and

performs Nyquist pulse shaping.

• Compensation FIR Filter C(z) provides a sampling rate increase of 2 and

is used to compensate for the passband distortion of the 3rd stage’s

cascaded integrator-comb (CIC) filter.

• Cascaded Integrator-Comb Filter The CIC is used to cause a sampling

rate increase from 4 to a maximum of 1448.

The complex output stream of the filtering stages is up-converted to its final frequency

band by passing the complex output stream through a mixer. The mixer multiplies each

value of the complex output stream with the appropriate output value of the local

oscillator. The sinusoidal signal values that are produced by the local oscillator are

generated using a Direct Digital Synthesizer (DDS). The outputs are then combined to

form the final DUC passband result [14].

60

Figure 9: DUC Core Architecture [14]

3.3 Application Overview

 Our application, seen in Figure 10, implements FM3TR modulation and its

associated digital up conversion using the reconfigurable logic and embedded processors

contained within a Virtex-II Pro Platform FPGA. Data is place into the initial First In

First Out (FIFO) Queue 0 via a source that is external to the FPGA, such as a waveform

encoder. The modulator then pulls the data out of the FIFO 0 and performs MSK

modulation. The signal values that result from the modulation are pushed into FIFO 1.

61

The DUC pulls the modulated signal values out of FIFO 1 and converts them to a real

passband signal. Finally, the DUC pushes the real passband signal into FIFO 2. The data

can then be used to drive the inputs of a device external to the FPGA, such as a digital-

to-analog converter.

Figure 10: FM3TR Application Architecture

3.4 Data Formatting and Storage

 In our experimental setup, the data samples that feed the input to our FM3TR

modulator are generated using a MATLAB script. The script produces an array of

62

numbers that can assume the value of either -1 or 1. The input samples are represented as

8-bit two’s complement values which are stored on the PowerPC405 using the char type.

The input samples are packed into 32-bit words prior to being stored in BlockRAMs.

This allows 4 sample values to be stored in each location in BlockRAMs. In our

experiments, the bitstream used to configure the FPGA contains the information

necessary to initialize the appropriate BlockRAMs with the correct input sample values.

As a result, the loading of the input sample values into the FPGA’s BlockRAMs is

implicit with the configurations of the FPGA.

 The output values of the modulator are represented using 16-bit two’s

complement values with a 15-bit fractional part. These values are represented on the

PowerPC405 using the short type.

3.4.1 Calculation and Storage of Pulse Values

The calculation of the sinusoidal pulse that is used to modulate the incoming data

samples is performed according to the following equation:

()










 ≤≤

=
otherwise

Tt
T
t

tg b
bT

0

20
2

sin π

where Tb equals the reciprocal of the modulation. The modulation rate is mandated by the

FM3TR specification to be 25,000 symbols per second. The number of samples per

symbol is chosen as 4 for this application.

63

 The values of the sinusoidal pulse are specific to the modulation parameters of a

specific implementation and only need to be re-calculated if those parameters change.

The same pulse values will be used in all subsequent implementations of the FM3TR

Application. As a result, we initialize the pulse values during the configuration of the

FPGA on all implementations.

3.5 Asynchronous First-In-First-Out Queues

Applications that use the embedded processor often clock the reconfigurable logic

and the processor core at different rates. In addition, the execution time of any given

software application can differ between successive executions as a consequence of traffic

on the PLB and OPB, software interrupts, etc. This makes synchronous data transfers

between the processor’s memory and other logic entities difficult. As a result, we use

asynchronous FIFOs to mediate connections between the processor’s memory and the

surrounding logic

Asynchronous FIFO’s can be implemented using the Virtex-II Pro’s dual-ported

BlockRAM [18]. The entity that produces data writes the data into the BlockRAMs

through the appropriate port. The entity that consumes data reads the contents of the

BlockRAMs through the appropriate port. Additional logic is needed to maintain flags

that will tell either entity when the FIFO is full, empty, etc. The independence between

the two ports of the BlockRAMs allows data to be produced and consumed at different

64

clock rates. This can be seen in Figure 11. Data that is pushed into the FIFO will be

presented on the output port of the FIFO after N clock cycles. Notice that in this example

the rate at which data is being pushed into the FIFO is less than the rate at which data is

being pulled from the FIFO. This corresponds to a consumption rate that is higher than

the production rate. Eventually the FIFO will empty, making any additional data that gets

consumed invalid. To avoid this situation, asynchronous FIFOs have FULL and EMPTY

flags. If the FIFO’s FULL flag is asserted, the producer will know that the FIFO cannot

accept any additional data. The producer will then respond appropriately. Similarly, if the

FIFO’s EMPTY flag is asserted, the consumer will know that the FIFO has no additional

data to present. The consumer will then respond appropriately. This description of the

Asynchronous FIFO is based on an ideal model. The actual Asynchronous FIFO

implementations that exist within our implementation differ in their use of memory and

handshaking.

Figure 11: Asynchronous FIFO Example

 Our application uses three Asynchronous FIFOs. FIFO 0, seen in Figure 10,

mediates transfer of data between the application’s data source and the modulator that is

65

running on the PowerPC405. In a production version of this application, this source

would most likely be a waveform encoder. However, this investigation focuses solely on

the modulation and up-conversion stages of waveform processing. In our experiments,

this FIFO is modeled using BlockRAMs. The contents of the BlockRAMs are initialized

with the appropriate sample values at the time of configuration. The initialized values are

representative of the sample values that would be produced by an FM3TR encoder. The

values are stored as 8-bit 2’s compliment numbers. As a result, no handshaking is

required for this FIFO.

