NORTHEASTERN UNIVERSITY

Graduate School of Engineering

Thesis Title: Multimedia Macros for Portable Optimized Programs
Author: Juan Catlos Rojas
Department: Electrical and Computer Engineering

Approved for Thesis Requirement of the Doctor of Philosophy Degtee

Thesis Advisor Date
Thesis Committee Member Date
Thesis Committee Member Date
Thesis Committee Member Date
Department Chair Date

Director of the Graduate School Date

NORTHEASTERN UNIVERSITY

Graduate School of Engineering

Thesis Title: Multimedia Macros for Portable Optimized Programs
Author: Juan Catlos Rojas
Department: Flectrical and Computer Engineering

Approved for Thesis Requirement of the Doctor of Philosophy Degree

Thesis Advisor Date
Thesis Committee Member Date
Thesis Committee Member Date
Thesis Committee Member Date
Department Chair Date
Director of the Graduate School Date
Copy Deposited in Library:

Reference Librarian Date

MULTIMEDIA MACROS FOR PORTABLE
OPTIMIZED PROGRAMS

A Thesis Presented

by

Juan Catlos Rojas

to

The Department of Electrical and Computer
Engineering

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

in the field of

Electrical Engineering

Northeastern University
Boston, Massachusetts

August 2003

ABSTRACT

MULTIMEDIA MACROS FOR PORTABLE
OPTIMIZED PROGRAMS

by

Juan Catlos Rojas

Northeastern University, Boston

Thesis Advisor: Professor Miriam Ieeser

Multimedia processor architectures offer a combination of long partitioned registers and
complex instructions that can speed up applications significantly when programmed manually.
Optimized programs for these architectures have been non-portable up to now, because of
differences in the instruction sets, register lengths, alighment requirements and programming
styles. This dissertation presents a method that overcomes all these obstacles by providing a
virtual instruction set common to a group of target architectures. This virtual instruction set is
implemented as a library of C pre-processor macros called MMM. The macros can emulate
long registers on architectures with short ones, and emulate complex instructions that are

missing in certain targets.

This research is the first to provide a general solution to the portability of optimized
multimedia programs. No other method to date allows an arbitrary program to take advantage
of the complex partitioned operations available in multimedia instruction sets, while remaining

portable.

MMM libraries were implemented for MMX & SSE, SSE2, AltiVec and TriMedia TM1300
multimedia architectures. Three examples from video compression were implemented in a
portable way using MMM. The examples include IDCT, block distance for motion estimation,
and block distance with interpolation. The portable examples were automatically translated
into optimized code for each of the targets. Their performance 1s comparable, and in several

cases better, than equivalent examples optimized by the processor vendors.

To Eticka, Laura and Sofia

CONTENTS

COMEEIIES 1.viuveeietieteeieteeteetete et et ete et et e e st e e eteetessetastessetessessetassessesassessebasessebe s esseta b essesassessetansessetansessetansesssanes \%
| FL Y wwu o) o LTSRS vil
TTADIES ettt r et ettt ettt eea e nten b et et et e eaeeatent et et et enesaeenseneeneenes viil
Chapter 1: INtrOAUCHONouvuiiiiiiicicicc s 1
1.1 Optimization vs. POItabiltycccocviiiiiiicccccccccccccccccss s 2

T2 MMM .ottt ettt ettt et ettt et et ettt et et e nt et et eet et tent et et ene et eteneerenens 2

1.3 Othetr APPLOACREScouveieiiiiiiiiii s 3

1.4 CONTIDUHOMNS ...ttt ettt ettt ettt e et eas s et ese s sesssetessseseasasesessesetesssesesseseseanas 4

1.5 Organization of this DISSEItation........cccvueuiiricinciciccccccccees s 5
Chapter 2: Problem DesCrPHON. ..o ssasaes 6
2.1 BacKgIoUNd ... 6

2.2 PLODBIEIN. ..ttt ettt ettt ettt ettt an et ae st aes et eae st esnanesenn 11

2.3 SOIUHOMN .ttt ettt ettt e et ettt ae s et ess s et easas et ess s et essasesesensesessasesesensesessasasesan 14

24 REIAtEd WOLK ..ottt ettt ettt ettt ettt et et ettt aseta s e s ereesensesenee 17
2.4.1 Parallelizing COMPIIELSc.cvruieeiiiiciiiiciciii e 17

2.4.2 Data-Parallel Languagesccccouuiuriuniineiiiiiniiciciccccsccssscscscss s 19

2.4.3 Optimized LIDLALIESc.vuiviiiiiiiicicicccccc s 22

2.4.4 Code Generation from Abstract Descriptions ... 24

2.4.5 Other Related ReSEATCh......ouovcuieieiceieeeceecteeeeeeeteeteee ettt 26

2.5 SUMMALY oottt 26
Chapter 3: ReSEALCh. ..o 27
3.1 ODBJECHVES ...ovuviieiciicici s 27
311 POLADIHEY .o 27

3.1.2 PeIfOINANICE .vevevveeeeeteeeeetetetetee ettt et ea et as st as st ssesesessesessesesesnaseseasenesennas 28

3.2 MethOdOLOZYcvuiiiiiiiiiicic s 29
3.2.1 Target Architecture SEleCON ..o 29

3.2.2 Definition of a Common Virtual InStruction Set......cccoeeeveeereeeereeieeieeeereeeeeereeeeeenns 34

3.2.3 Implementation of an MMM Library for each Targetccccocvvveiivcecicncncincnnn. 35

3.2.4 Example Program SeleCtioncococucucuricincicicicicicicsecscsccssscse s 35

3.2.5 Analysis of Reference Implementations of Examples.........ccccoocvvininciincincncnnn. 40

3.2.6 Implementation of Portable Optimized Examples in MMMcccocovvvrviiniinnnnane 44

3.2.7 Performance MEaASULEIMENTc.ceeveveuieeereeeeeeteaeeseteaeeseseseesesessesesessesesessesesessesesesesesennas 45

3.3 SUMIMIALY ..ottt e nees 46
Chapter 4: Common Virtual INStucton Set........cciiiiiiiniiiicccccc s 47
A EAVA e ro Y o B I el F R 21 (63 V- TR TR 48