 FIFO 1, seen in Figure 2, mediates the transfer of symbols between the modulator

and the DUC. FIFO 1 exists because of the possibility that the modulator and the DUC

could produce and consume symbols at different rates. FIFO 1 is implemented by

connecting one of the processor’s memory interfaces to port A of FIFO 1’s BlockRAMs.

The software executing on the PPC writes symbols into FIFO 1 through the appropriate

interface. When all symbols have been written to BlockRAMs, the DUC is signaled to

begin processing.

 The DUC is connected to Port B of FIFO 1’s BlockRAMs through an interface

that we designed. In its initial state, the memory interface continuously polls a specific

location in this BlockRAMs. When the value that is stored at this location changes to the

appropriate value, the memory interface begins presenting the DUC with valid data.

 FIFO 2 is implemented using a customized memory interface and BlockRAMs. In

its initial state, the memory interface waits for the qualification of the first DUC output

66

value. This qualification tells the memory interface that the DUC’s output data is valid.

Once this initial qualification has occurred, the interface continually writes qualified

output values to the BlockRAMs on successive ticks of the clock. This continues until the

DUC begins presenting unqualified output values or the storage capacity of the

BlockRAMs is reached.

3.6 The FM3TR Modulator Implementation

 The FM3TR modulator is implemented in software using the embedded PowerPC

processor that is contained within the Virtex II-Pro FPGA. The functionality of the

FM3TR modulator is described using the C Programming language. This description is

then compiled by a GNU C compiler and the resulting code is downloaded into the

BlockRAMs of the FPGA. This compiled code can then be executed on the embedded

processor.

 The FM3TR modulator is implemented using the three-state state machine seen in

Figure 12. In its initial state, the modulator presents the initial pulse values on the output

of the modulator. This pulse serves as the reference point, allowing the phase difference

between the initial pulse and subsequent pulses to be known. After the presentation of the

initial pulse values, the modulator waits to be signaled to advance into the next state. In a

production implementation of this application, this signal would be generated by some

entity that is controlling then processing for the entire radio. Since this entity does not

67

exist in our implementations, this signal value is mapped to a specific location in

BlockRAMs. The BlockRAMs location value is initialized at the time of configuration to

the value that will initiate the state change. This initialization will cause the modulator to

advance into the wait state immediately following the presentation of the initial pulse

value.

Figure 12: FM3TR Modulator State Machine

While in the wait state, the modulator waits for input samples to become

available. Once this occurs, the modulator advances into its run state.

Upon entering its run state, the modulator begins modulating the input samples.

Two samples are removed from FIFO 0 once every 2Tb intervals. Input samples removed

from FIFO 0 during even multiples of Tb are used in the creation of the in-phase

68

component of the output signal. Input samples removed from the FIFO during odd

multiples of Tb are used in the creation of the quadrature component of the output signal.

Each sample value is mapped to a positive or negative pulse. The sign of the pulse

depends on whether the current input sample value causes a positive or negative phase

change on the output of the modulator. The transmission of a single pulse requires that 9

output sample values be communicated through the appropriate modulator output in a

time period equal to 2Tb, or 4 samples per symbol interval.

After processing of the sample window is complete, the modulator returns to its

wait state where it waits for new data to become available. This process repeats itself

until the user terminates the application.

3.7 The Digital Up-Converter Implementation

 The implementation of the Digital Up-Converter is provided by v1.4 of the

Digital Up-Converter IP Core from Xilinx. This core is made available through v6.3 of

Xilinx’s System Generator (SysGen) software. The SysGen software allows the DUC to

be parameterized using MathWork’s Simulink Environment. The core is then translated

into a VHDL description by the SysGen software. All parameters that are set in the

Simulink environment are maintained through the translation process. Once translation is

complete, the core is then instantiated in the design.

69

Symbol values are read out of FIFO 1 and presented to the in-phase and

quadrature inputs of the DUC for processing. When processing is complete, qualified

values of the passband signal will appear on the output of the DUC on successive clock

cycles. The values that appear on the output of the DUC are pushed into FIFO 2.

3.8 Experiments

 Section 3.7 presented the reader with a logical explanation of our FM3TR

Waveform Application. Section 3.8 explains the application’s implementations at the

physical level. Factors that effect the physical level implementation include

simplifications that can be made as a result of this being a controlled experiment and the

FPGA’s board environments.

3.8.1 Simplifications

 Implementations of the FM3TR Waveform Application are intended to serve as a

vehicle for the study of the various interfaces that enable communication between the

PowerPC and the FPGA’s reconfigurable elements. As a result, simplifications were

made to reduce the complexity of our implementations’ design. Although they are valid

for the purpose of our investigations, the simplifications could not be made if any of our

implementations were to be deployed in production systems.

70

 Any implementation that is intended for use in a SDR environment should be

capable of stream based processing. In its current form, our application is not capable of

processing in stream-based environments. Implementations that implement applications

that are representative of the FM3TR Wave Application organize the incoming data

stream into successive windows of samples. These windows are then operated on

sequentially by a single processor, or concurrently by multiple processors. The windows

of data are then organized back into a single stream of data once processing is complete.

It should be noted that in order for this type of processing to work, the processing entities

must be able to accept data from their input and present data to their output at rates

consistent with those in the application specifications.