4.2 Set TNSHUCHONS ..vveeeteeieteteeeeteteee ettt et ettt et et s st as et se st esess et essasesesensesessasesesensesessasesesan 50

4.3 Load and Store INStIUCHONSc.cviieeereeieeeteeeteteeeteteeee ettt ettt s et ae s s ssnesenas 52

4.4 Rearrangement INStrUCHONScccviuieriiiiriciiicc s 55

4.5 CoNVersion INSTUCHOMS ...ooviuiereieeieteieeecteetee ettt ettt ete et teete s eteebeaseseeseseseesensessesensesenne 57

4.6 Bit-wise LogIC INStIUCHONS «...cvuvvuiviicicicicicicicccccs s 60

4.7 SHift INSTIUCHONS c.cveveviveteeeeteteeeeteteeet et et eve et te s et ete st ese s esese st esessesessssesessssesessasesesensesessasesenan 61

4.8 Floating-Point Arithmetic INStrUCHONS.cvrviviiiicicicicc s 62

v

4.9 Integer Arithmetic INSHUCHONSvvvurviricicicici s 63

4.10 ComparisOn INSTIUCHONScvuriurveeiieiieiieie et 70
AT SUIMTIALY <. snses 71
Chapter 5: Example PLOZIAMScovviiiiiciicicicic s 72
LTS5 U 5 L G5 OO 72
5.1.1 Hotlzontal IDCT ..ottt ettt e s e er et nsenensens 73

5.1.2 VertiCal IDICT ...ttt ettt ettt st sens s s eaeeneneneans 79

5.1.3 Target-Specific OPtMIZATONS......curvrvrvireiircicieicsecseesesessse s ssssssssessses 83

5.2 10XT0 L -DISTANCE ...ttt ettt ses 84
5.2.1 Portable MMM DESIZN.......cvimiiiiiiiciiiciiiciccis s 34

5.2.2 Target-Specific OPtMIZAONS.covrvieirriiiiciiiinrsse s 87

5.3 16x16 L;-Distance with Interpolation ... 87
5.3.1 Portable MMM DESIZN......covuimriiiiiiicicicicinicicicescse s ssssssns 87

5.3.2 Target-Spectfic OPtMIZAONS.cuevrvimiiciiiiciiiisss s 90

5.4 SUMMALY oot 90
Chapter 6: RESULILSouviiiiic s 91
6.1 THiMedia TIMTI300 ... ettt sss st ese st esesesessnessssnesenesesesens 92

.2 IMIMEX A SSE ...ttt sttt ettt ettt st ettt aet s en et e et sttt etens 95

0.3 SSE2 ettt ettt et ettt ettt a sttt et ettt ettt r s as ettt st et etetens 95

G ATEVEC ettt ettt ettt et ettt es e st et eas st e st et ess et eanas et eananene 102
Chapter 7: Conclusions and Future Work ..o 107
7.1 MMM LIMIEAIONS cvvieeeveveeevereeeeteteteeete et et esesesteseseseesesessesessssesesessesesessesesessesesenssesenesans 108

7.2 The Next Step: MMC ... sssses 109
Appendix A: Virtual Instruction Set Definition ..o, 111
AT VeCtor DECIatationN.......vcueeeeeeeiieicteeeeeceeeeeeeee ettt ettt et sttt ess s s esssesessnens 111
A2 SEt ISHITUCHOMNS 1.ttt ettt ettt ettt ettt et et et st ss et est st et esessassesessensenessensesessensesessens 112
A3 Load and Store TNStITUCHOMNSccviuieeeetiieeeteeereteeeeete et eresesereseserese e esesseseseseesesesesesessenens 113
A4 Rearrangement INStIUCHONS ...c..cuucvrvrvcicicicicicecceccc s 115
A5 CoNVersion INSTIUCHONSovcuievevcuieieeetieeteteeetete ettt te s ese st et seeseseassesesssesesssesesssens 116
A6 Bit-wise LogIC INSIUCHONScvuivuiriiiiiiciciciciciccicicecscie s 117
AT Shift INSTUCHONS .ttt ettt ettt et eas s et esesesesesetesssesessesesesssesenssens 118
A.8 Floating-Point Arithmetic INStrUCHONS......c.vvrvcvriciciciciceccee s 119
A9 Integer Arithmetic INSHUCHONS ...cv.vvuiviivciciciciceccc s 119

A 10 CompatiSon INSIUCHONScuiviiiiiiircicicicicicce e 122
Appendix B: MMM Libraty Implementation..........cccuiiicinsccscssscscesssceenns 123
B.1 TriMedia TMI300coeeieeeeeeeeereeteeeeeeee ettt ses et esese et et esessassssssesesesesessasssnsnsaes 123
B2 MMX T SSE .ottt se sttt sttt s et ettt as s sttt n et et aeananannnaes 129
B3 SSE2e ettt ettt ettt et a ettt sttt et et nenenennas 133
Bl ATV OC ittt ettt ettt sttt sttt st et e ettt st et et st et et e st e aenes 136
Appendix C: MMM Example Programs ..o 140
CL BB IIDIC T ettt ettt e s s st et a s sasssns s s s enesesesesesessasasnsnssnanas 140
C.2 16X10 L -DISTANCE ...ttt 147

C.3 16x16 L;-Distance with Interpolation. ..o 149
GLOSSALY 1.t 151
BIbHOGIAPNY ..ot s 152

vi

ILLUSTRATIONS

Figure 2.1 Speedup of hand-optimized multimedia kernels over scalar versions.ccccecuene. 10
Figure 6.1 Speedup of optimized examples on TriMedia TM1300cocooormriiiiiiiiiiiiieie, 93
Figure 6.2 Speedup of optimized examples on MMX + SSE.......cocooiiiircccce, 96
Figure 6.3 Reduction in instruction counts on MMX + SSE ..., 98
Figure 6.4 Speedup of optimized examples 01 SSE2.........cccooviiiiiiiiiiiiccccces 100
Figure 6.5 Reduction in instruction counts on SSE2.........ccocciiinicininccecnes 101
Figure 6.6 Speedup of optimized examples 01 AIHVEC ... 103
Figure 6.7 Reduction in instruction counts on AIIVeC. ... 105

Vit

TABLES

Table 2.1 Popular processors that have multimedia INStIUCHON SELS....c..cvrvrvrvcvciciciciciciciaaes 7
Table 2.2 Some complex parallel instructions supported by multimedia architectures 8
Table 2.3 Published results for Speedup ..o 9
Table 2.3 Different styles for declaration and operations on partitioned datacccccevueeunence. 11
Table 3.1 Characteristics of the instruction sets in the selected target architectures 30
Table 4.1 MMM VECtOr dECIArAtIONScvveveeeriereeeriereeeteeteeeeteeteet e ereeteseereeseseeseesesseseesessesessesseseseseesens 49
Table 4.2 MIMIM. SEt INStITUCHOMS ...veveeverereereeereereeeeteeseeseseeseeseseesesseseeseseseesesessesessessesessessesessessesesseseesens 52
Table 4.3 Implementations of vector load macro on all targetscccovvvuvcvvcvvcerciicincieciicicicines 52
Table 4.4 MMM 1oad and StOTe MSTIUCHONS ...oveueeveveeeeecreeeereteeeteteeeteseeeseseeeseseesesesesseseseesesesesseseseanas 55
Table 4.5 MMM rearrangement MStIUCHOMS.ovruirierimeicrieeiessie s sssesssssssssssssssssssesssssssses 57
Table 4.6 MMM CONVELSION INSTIUCHONIS ..vveveeveerereereeereereeseseeresseseeseeseseesesseseesessessesessessesessessesesseseesens 59
Table 4.7 MMM bit-wise 10ZIC INStIUCHOMNScvurvrrvrrvrricreiieciceeicsc s sassesaes 60
Table 4.8 MMM Shift ISTIUCHONS ...coveveeeeveriieteteeceteteeeteteeereseteseteseseseseseseesesesesesesessesesesesesensesesennas 62
Table 4.9 MMM floating-point arithmetic INSIUCHONScuvervrvriciciieieriesreiesess e 63
Table 4.10 MMM integer arithmetic INSIUCHONS «...cvuvucvieiciiiicii e 69
Table 4.11 MMM comparisOn MSTIUCHONScuurvrrvrrrreceeecssicesescsesseseesesessssssssssssssssssssessssessees 70
Table 6.1 Execution times in cycles on TriMedia TM1300.........cccocvriiricncnciciccnccccenes 92
Table 6.2 Speedup of optimized examples on TriMedia TM1300.........ccccovrvviviviriricininiicinnnn. 93
Table 6.3 Instruction counts on TtiMedia TM1300cccoivirriiiiieieiieeieeeese e 94
Table 6.4 Reduction in instruction counts on TriMedia TM1300c.coocvevereevereeceeeeeeeeeeeerenen, 94
Table 6.5 Execution times in cycles on MMX + SSE ..o, 95
Table 6.6 Speedup of optimized examples on MMX + SSE.......cccooviiiiininniicccncces 95
Table 6.7 Instruction counts o1 MMX & SSE ..ottt 97
Table 6.8 Reduction in mnstruction counts on MMX + SSE.....cooviiiiiiieieeceeeeeeeeeeeeenne 97
Table 6.9 Execution times i cycles 01 SSE2coviiiicccccc s 99
Table 6.10 Speedup of optimized examples on SSE2ccooiiiiiiiiiccccces 99
Table 6.11 Insttuction coOUuNts 0N SSE2.......ooiiiieeeeceeee ettt et eae e ne 100
Table 6.12 Reduction in instruction counts 0N SSE2 ..ot 101
Table 6.13 Execution times in clocks 0N ATHVEC.....c.cioiuiuioiereiieecteeeeeeeeeeee e 102
Table 6.14 Speedup of optimized examples 0N AIHVEC ... 102
Table 6.15 Instruction cOUNts 0N ATV EC. ..ottt 104
Table 6.16 Reduction in instruction counts o0 AIHVECcevveveeieeeviieeeeeeeteeeeee e 104
Table A.1 MMM vector declaration MACLOScccvcveveeeevereeerereeeteseeeeeteseseeeeeseeeseseeseseseseseseesenens 111
Table A.2 MMM SEt INStIUCHOMNS «..vveueveveererereeeerereeseseseeesesensesesesesesessesesensesesensesesessesssensesesessesessnsesens 112
Table A.3 MMM load and Store INStIUCHOMNS «...c.eeveveveeerereeeerereeeereteeeereresese s ereseseeseseesesesessesesensenens 113
Table A.4 MMM rearrangement INStIUCHONSuvuruimieieieeeressesssssssss s ssssssssssssssessees 115
Table A.5 MMM CONVELSION MSTIUCHONS ...cveuvevereeierereeereteereseteeeseseesesesesesesesesesessesesessesesessesessasesens 116
Table A.6 MMM bit-wise 10Z1C IISIUCHONScuuvvuivrieiiiiiiiiiiiicicice e ssesseessssessnes 117
Table A.7 MMM Shift INSHUCHONSceveveeieveteeeereteeeteteeeet ettt e oot seeeseseteseesesensesesesseseannsenens 118
Table A.8 MMM floating-point arithmetic INStIUCHONScuuvvriereierieircreeereseeeeseeseeseeseseeeneees 119
Table A.9 MMM integer arithmetic INStIUCHONScuvuieieieieeeeeeeeee s ssseeseees 120
Table A.10 MMM comparisOn MSTIUCHONScuuverreriuieieisimissisisessssssssssssssssssssssssssssssssessssssssnes 122

Chapter 1

INTRODUCTION

Multimedia computing has been one of the greatest challenges in computer engineering for the
last decade. Great efforts have been put into developing applications that process audio, video
and graphics information. At the same time, computer designers have been challenged to
come up with solutions capable of processing the enormous amounts of data required by
multimedia applications. The solutions came in the form of multimedia processors, and

multimedia extensions to general-purpose processors.