In their current forms, our implementations are only capable of processing the

initial window of the stream based processing technique described by the previous

paragraph. It was determined that the processing of the initial window was sufficient for

our study. The ability to process successive sample windows after the initial sample

window would need to be incorporated into our implementations before they could be

deployed in production systems.

 The FIFOs used in our implementations behave differently at the physical level

then those described in Section 3.4. The FIFO implementations described in Section 3.4

maintain pointers to the newest and the oldest elements in the FIFO. These pointers are

called PTR_LAST, and PTR_FIRST respectively. When the consuming entity asks the

FIFO for the next element, the FIFO will present the element that is pointed to by

71

PTR_LAST. PTR_LAST is then incremented and now points to the second oldest point

in the FIFO. Similarly, when the producing entity wishes to add an element to the FIFO

the element is stored in the location pointed to by PTR_NEW. PTR_NEW is then

incremented. When PTR_NEW= PTR_LAST, the EMPTY flag is asserted and the FIFO

is considered EMPTY. When PTR_NEW = PTR_LAST – 1 the FULL flag is asserted

and the FIFO is considered EMPTY. If either pointer equals the last address managed by

the BRAM providing the FIFO implementation, the next incrementation of that pointer

will cause the pointer to wrap around to the first address of the BRAM. The management

of these pointers and status flags is performed by the FIFO’s control logic.

 In our implementations, the FIFOs’ control logic is different. The window of

samples that are operated on fit entirely in one BRAM module. As a result, the control

logic needed to implement the circular buffer and generate the status flags does not exist.

3.8.2 Implementation Platform

 This application was implemented using a ML310 Development Board from

Xilinx. The ML310 contains a single Virtex-II Pro P30 FPGA device. The limitations of

the ML310 that were most influential in the design of our application was the lack of

board I/O, inability to create a shared memory space between the FPGA and a host

computer, and the existence of a single non-programmable oscillator.

72

 In a production version of this implementation, data would need to be streamed

into and out of the FPGA. Without the purchasing of additional equipment, the ML310

development board cannot support input or output from any external I/O source or sink.

As a result, any data that is to be processed must be loaded into the FPGA during the time

of configuration. Once the data has been processed, it is stored in BlockRAMs. The data

can then be transferred to a PC for verification through a RS232 connection. These

limitations make it difficult to support the stream-based environment that is required for

FM3TR Waveform Processing. As a result, our implementation can only process a

relatively small amount of data at a time.

 The inability to create a shared memory space between a host computer and the

FPGA can make development difficult. The presence of a shared memory space between

a host machine and the FPGA would facilitate the transfer of processed data back to the

host machine for verification. Since this shared memory space does not exist the transfer

is performed using the FPGA’s Universal Asynchronous Receiver Transmitter (UART).

Using the UART requires use of the Virtex-II Pro’s second PowerPC processor, a second

PLB instance, additional BlockRAMs, and an OPB instance. Although the use of these

additional resources may have negatively impacted the performance of this application,

they are necessary in order to overcome the limitations of the ML310 development board.

 The ML310 Development Board contains a single 100 MHz on board oscillator.

This oscillator is not programmable. Since the Digital Up-Converter Core is dependent

on the frequency of the clock, the existence of a single non-programmable clock heavily

73

influenced our implementations. The output rate of the DUC’s output data is the product

of the output rates of its Pulse Shaping Filter, Compensation Filter, and Cascaded-

Integrator Comb Filter. The Pulse Shaping Filter and the Compensation Filter each

increase the data rate of the DUC by a factor of 2. The Cascaded-Integrator Comb Filter

increases the data rate further by a factor of R, where R can range from 4 to 1448

depending on the requirements of the implementation. Thus the total data rate increase of

the DUC is equal to 4R.

 A requirement of the DUC is that its clock pin must be driven at a rate that is

greater than or equal to 4R. Since the frequency of our clock is fixed, the range of values

that R can assume is limited. In our implementations R is set to 4, making the total rate

change of the DUC equal to 16.

 The rate at which data enters the DUC is a fraction of the rate of date leaving the

DUC. Since FIFO 1 is responsible for presenting data to the DUC, its interface to the

DUC must be clocked at the rate at which the DUC is accepting data. Since only one

clock exists, a second clock had to be synthesized. This was done using one of the Virtex-

II Pro’s Digital Clock Managers (DCM). The new clock oscillates at one-sixteenth the

rate of the ML310’s onboard oscillator’s .By clocking FIFO 1’s interface to the DUC at

6.25 MHz, we were able to deliver the modulated samples to the DUC at the appropriate

rate.

74

3.8.3 Objectives

 The goal of any real time application implementation is the provision of interfaces

between data intensive processing modules that supply seemingly infinite bandwidth and

consume no device resources. Of course this goal is unachievable. The reality is that

higher bandwidth interfaces consume more device resources than lower bandwidth

interfaces. An interface design that enables communication between two data intensive

processing modules is a trade off between bandwidth, resource consumption, and

development time.

 The purpose of our application is to serve as a vehicle for the study of the

interfaces that enable communication between the PowerPC and the surrounding FPGA

logic, as well as factors that can affect the performance of these interfaces. Earlier

sections describe the interfaces in terms of their functionality and the types of data that

they are capable of moving. Using our application, we created an experimental setup that

allows us to observe the performance of each interface, and the effects that the interfaces

have on each other. This experimental setup consists of multiple implementations of the

same application. Each instance differs in the mechanisms that are used to transfer data

between the processing components (i.e. the modulator and the digital-up-converter). .