Nowadays, most commercial general-purpose processors support some form of multimedia
extension. Some well-known examples are MMX extensions to Pentium processors, and
AltiVec extensions to PowerPC. All multimedia architectures follow the same basic approach:
they partition the registers into sections that represent multiple data elements, and operate on
all the sections in parallel. In addition, they added complex instructions to speed-up specific
tasks found in multtmedia applications. For example, some architectures imnclude an
mnstruction to compute the sum of absolute differences of two vectors, which is useful in video

compression.

1.1 Optimization vs. Portabilty

My experiments and other published results show that multimedia architectures can speed-up
applications by factors of up to 15, but manual optimization is required in order to take full
advantage of the complex instructions available. Manual optimization is very time consuming,
and up to now has resulted in non-portable programs. This is in part because different
multimedia architectures have different register lengths, different programming styles, different

alighment requirements, and they support different partitioned instructions.

1.2 MMM

I solved the problem by creating MMM: a library of target-independent C pre-processor
macros that implements a common set of parallel operations available or efficiently emulated
on a given set of target architectures. The contents of the library depend on the set of target

architectures used, but the method can be applied to any group of target processors.

MMM provides a unique interface to architectures with different register lengths and
instruction sets. Long data vectors are simulated by several small vectors, and operations of
long vectors are emulated as a sequence of operations on short vectors. Similarly, vector
operations that are missing on a given target are emulated using a sequence of simple vector
operations, when it 1s efficient to do so. The same concept is used to resolve different
alighment requirements. Some architectures require that vector loads and stores are done at
aligned addresses. If an unaligned load is required, one must load two aligned vectors, and
compose the desired result from them. All this can be encapsulated inside an MMM load

macro, and thus provide with a general unaligned load virtual instruction.

2

Through emulation, MMM implements a large common virtual instruction set for several
target architectures. By using MMM, it 1s possible to write multimedia applications that are
portable among different multimedia processors, and take advantage of the complex
partitioned operations available on them. I used it to write optimized versions of Inverse

Discrete Cosine Transform of 8x8 blocks, and several variants of I;-Distance of 16x16 blocks.

MMM programs are portable among diverse multimedia architectures. Using MMM, I was
able to generate optimized code for Pentium III with MMX and SSE extensions, Pentium 4
with SSE2 extensions, PowerPC G4 with AltiVec extensions, and Philips TriMedia multimedia
processors, all from the same source program. The performance of my example programs is
comparable, and in several cases exceeds that of hand-optimized versions of the same

programs provided by the processor vendors.

1.3 Other Approaches

Parallelizing compilers can generate some multimedia instructions from scalar code, but not
the most complex ones. The problem 1s that some these complex parallel instructions cannot
be expressed compactly in C, only through a sequence of operations that is very hard for a
compiler to recognize. One can also write parallel programs explicitly using a data-parallel
language. But this still does not solve the problem of expressing complex parallel instructions.
The other alternatives are to write applications based on optimized kernel libraries, or use
automatic code generators from abstract descriptions. These are good solutions for certain

kinds of applications, but not a general solution. MMM 1s a more flexible approach.

1.4 Contributions

This research is the first to provide a general solution to the portability of optimized
multimedia code. No other method to date allows an arbitrary program to take advantage of
the complex partitioned operations available in multimedia instruction sets, while remaining
portable. MMM can be used to write complex programs that are portable, yet perform
comparably to hand-optimized versions for a single target. Parallelizing compilers only obtain
comparable performance on simple programs. MMM is a flexible, general framework for
writing multimedia programs; other optimized libraries are made up of kernels with limited

applicability.

Most research on code generation for multimedia architectures uses simple, inherently parallel
programs as examples. I used complex examples taken from real multimedia applications, and

demonstrated that they can be written efficiently using MMM.

This research can generate optimized code for different families of multimedia architectures.
Others have focused on a single kind of architecture: some for MMX-like architectures (SSE,
SSE2, 3DNow!), some others for AltiVec, and some others for TriMedia. I was able to
generate optimized code for very different kinds of multimedia architectures: MMX, SSE,

SSE2, AlttVec and TriMedia.

1.5 Organization of this Dissertation

This dissertation is organized into six chapters besides this introduction. Chapter 2 describes
in more detail the problem addressed by this research, presents the solution in depth, and
relates it to other research approaches. Chapter 3 covers the methodology: defines the
research objectives, and explains the steps followed to validate that they have been met. Then
Chapter 4 discusses the design of a virtual instruction set. The example programs are covered
in Chapter 5, and Chapter 6 presents the performance measurement results. Chapter 7 has

conclusions, and advances on future research work.

In addition, there are three appendices. Appendix A shows the complete definition of the
virtual instruction set. Appendix B has the actual implementation of the MMM library for the
different targets, and Appendix C is the source code of the portable examples written in

MMM.

Chapter 2

PROBLEM DESCRIPTION

This chapter discusses in depth the problem addressed by this dissertation, the solution
presented, and related research. The first section introduces characteristics of multimedia
architectures and how they are programmed. Section 2.2 describes the factors that make the
portability of optimized programs a problem. Next, Section 2.3 explains how MMM can solve
all these portability problems. Section 2.5 compares MMM to other approaches to the same

problem.

2.1 Background

Multimedia applications are computationally very intensive for general-purpose processors, as
they have to process enormous amounts of data. Processor designers have responded by
adding multimedia mstruction sets with partitioned registers and parallel SIMD nstructions,
including some complex instructions specifically tailored for multimedia applications. Table
2.1 shows a list of popular architectures that have multimedia instruction sets. They come in
the form of multimedia extensions to general-purpose processors, or as special-purpose
multimedia processors. There 1s a large variation in the length of the multimedia registers in

these processors, from 32 bits to 128 bits.

Table 2.1
Popular processors that have multimedia mstruction sets

Instruction Set Architecture Type Register Length | Reference

SSE2 Multimedia extensions to Intel 128 bits [37]
Pentium 4 processors

MMX + SSE Multimedia extensions to Intel 64 bits for integer [37]
Pentium III and later processors 128 bits for

floating point

AltiVec Multimedia extensions to Motorola 128 bits [30]
PowerPC G4 processors

Enhanced 3DNow! | Multimedia extensions to AMD 64 bits [38]
Athlon processors

VIS Multimedia extensions to SUN 64 bits [39]
UltraSparc processors

Phillips TriMedia Multimedia processor 32 bits [35]

TM1300

Equator MAP-CA | Multimedia processor 64 and 128 bits [40]

Multimedia data elements can often be represented by 8-bit or 16-bit integers. For example,
image pixels are represented by 8 bits for each color component. It is possible to hold 16
pixels in a single 128-bit register, and operate on all of them in parallel. Multimedia
architectures have been designed specifically to take advantage of this parallelism, by using
long registers and partitioned instructions. While longer registers have a greater potential for
speedup, it is not always possible to take full advantage of them; it depends on the amount of

parallelism available in the algorithm.

Multimedia processors vary in the instructions they implement. All of the processors in Table
2.1 support basic integer arithmetic and logical instructions on registers partitioned mto 8, 16
and 32-bit sections. Many support complex instructions like sad (sum of absolute
differences), and mul ti pl y- add- pai rs (parallel multiply and add adjacent pairs of products).
Some support parallel floating-point operations too. Table 2.2 shows some of the complex

parallel operations present in multimedia instruction sets.

Table 2.2
Some complex parallel instructions supported by multimedia architectures
Instruction SSE2 | MMX | AlfiVec | Enhanced | VIS | TM1300 | MAP-CA
+ SSE 3DNowl!
sad V| oV Vo[V | o v

(sum of absolute differences)
of 8-bit integers

mul ti ply-add-pairs N N v Ni N

of 16-bit integers

mul ti ply-high N V v N y
of 16-bit integers

Aver age of 8-bit integers V v v v v v
maxi mumand m ni num Vv Vv Vv Vv v v

of 8-bit integers

Optimized multimedia programs take advantage of the complex partitioned operations
available on the target architecture, to obtain significant speedups with respect to scalar
implementations. The speedup that can be obtained by using multimedia instruction sets
varies, depending on the architecture and the application. Published results range from no
speedup, up to factors of 12 for manually optimized multimedia and signal processing kernels.
Selected published results are listed in Table 2.3. Refer to the Glossary at the end of this

dissertation for definitions of the acronyms in this table.

Table 2.3
Published results for speedup obtained by hand-optimization using multimedia instruction sets

Benchmark Target Speedup Reference
FIR VIS 3.43 [1]
MPEG encoder VIS 3.1 (2]
MPEG?2 decoder MMX 14-15 [3]
IDCT MMX 3.25 - 4.37 [3]
H.263 encoder MMX 1.67 [4]
FFT MMX 1.98 [5]
Motion Estimation with MMX 3.1 [6]
Interpolation

IDCT AltiVec 11.7 [7]
FIR AltiVec 3.1 [8]

My own research shows that speedups of up to a factor of 15 can be obtained through manual
optimization on different multimedia architectures. Figure 2.1 compares the speedup obtained
by using complex partitioned instructions for several multimedia kernels on different

architectures. More details about these measurements are available in Chapter 6.

Figure 2.1
Speedup of hand-optimized multimedia kernels over scalar versions.

18

16

14 —

12 —

M TriMedia
10 —

OMMX+SSE
ESSE2
OAltiVec

Speedup

8x8 IDCT 16x16 L1-Distance 16x16 L1-Distance with
Interpolation

Optimized multimedia programs are usually written in extended versions of C. Partitioned
instructions are expressed by macros or functions called intrinsics. The alternatives to writing
optimized programs in C with intrinsics are to write them in assembly, or to use libraries, a
vectorizing compiler, or an automatic code generator. These approaches are discussed in

Section 2.4.

Development environments for different multimedia architectures have different styles to
define parallel data and operations. Table 2.3 shows several styles for a simple vector
declaration and parallel addition. AltiVec uses the vect or type qualifier to define vectors of
basic types; operations infer the partition size from the type. TriMedia uses mtegers to
represent vectors, and the partition sizes are specified by the operations. Intel supports both
models: it has a set of C intrinsics that specify partition sizes, and also overloaded C++

operators for vector classes that infer the partition size from the argument type.

10

Table 2.3

Different styles for declaration and operations on partitioned data

vector classes

A=B+ C

Architecture Example
. . int A, B C /*Each variabl e represents a
TriMedia vector of 2 16-bit val ues*/
A = DSPI DUALADD(B, C); [/*Parallel add*/
. vector short A B, C /*Each variabl e represents a
AltiVec vector of 8 16-bit val ues*/
A = vec_add(B, O; /*Parallel add*/
_m4 A B, C /*Each variabl e represents a
E;igcs vector of 4 16-bit val ues*/
A = _mm add_pi 16(B, C; /*Parallel add */
Tntel C++ | 16vec8 A, B, C /*Each variabl e represents a

vector of 8 16-bit val ues*/

/*Parallel add */

2.2 Problem

Multimedia programs written mn C can be optimized to take advantage of the complex

partitioned operations available in multimedia instruction sets by using intrinsics.

optimized programs are not portable to other architectures, even if the instruction sets are
similar. Differences in register lengths, instructions supported, data alignment requirements
and programming styles are obstacles to portability. Portable programs are desirable, but up to

now there has been no way to make complex portable programs run as fast as hand-optimized

ones.