 The first step is identifying the areas in our design where efficient communication

between the PowerPC and the FPGA’s logic is critical. In our application, there is at least

one interface that exchanges data between the PowerPC and the surrounding logic. This

75

interface is responsible for presenting data to the digital up-converter input at an

appropriate rate. Depending on the implementation, the potential exists for other

interfaces to play a critical role in the performance of this type of application.

 The data transfer between the modulator and the DUC occurs when the DUC

pulls modulated signal values from FIFO 1, as described in earlier sections. The

BlockRAMs that implement FIFO 1 have the ability to be connected to either the

PowerPC405’s OCM or PLB interface. BlockRAMs that are connected to the

PowerPC405 through the PLB interface can reside on either the PLB or the OPB. Our

experiment includes three different implementations that implement FIFO 1 using

BlockRAMs that have been connected to the processor through the DSOCM, PLB, or

OPB. With these implementations, we are able to compare these interfaces in terms of

available bandwidth, resource consumption, and development complexity.

 The interface mechanism is not the only design choice that affects the

performance of the data transfer between the modulator and the DUC. In addition to

having access to a sufficient amount of memory for the storage of both the modulated and

unmodulated data, the PowerPC405 must also be able to store the instructions that are

performing the modulation. Furthermore, the processor requires use of a stack and/or a

heap to maintain the state of the processor, as well as to accommodate potential memory

allocations. The maintenance of these data structures results in the consumption of

additional memory beyond what is needed for the storage of both data and instruction.

The allocation of memory for instruction storage and the maintenance of the stack and/or

76

heap can impact the performance of the interface that is communicating signal values to

FIFO 1. This performance impact occurs when the modulated data is communicated to

FIFO 1 through an interface that is being used for instruction fetches, stack/heap

management, or both. This scenario exists when the PLB interface has been configured to

communicate instruction and data over the same bus. If the situation were to arise where

both instruction and data need to be communicated at the same time, the processor would

stall. This stall results from the fact the either data or instruction can be communicated

through the shared interface at any given instance in time, but not both. As a result, the

PLB arbiter executes requests for transfers of both instructions and data sequentially.

This forces the processor to wait until both requests are executed.

 We now describe the implementations that have been developed to enable the

comparison of the various interfaces to the PowerPC405. Each implements the FM3TR

Waveform Processing Application. The differences in the implementations are the

mechanisms that are used to communicate information between the processor and the

FPGA’s reprogrammable resources.

3.8.4 Implementation Class 1

 Implementation class 1 uses the processor’s OCM interface to communicate

modulated data to BlockRAM. Data samples and processor instructions are loaded into

the appropriate memory at the time of configuration. The data samples are read from

77

DSOCM by the PowerPC405 and modulated according to the instructions being stored in

instruction-side memory. After modulation, the data is written back into the DSOCM.

The DUC removes the modulated signal values from Port B of the DSOCM beginning

with the first value written to DSOCM and proceeding in succession from there on. The

modulated signal is processed by the DUC and pushed into FIFO 2.

 Implementation class 1 contains three implementations, a, b and c, seen in Figures

13 and 14. Implementations a, b, and c use the same memory to store the applications’

instructions and the modulated data. The difference between the three implementations is

the storage locations of the program data that is responsible for maintaining the

processor’s stack and heap. Implementation subclass 1.b stores the stack/heap data in

OCM BRAM. Implementation subclass 1.a store the stack/heap data in PLB BRAM.

Implementation 1.c is identical to 1.a except that the cache is enabled in 1.c, but not in

1.a.

 A performance analysis of implementation subclass 1.b will demonstrate the

performance that one can expect from an application that runs completely out of OCM

BRAM. A performance analysis of implementation class subclass 1.a and 1.c will

demonstrate how the relocation of the program data can affect the performance of an

application.

78

Figure 13 : Architecture Overview for Implementation Subclass 1.a and 1.c

Figure 14 : Architecture Overview for Implementation Subclass 1.b

79

3.8.5 Implementation Class 2

 Implementation class 2 uses the PLB to transfer data between the modulator and

FIFO 1. Data samples and instructions are loaded into the appropriate on-chip memory at

the time of configuration. The modulator removes the sample values from DSOCM and

performs the modulation. The sample values of the modulated signal are pushed into

FIFO 1 through the PLB interface. The DUC removes the modulated signal values from

FIFO 1 beginning with the first value written and proceeds in succession from there on.

The modulated signal is processed by the DUC and pushed into FIFO 2.

 Implementation class 2 contains 6 implementations. Implementation 2.a, shown in

Figure 15, stores its program data in DSOCM BRAM. Implementation 2.b, shown in

Figure 16, stores its program data in PLB BRAM. Instructions and program data for both

implementations are stored in ISOCM BRAM and PLB BRAM respectively.

80

Figure 15 : Architecture Overview for Subclasses 2.a

Figure 16 : Architecture Overview for Subclass 2.b

 Implementations 2.c, 2.d, 2.e, and 2.f, seen in Figure 17, demonstrate the

performance consequences of storing both data and instruction in PLB BRAM. The

sharing of a single PLB between multiple memories will cause contention if the processor

81

attempts to communicate data and instruction over the PLB at the same time. This

contention will need to be resolved by the PLB arbiter before either communication can

proceed. Use of the processor’s cache can be used to speed up the performance of these

implementations. By enabling the cache, communication over the PLB can be reduced

significantly. This communication reduction is dependent on the locality of the data

stored in PLB BRAM.