11

The length of the registers on current multimedia architectures can vary from 32 to 128 bits, as
shown in Table 2.1. For highly parallel algorithms and large mput blocks, optimized programs
iterate over the input data in sections the size of the registers. The number of iterations is

inversely proportional to the register length.

The available partitioned instructions vary from architecture to architecture. For example, the
sad instruction for 8-bit partitions is available on many processors, but not on AltiVec. The
mul ti pl y- hi gh instruction is available on TriMedia for 8-bit partitions, but not for 16-bit
partitions. SSE and SSE2 support mul tiply-hi gh on 16 and 32-bit partitions, and one
operand can be a memory address. AltiVec has a variant of this instruction for 16-bit
partitions only, where it adds the 17 most significant bits of the product, adds it to the

corresponding partition of a third input vector, and returns the saturated 16-bit result.

Some processors require aligned vector loads and stores. For example, TriMedia can only read
32-bit words from addresses that are in a 32-bit boundary (the last 5 bits of the address are
zero). Similarly, AltiVec can only read and write vectors on addresses that are 128-bit aligned.
If one needs to load a vector from an unaligned address, one needs to load two vectors and
extract the desired data from them. Intel SSE can read from unaligned addresses without any

restriction. SSE2 has, in addition, fast load/stote instructions for 128-bit aligned addresses.

There are obvious advantages from optimized programs. They can boost the performance of
high-end processors, or perform equivalent tasks on lower-cost processors. But there are also
benefits to portability. Optimizing programs is an expensive, time-consuming job, which has
to be repeated for every target architecture. Having multiple versions of a program is hard to

maintain and is prone to etrots.

12

Scalar C programs are portable, but not optimized. Even parallelizing compilers cannot fully
take advantage of the complex partitioned operations available in multimedia instruction sets.
Compilers can generate basic parallel operations, like additions of floating-point multiplications
on partitioned registers, but not complex ones. The problem is that C lacks syntax to explicitly
express many complex operations available in DSP and multimedia instruction sets, like
mul tiply-high, sad, or saturating arithmetic operations. Such instructions can only be
expressed through a complex sequence of operations that is very hard for a compiler to
recognize. Consider the case of the sum of absolute differences (sad) of two vectors of 16 8-
bit integers. To express this operation in C would require a loop, in which the absolute value

of the difference of the elements is summed:

sad = 0;
for (i=0; i<16; i++)

diff = a[i] - b[i];
sad += diff >0 2 diff : -diff;
}

Several other representations are also possible for this operation. Complex operations like sad

are awkward to write in C, and hard for compilers to recognize.

The only way to exploit the full potential of multimedia processors is to program in C with
intrinsics or in assembly. Processor vendors provide compilers that support intrinsics for
their own processors. Fach architecture follows its own style, as was seen in the examples in

Table 2.3.

13

2.3 Solution

Multimedia architectures differ in certain aspects, but are also similar in many ways. They are
all programmable in C with intrinsics, the register lengths are all multiples of basic types, and
similar partitioned instructions exist on them. Even if the instruction sets are not identical, it 1s
often possible to emulate the missing instructions efficiently with a sequence of the available
instructions. Similarly, parallel operations on long registers can be emulated with a sequence

of operations on short registers.

My solution 1s to create a library of target-independent C pre-processor macros called MMM —
for Multimedia Macros — that implements a common set of parallel operations available or
efficiently emulated on a given set of target architectures. The programs use MMM macros as
virtual instructions, which get translated by the libraries to C code with intrinsics for each
target architecture. The C output 1s compiled to a program executable by the regular C
compiler provided by each processor vendor. By using MMM, it is possible to write
multimedia applications that are portable among different multimedia processors, and take

advantage of the complex partitioned operations available on them.

MMM makes it possible to create portable programs for target architectures that have different
register lengths. A long vector can be represented by several short vectors, and operations on
long vectors can be emulated by repeated operations on short vectors. For example, if you

wanted to load and add two arrays of 8 16-byte integers, you would write it in MMM as:

DECLARE | 16x8(A) ;
DECLARE_| 16x8(B);
DECLARE_| 16x8(0);

14

LOAD A | 16x8(A, pSrcA);
LOAD A |16x8(B, pSrcB);

ADD | 16x8(C, A, B);
In this example, .4, B and C represent 128-bit vectors, and the loads are from aligned addreses.
The mapping of these macros to an architecture with 128-bit registers 1s straightforward. For

example, the implementation of these macros for SSE2 1s:

#def i ne DECLARE |16x8(var) \
_ ml28i var;

#define LOAD A | 16x8(var, ptr) \
var = mmload si 128((__nl28i *) (ptr));

#define ADD_| 16x8(dst, srcl, src2) \
dst = mm add_epi 16(srcl, src2);
On architectures with registers smaller than 128 bits, these vectors are represented by several

variables. TriMedia has 32-bit registers, so it needs to use four variables to represent each

vector, and replicate the operations four times:

#defi ne DECLARE | 16x8(var) \
unsigned int var## 0; \
unsigned int var## 1; \
unsi gned int var## 2; \
unsi gned int var##_3;

#define LOAD A | 16x8(var, ptr) \

var## 0 = *((int *) (ptr)); \
var## 1 = *(((int *) (ptr))+1); \
var## 2 = *(((int *) (ptr))+2); \
var## 3 = *(((int *) (ptr))+3);

#define ADD | 16x8(dst, srcl, src2) \

dst ##_0 = DSPI DUALADD(src1##_0, src2##_0); \
dst## 1 = DSPI DUALADD(srcl## 1, src2## 1); \
dst ##_2 = DSPI DUALADD(Sr cl1##_2, src2##_2); \
dst## 3 = DSPlI DUALADD(srcl## 3, src2##_3);

The pre-processor construct ## represents concatenation, so four different variable names are

generated from the macros. For example, DECLARE | 16x8(A) gets resolved as:

unsigned int A O;
unsigned int A1,

15

unsigned int A 2;
unsigned int A 3;

This technique uses several local variables to represent vectors. This is not a problem for
register scheduling, because the variables are independent of each other and the compiler can
schedule several of them into the same registers. The replication of the operations is

equivalent to loop unrolling, a technique that many hand-optimized programs use anyway.

Some processors don’t support certain instructions available in other ones. However, it is
often possible to emulate these instructions efficiently with a sequence of operations. The idea
1s to use emulation only to simulate an instruction available in one of the target processors, in
order to maintain the libraries at the instruction level and maximize reusability. For example, a
sad instruction is not available in AltiVec, but can be emulated by using parallel nmaxi num
m ni mum and subtract, followed by a sum of vector elements. Below is a simplified
implementation of sad on AltiVec. Two operations are required to sum all 16 elements of the

vector:

#defi ne SAD U8Bx16(dst, srcl, src2) \
dst = vec_suns(vec_sun¥s(vec_sub(\
vec_max(srcl, src2), vec_min(srcl, src2))));

Differences in alignment requirements can also be overcome by using MMM. Separate
macros for aligned and unaligned loads and stores allow the programmer to avoid re-alignment
overhead when it is not required. Unaligned loads can be implemented with a sequence of
operations that extract the unaligned data from two aligned vectors. For example, TriMedia
requires word loads to be from 32-bit aligned addresses. If an address is unaligned, the load
behaves as if the lowest 5 bits of the address were zero. Unaligned loads can be implemented
by loading two words beginning at the previous 32-bit boundaty, and extracting the desired

word with shi fts and ors:

16

#define LOAD U UBx4(var, ptr) \
{ \
int shift_right = (((int) (ptr)) & 0x3)<<3; \
var = ((*(((int *) ptr)+1l)) << (32 — shift_right) | \
(*(((int *) ptr)) >> shift _right); \

}

MMM can overcome the differences in programming styles for different architectures by
providing a common set of macros to define and manipulate partitioned data. The examples
above show how vectors can be declared and loaded in a machine-independent fashion. Other
style-dependent manipulations, like setting vectors constants, or allocating aligned memory,

can also be handled this way.

This research is focused on the problem of taking advantage of the complex parallel
operations in multimedia instruction sets. There are other factors that affect the performance
of a program, like the size of the caches, speed of the memory relative the CPU, instruction
pipeline structure, operating system overhead, and compiler quality. This research does not
attempt to address them. Sub-section 2.4.4 discusses complementary approaches that can deal

with these issues.

2.4 Related Work

Researchers have approached the problem of portability of optimized code from four different
angles: parallelizing compilers, data-parallel languages, optimized libraries, and automatic
generation of optimized code from abstract descriptions. The next sub-sections analyze each

of these approaches and describe the state of current research in these fields.

2.4.1 Parallelizing Compilers
A lot of research has been focused on generating partitioned instructions from scalar loops.

There are several commercial and experimental compilers that can parallelize code to some

17

degree. Highly-parallel programs, like vector and matrix multiplications, dot products and
linear equation solvers, can be efficiently parallelized by compilers. More complex applications
like IDCT or L;-Distance of blocks cannot. Compilers achieve only modest speedups on

these types of kernels, if any.

A vectorizing compiler for MMX by Sreraman and Govindarajan [9] reports to have
vectorized an L;-Distance loop, but as a sequence of simple parallel operations, and not using

the sad instruction available in MMX+SSE.

Lorenz, Wehmeyer and Driger [10] report success in vectorizing dot-product loops, but not
convolution or FIR kernels on their compiler targeted at the M3 DSP processor. Larsen and
Amarasinghe developed a vectorizing compiler for AlttVec [11]. Their speedup results are
good for inherently-parallel programs like color conversion, but a modest 1.24 to 1.57 on FIR,

IIR, and SPECfp kernels.

Leupers [12] developed a parallelizing compiler for TriMedia and TT C62xx processors. This
compiler 1s able to recognize sum of products patterns, and thus 1s able to parallelize FIR
filters for TriMedia. It can get 1.2 to 1.3 speedups on IIR and convolution for C62xx, but no

speedup on these kernels for TriMedia.

The commercially available Intel C/C++ compilet reports good speedup tesults for dot
products, vector-matrix and scalar-matrix products, LU factorization, and linear equation
solving for SSE and SSE2 [13][14]. The speedups for SpecCPU benchmarks ranges from 1.03
to 1.23. My own experiments with version 7.0 of this compiler show that it cannot parallelize

IDCT or L,-Distance kernels.

18

VectorC by Codeplay [15] is a vectorizing compiler aimed at games programming for MMX,
SSE, SSE2 and 3DNow! It reports speedups from 1.5 to 2.9 on vector rotations,

normalizations and projections. No results are reported for more complex examples.

Other experimental vectorizing compilers for VIS [16][17] only report successful vectorization
of simple, single assignhment loops. There are other commercial vectorizing compilers for
AltiVec, by Green Hills Software and by Veridian Systems, and by The Portland Group for

MMX, SSE, SSE2 and 3DNow!, but no speedup results are published.