Figure 17 : Architecture Overview For Subclasses 2.c, 2.d, 2.e, and 2.f

3.8.6 Implementation Class 3

 Implementation class 3 demonstrates the performance of the application when the

modulated data is communicated to memory over the OPB. Data samples and instructions

are loaded into the appropriate on-chip memory at the time of configuration. The

82

modulator removes the sample values from either PLB or ISOC BRAM and performs the

modulation. The sample values of the modulated signal are pushed into FIFO 1 through

the PLB interface. The PLB/OPB recognizes that the destination address of the

modulated data and generates the appropriate transaction on the OPB. The DUC removes

the modulated signal values from FIFO 1 beginning with the first value written and

proceeds in succession from there on. The modulated signal is processed by the DUC and

pushed into FIFO 2.

 Implementation 3.a, shown in Figure 18, stores the processors instructions in

ISOCM BRAM, the program data in DSOCM BRAM, and the modulated data in OPB

BRAM.

 Implementations 3.b and 3.c, shown in Figure 19, demonstrates the consequences

of sharing the PLB, while communicating modulated data over the OPB. In

Implementation 3.a, all of the memories are connected to separate interfaces, allowing for

concurrent memory transfer. This is the best possible scenario given the implementation

specification requiring the modulated data to be communicated over the OPB. The

moving of instruction storage to the PLB in Implementation 3.b will create contention for

the PLB bus. This contention is resolved in Implementation 3.c by enabling the i-cache.

83

Figure 18 : Architecture Overview of Implementation 3.a

Figure 19 : Architecture Overview of Implementation 3.b and 3.c

3.9 Summary

This chapter begins with an explanation of FM3TR modulation and digital up-

conversion. We then give an overview of our FM3TR application including the software

implementation of our FM3TR modulator and the hardware implementation of the digital

84

up-converter. Finally we describe several implementations of our FM3TR application

used to study the various interfaces that enable communication between the PowerPC405

and the surrounding FPGA fabric on a Xilinx Virtex-II Pro.

85

Chapter 4

Experimental Results

 In this chapter we describe the results of this investigation. We begin by

describing the technique that was used to measure the performance of our

implementations. Next we present the performance results for each implementation that

was discussed in Chapter 3. Finally we analyze the similarities and differences between

the performance results for each implementation.

.

4.1 The Programmable Interval Timer (PIT)

 Performance measurements are made for each implementation using the

PowerPC405’s Programmable Interval Time. This timer is controlled by various software

instructions that are executed on the PowerPC. Physically, the timer is a 32-bit register

that is incremented synchronously with the PowerPC’s clock. A software task can be

timed by initializing the timer with a value of 0, executing the software task, and then

reading the value of the timer. This value will indicate the number of clock cycles that

have elapsed since the timer was initialized to a zero value. The product of the timer’s

values and clock period is the execution time of the software task.

86

 An implementation’s performance is measured in terms of the time it takes for the

implementation’s modulation code to execute on the PowerPC processor. The

computations that are performed within the modulation code are identical among the

implementations. The only difference is the technique used to enable communications

between the processor and the surrounding FPGA fabric.

The modulation code’s execution time is measured by resetting the Programmable

Interval Timer (PIT) to 0, executing the modulation code, and then reading the value of

the PIT. The value of the PIT after the modulation code executes indicates the number of

clock cycles that elapsed during the modulation.

 Using the PIT to measure the execution time of the implementations effects the

actual timing measurement. The discrepancy is due to the clock cycles that are consumed

in the reading of the PIT register value. The number of clock cycles consumed by this

operation is on the order of several cycles. Since the application’s cycle consumption is

on the order of several thousand clock cycles, the error introduced by this timing method

is negligible. Furthermore, since each execution is timed using the same technique, a

relative comparison of all the implementations need not consider the performance

penalties of the timing technique provided that the penalties incurred in each execution

are identical.

87

4.2 Implementation Results

 Once the clock cycle consumption of each implementation is measured, they are

compared to one another. Since the computation in each implementation is identical,

differences in execution cycles are attributed to the performance differences of the

PowerPC’s interfaces. By comparing the execution cycles that are consumed by each

implementation, we are able to determine which interfacing techniques work best. Tables

8 and 9 show the results that were obtained from each of the implementations. Table 8

shows the how each implementation’s memory is organized. Table 9 gives the

performance results for the implementations of Table 8. It should be note that since the

OCM interface is a non-cacheable interface, the enabling or disabling of the cache effects

the PLB interface only.

The values in the column titled Computation Cycles are obtained by measuring

the number of clock cycles consumed by the execution of a modulation code version that

does not save the result of each computation to memory. The values in the column titled

Total Cycles are obtained by measuring the number of clock cycles consumed by the

execution of a modulation code version that saves the result of each computation to

memory. The values of the Communication Cycles are the difference between the values

in the Total Cycles column and the Computation Cycles column. It should be noted that

the values in the Communication Cycles column do not reflect the communication costs

associated with instruction fetches. The values indicate the number of clock cycles

88

required to communicate the modulated data to memory. Instruction transfers are

required for computation and thus are reflected by the values in the Computational

Cycles column. Differences in the number of computational cycles between

implementations are due to differences in instruction fetch times.

Table 9 : Implementation Configurations

Implementation Instruction
Location Stack/Heap Application Data I-Cache D-Cache

1.a ISOCM DPLB BRAM DSOCM N/A DISABLED
1.b ISOCM DSOCM DSOCM N/A N/A
1.c ISOCM DPLB BRAM DSOCM N/A ENABLED
2.a ISOCM DSOCM DPLB BRAM N/A ENABLED
2.b ISOCM DPLB BRAM DPLB BRAM N/A ENABLED
2.c IPLB BRAM DSOCM DPLB BRAM DISABLED DISABLED
2.d IPLB BRAM DSOCM DPLB BRAM DISABLED ENABLED
2.e IPLB BRAM DSOCM DPLB BRAM ENABLED DISABLED
2.f IPLB BRAM DSOCM DPLB BRAM ENABLED ENABLED
3.a ISOCM DSOCM OPB BRAM DISABLED DISABLED
3.b IPLB BRAM DSOCM OPB BRAM DISABLED DISABLED
3.c IPLB BRAM DSOCM OPB BRAM ENABLED DISABLED

89

Table 7 : Implementation Performance Results

Implementation Computation
Cycles

Communication
Cycles Total Cycles

1.a 7828 20566 28394
1.b 7818 13468 21286
1.c 7816 13462 21278
2.a 8430 17752 26182
2.b 8430 27716 36146
2.c 16638 36887 53525
2.d 15561 40400 55961
2.e 6519 17659 24178
2.f 6519 17742 24261
3.a 7779 29225 37004
3.b 17891 46238 64129
3.c 16766 21312 38078

4.3 Analysis of Results

4.3.1 The OCM Interface Analysis

 The results show that communicating to the fabric through the processors On-

Chip Memory (OCM) interfaces delivers the highest performance. This is illustrated by

implementation 1.b, which communicates both instruction and data through the

processor’s OCM interfaces. This implementation executes the entire processor

application in under 23000 clock cycles. This is comparable to implementation 1.c, which

executes in approximately the same amount of time using PLB BRAM to maintain the

processor’s stack and heap. However, the performance delivered by 1.c is dependent on

the processor’s ability to use its internal cache. When the cache is disabled, the processor

90

must use the fabric of the FPGA to communicate with PLB BRAM. The need for this

communication is the reason why implementation 1.a’s performance is poor when

compared to 1.b and 1.c. When compared to other implementations of the same class, the

results of implementations 2.a and 3.a are consistent with the results described in the

analysis of Implementation Class 1. This leads us to conclude that the OCM interface

provides the fastest communications between the processor and the fabric.

It is interesting to note that the communication performance of a cache enabled

PLB interface is comparable to the performance of the OCM interface. This observation

may depend on the fact that the cache is capable of storing all of the data communicated

through the PLB interface. If the size of the stored data is larger than the cache, the need

to fetch data from BRAM may widen the performance gap between the OCM and the

cache enabled PLB interface. Furthermore, if the locality of the data that is being

communicated through the PLB interface is poor, the cache will not be of any use.

4.3.2 The PLB Interface Analysis

4.3.2.1 The Processor Local Bus

The results indicate that using the PowerPC’s cache appropriately can drastically

improve the performance of implementations that use the Processor Local Bus (PLB)

interface to communicate to the FPGA’s fabric. Implementations that illustrate this fact

91

include 2.c, 2.d, 2.e, 2.f, 3.b, and 3.c. When we compare implementations 2.c, 2.d, 2.e,

and 2.f to each other we see that the enabling of the I-Cache results in a reduction in

execution time by more than 50%. Before the enabling of the I-Cache in 2.e and 2.f, the

IPLB and the DPLB were fighting for control of the PLB. Enabling the I-Cache allows

for the instructions to be fetched almost exclusively form the processor cache. This

increases the performance of the application. Furthermore, the investigations in [21]

show that using a cache enabled PLB interface to communicate data to the fabric

consumes 5 times less power than an equivalent implementation that uses a PLB interface

with the cache disabled, and 3 times less power than an implementation that uses the

OCM interface. Though this analysis was done using a slightly different application, it is

evident that using the cache to reduce communication over the FPGA fabric can result in

a substantial power savings.

 Performance improvements that result from the I-Cache are a consequence of the

instruction’s temporal locality. Temporal locality is a consequence of the frequent

execution of one instruction within a given window of instruction code. The modulation

code executes a loop that maps each input sample to a pulse. Since the instructions of

successive loop iterations are identical, the execution frequency of the instructions that

exist within the loop are high. Furthermore, all of the instructions that execute within the

loop can fit inside the I-Cache. If the loop code did not fit entirely in the cache, each loop

iteration will result in several cache misses. These cache misses cause the application’s

92

performance to suffer. In our implementations the PowerPC can take advantage of

temporal locality, but not spatial locality.

 Spatial locality is a consequence of the fact that instructions are stored

contiguously in memory. A cache can take advantage of spatial locality by loading the

values of several contiguous memory locations into the cache each time a cache miss

occurs. Since instructions are stored contiguously, the probability of the next instruction

fetch resulting in a cache hit is high. Although the processors instructions exhibit spatial

locality, the processor is configured by default to only load one word per cache miss.

However, the user can change this cache policy so that up to eight words can be loaded

into the cache each time the cache misses. We chose to allow the cache to follow its

default policy of loading one word per cache miss.

Implementations 2.d and 2.f are instances where use of the PowerPC’s cache can

hurt. When compared to implementations 2.c and 2.e, it can be seen the enabling of the

data-side cache hurts the performance of the implementations. This drop in performance

is a consequence of the processor’s efforts to maintain cache coherency. An input sample,

and the values of the modulated signal produced as a result of the input sample, plays no

part in future computations. As a result, it can be said that the application’s data exhibits

poor temporal locality. This poor locality makes the performance costs from having to

write data to the cache and to the BRAM greater than any performance gain that results

from the enabling of the cache. It should be noted that the application’s data does exhibit

93

spatial locality. However, our implementations configure the PowerPC to take advantage

of temporal locality, but not spatial locality.

 In addition to data locality, another factor that makes maintaining cache

coherency difficult is the fact that PLB BRAM can be shared between the processor and

the logic. In instances where the processor communicates data to logic via PLB BRAM,

the possibility exists that the data in the PLB BRAM is inconsistent with the data in the

cache. A similar scenario exists when logic communicates data to the processor via the

PLB BRAM. When logic writes data into PLB BRAM it may create an inconsistency

with the values that are currently stored in the processors’ cache. To resolve these

inconsistencies and still make use of the D-Cache, the processor’s cache should be

flushed before the communication between the processor and the logic occurs.

 Our experiments show that the D-Cache should be disabled in streaming

applications that used the PLB BRAM to store application data. Configurations that use

PLB BRAM to store the application’s stack/heap can benefit from enabling the D-Cache.

This can be seen in a comparison of implementations 1.a and 1.c. Both implementations

are identical except that 1.a executes the application with the D-Cache disabled, while 1.c

executes the application with the cache enabled. It can be seen that the enabling of the D-

Cache reduces the execution time by approximately 7000 cycles. This suggests that

spatial locality of the program data is sufficient to make its placement in cacheable

memory beneficial to the performance of the application.

94

4.3.2.2 The On-Chip Peripheral Bus

 Our experiments show that the On-Chip Peripheral Bus (OPB) is capable of

offering reasonable performance when there are no devices that have to fight for control

of the PLB. Implementations 3.a and 3.c indicate scenarios where the OPB offers

performance that is comparable to the PLB. However, neither implementation execution

suffers from bus contention. In 3.a, all data except for the application’s data is store in

OCM BRAM. As a result, traffic appearing on the PLB and the OPB is always destined

for OPB BRAM. In implementation 3.c, the instruction data has been moved to PLB

BRAM. However, implementation 3.c’s enabling of the cache nearly eliminates any

traffic on the PLB related to the communication of processor instructions. This is a

consequence of the fact that all of the processor’s instructions are capable of fitting inside

the PowerPC’s cache. Since the I-Cache is capable of retaining all of the processor’s

instructions, the need to fetch instructions over the PLB does not exist.

 Implementation 3.b is identical to 3.c except for the instruction cache in 3.b being

disabled. This disabling of the cache forces both the processor instruction and

application’s data to be fetched through the PLB interface of the processor. This creates

contention on the PLB, drastically lowering the performance of the design.

 Using the results of the execution of Implementation Class 3, we conclude that

the performance OPB is reasonable provided that contention for the PLB is minimized. In

95

general , the PLB should be used to communicate data to and from the processor. Devices

that only support OPB interfaces can be used with the OPB and still be expected to

deliver reasonable performance. However, as contention over the buses increases, the

performance of the application will drop considerably.

4.4 Summary

 In this chapter we presented the performance results for all of our

implementations. It can be seen that the OCM interfaces provide the fastest

communication with the fabric. The PLB provides comparable performance to the OCM

when the cache is enabled and the locality of the data is good. We also saw the using the

PLB to service multiple peripherals lowers the performance of the interface. This

performance hit can be reduced through use of the cache. Finally, we saw that the OPB

delivers reasonable performance when the traffic on the PLB bus is low.

96

Chapter 5

Conclusions and Future Work

5.1 Conclusion

 The emergence of FPGA architectures that contain embedded processor leaves

many designers with questions of how to use the various memories that exist within an

embedded processor system efficiently. In this investigation we used a FM3TR

Waveform application to provide a vehicle for the use of investigating the various

interfaces between the FPGA and the processor. The results can be used to guide future

applications that have similar data attributes.

 This investigation shows that the performance of an application that uses the

Virtex-II Pro’s embedded processor is affected by the types of interfaces that are chosen

to communicate data between the processor and the fabric of the FPGA. It was seen that

the OCM and PLB are both capable of providing high performance if used appropriately.

Data that requires a high performance interface, but does not exhibit good locality should

be communicated through the OCM interface. Data that exhibits good locality should be

communicated through a cache-enabled PLB interface. Application designers that have

reasons for communicating data with poor locality over the PLB should consider

disabling the cache to eliminate the overhead associated with the maintenance of cache

coherency. Communication over OPB delivers reasonable performance provided that the

number of devices contending over the bus is low.

97

5.2 Future Work

The results of our experiments show that data locality can dramatically increase

the performance of a given implementation. Our implementations are configured to load

a single word each time a cache miss occurs. Since the modulator’s input samples are

stored in contiguous memory locations, loading multiple successive words into the cache

each time a miss occurs increases the number of future memory accesses that result in

cache hits. These performance benefits associated with spatial locality have not yet been

investigated. Future implementations will investigate the performance benefits of

configuring the PowerPC’s cache to take advantage of spatially local data.

 This investigation describes the performance of the PowerPC’s interfaces in terms

of the number of clock cycles required to communicate data from the processor to the

surrounding FPGA fabric. In future studies of the PowerPC interfaces we hope to study

the amount of FPGA resources that are consumed by the use of a specific interface. Such

a study would enable application designers to decide if the performance benefits from

using a particular interface outweigh the area costs.

 We have seen that the application data’s lack of temporal locality hurts the

performance of the application when the cache is enabled. The application data for image

processing applications exhibit good temporal locality. This is because a single input

sample contributes to multiple calculations. To explore these benefits, we hope to

develop an image processing application that makes use of the PowerPC processor.

98

 Finally, the implementations presented in this investigation use the PowerPC to

modulate data. Alternatively, the modulation could be performed entirely in logic. Such

an implementation would allow us to compare a processor application with an equivalent

logic implementation. This would help us determine scenarios in which the use of the

processor application consumes less of the device’s area than the equivalent logic

implementation.

99

Bibliography

[1] AFRL. Description of the FM3TR Proposed Reference Waveform, August 2001.

Last Accessed August 2005. http://www.sdrforum.org/MTGS /mtg_25_sep01
/01_i_0056_v0_00_fm3tr_97_09_10_01.pdf

[2] Gordon Brebner. Single-Chip Gigabit Mixed-Version IP Router on Virtex-II Pro.

Proceedings of the 10th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, 2002.

[3] Gordon Brebner. Eccentric SoC Architectures as the Future Norm. Proceedings of

the Euromicro Symposium on Digital Design, pages 2-9, Sept 2003.

[4] Gordon Brebner Eric Keller and Phil James-Roxby. Software Decelerators. 12th

Annual IEEE Symposium on FCCM, pages 3-12, 2004.

[5] Kraig Lund. PLB vs. OCM Comparison Using The Packet Processor Software.

The Xilinx Corporation, v1.1 edition, October 2004. Last Accessed July 2005.
http://direct.xilinx.com/bvdocs/appnotes/xapp644.pdf.

[6] John G. Proakis and Masoud Salehi. Communication Systems Engineering,

chapter 7. Prentice Hall, 2002.

[7] OCP International Partnership. Open Core Protocol Specification, v2.1 edition,

2005. Last Accessed May 2005. http://www.ocpip.org.

[8] Pierre A. Laurent. Exact and Approximate Construction of Digital Phase

Modulation by Superposition of Amplitude Modulated Pulses. IEEE Transactions
on Communications, 2(COM-34):150-160, February 1996.

[9] Punit Kalra. UltraController-II: Minimal Footprint Embedded Processing Engine.

The Xilinx Corporation, v1.0.1 edition, February 2005. Last Accessed July 2005.
http://direct.xilinx.com/bvdocs/appnotes/xapp575.pdf.

[10] Software Defined Radio Forum . FAQ . http://www.sdrforum.org/faq.html

[11] Steve Trynosky, Matt Dipaolo, Kraig Lund, Ryan Laity. PowerPC405 PPE

Reference System Using Virtex-II Pro RocketIO Transceivers. The Xilinx
Corporation, v1.1 edition, July 2003. Last Accessed July 2005.
http://direct.xilinx.com/bvdocs

100

/appnotes/xapp669.pdf

[12] The Xilinx Corporation. Chipscope Pro Software and Cores User Guide, v6.3.1
edition, October 2004. Last Accessed July 2005. http://www.xilinx.com/ise
/verification/chipscope_pro_sw_cores_6_3i_ug029.pdf.

[13] The Xilinx Corporation. Embedded System Tools Reference Manual, v3.0 edi-

tion, August 2004. Last Accessedf July 2005. http://www.xilinx.com/ise/
 embedded/edk6_3docs/est_rm.pdf.

[14] The Xilinx Corporation. Digital Up Converter Product Specication, v1.4 edition,

May 2005. Last Accessed July 2005. http://www.xilinx.com/bvdocs/ipcenter
/data_sheet /DUC.pdf

[15] The Xilinx Corporation. PowerPC405 Block Reference Guide. v2.0 edition, July

2005. Last Accessed July 2005. http://direct.xilinx.com/bvdocs/userguides
ug018.pdf

[16] The Xilinx Corporation. ML310 User Guide. v1.1.4 edition, January 2005, Last

Accessed July 2005. http://www.xilinx.com/products/boards/ml310/current/pcb
/sch/ug068.pdf

[17] The Xilinx Corporation. Virtex-II Pro and Virtex-II Pro X FPGA User Guide.

v4.0 edition, March 2005. Last Accessed July 2005. http://direct.xilinx.com
/bvdocs/ userguides/ug012.pdf .

[18] The Xilinx Corporation. Asysnchronous FIFO. v6.1 edition, November 2004. Last

Accessed July 2005. http://www.xilinx.com/ipcenter/catalog/logicore/docs/
sync_fifo.pdf.

[19] The Xilinx Corporation. The Virtex-II Pro and Virtex-II Pro X Platform FPGAs:

Complete Data Sheet. V4.3 edition, June 2005. Last Accessed July 2005.
http://direct.xilinx.com/bvdocs/publications/ds083.pdf.

[20] Wipro Technologies. Software Defined Radio White Paper, August 2002. Last

Accessed May 2005. http://www.broadcastpapers.com/broadband
WiproSDRadio.pdf.

101

[21] Jingzhao Ou and Viktor K Prasanna. A Methodology for Energy Efficient
Application Synthesis Using Platform FPGAs. Engineering of Reconfigurable
Systems and Algorithms (ERSA), pages 280-283, 2004.