Vectorizing compilers are an active area of research, and will undoubtedly improve in the
future. They are a good solution for inherently parallel algorithms, like those in linear algebra,
and to achieve modest speedups on existing scalar code. But vectorizing compilers are
restricted by the lack of syntax in the C language to express complex operations available in
multimedia instruction sets. In general, scalar C programs cannot achieve speeds comparable

to hand-optimized versions.

2.4.2 Data-Parallel Languages

Data-parallel languages allow definition of parallel data types of different shapes; operations on
parallel variables are defined to be parallel operations on each of the elements. This maps well
to SIMD architectures of different sorts, from multimedia processors to massively parallel
computers. In addition to strictly parallel operations, data-parallel languages support broadcast

and reduction operations between scalar and parallel variables.

A number of data-parallel languages have been defined for different kinds of computers. Any
of these languages can express basic parallel arithmetic and logic operations, but cannot

explicitly express complex operations like mul ti pl y- hi gh or sad.

19

Fortran 90 can define array types and operate natively on them [18]. C* supports parallel types
of arbitrary shapes [19]. In both of these languages, parallel operations are limited to basic

arithmetic and logic, plus m ni numand maxi mum

Vector Pascal [20] and SWARC [21]]22] were designed specifically for multimedia instruction
sets. They add syntax to express some more of the partitioned operations available in these
architectures. SWARC suppotts parallel aver age, as well as saturation arithmetic to handle
overflows. Vector Pascal supports saturating adds and subt racts, and allows user-defined
unary functions to operate on vector vatiables. Although SWARC and Vector Pascal are
richer than other data-parallel languages, they still cannot express many complex parallel

operations like nul ti pl y- hi gh or sad.

Some languages have been designed to express some of the complex operations typically
available in DSP processors. For example, ISO Embedded C [23] provides native types for
fixed-point variables, with qualifiers to specify either saturation or modulo arithmetic handling
of overflow. It also defines native functions for absol ut e- val ue, r ound and count-bi ts.
Using fixed-point types one can express a mul tiply-hi gh operation, and can write a sad
operation more concisely than in standard C, by using the absol ut e-val ue operator.
Embedded C is a scalar language, so SIMD operations on vectors can only be expressed

through a loop.

MMM is a macro library, but in a sense it is a data-parallel language. It can express vectors of
data and parallel operations on them. It is different from others languages in that can express
all kinds of complex parallel operations, and that it uses C pre-processor macros instead of

language extensions. Using C pre-processor macros gives MMM an enormous flexibility to

20

expand as needed, and thus is useful in experimentation. The translation of MMM programs

into C with target-specific mntrinsics 1s very simple, and doesn’t require a compiler.

The concept of C pre-processor macros as a portable language has been used before.
Franchetti and Puschel [24] used mactros to represent patallel loads/stores, parallel floating-
point arithmetic operators, and permutations. MMM extends this idea to more complex
operations, introduces the concept of emulation of instructions, and emulation of longer

register lengths.

Partitioned data and operations can also be expressed with C++ classes and overloaded
operators. This is the case of Intel’s C++ SIMD Class Libraties [26]. C++ classes are defined
for specific combinations of vector lengths and data types, and operators are overloaded to
work on these types. For example, the F32vec4 class represents vectors of 4 32-bit floating-
point elements. Overloaded operators exist for loads, stores, standard logic, arithmetic and
shift operations, saturating-add and subtract, sumvector-elenents, naxinum
m ni num aver age, parallel comparisons, data packing, conversions between floating-point

and integer, mul ti pl y- hi gh, mul ti pl y- add, squar e-r oot , and conpl ex-r eci procal .

The classes and operations implemented by this library match part of the Intel MMX, SSE and
SSE2 instruction sets. There are still some instructions in these architectures that are not
mmplemented as ovetloaded operators, like sad, mul ti ply-add- pairs, and permutations.
Operators are only implemented for the classes that there is hardware support for; there 1s no
emulation. For example, parallel multiplication is available for floats and for 16-bit integers,

but not for 8 or 32-bit integers. Also, 128-bit vector classes and operators are only

21

implemented for SSE2, and not for MMX and SSE, so a program written with 128-bit classes

does not run on a processor that does not have SSE2.

MMM and Intel C++ SIMD classes share the same philosophy: they implement a common
interface for the mstruction sets of different architectures; both implement only vector lengths
and element types that are supported by hardware, not arbitrary lengths. The difference is that
MMM emulates longer vector lengths on architectures with short registers, and complex
operations on architectures that don’t have them, when it is efficient to do so. A program
written with 128-bit vectors using MMM can run on processors with 64 or 32-bit SIMD
registers. One advantage of C++ classes over MMM is that it overloads operators for
different vector lengths and types, which makes the syntax more elegant. MMM cannot
ovetload, so a different macro must be used for each vector length and type. This is
acceptable for this research, as it is just a matter of style. A C language extension for

multimedia, with overloaded operations is proposed as future work in Chapter 7.

2.4.3 Optimized Libraries

An alternative way to write portable optimized programs is to base the application on libraries
of kernels that have been hand-optimized for the different targets. The problem of this
approach 1s that developing and maintaining a large number of libraries for a large number of
targets is very laborious and expensive. Also, these libraries are inflexible; there is no room for

customization.

There are some examples of libraries optimized for multiple targets, for specific applications.
The most notorious 1s BLAS [27]. BLAS i1s a set of basic floating-point vector-vector, vector-

matrix and matrix-matrix operations, which serves as a base for various linear algebra

22

packages, like LAPACK and LINPACK. BLAS has been optimized for virtually every
processor by the vendors or users. Due to the parallel nature of the operations in BLAS, very
efficient implementations can be achieved by using parallel operations in multimedia
instruction sets. This library is useful for scientific computation, and no so much for

multimedia applications.

More applicable for multimedia are Intel’s Integrated Performance Primitives [28]. This library
includes kernels for signal, image, speech, graphics and audio processing, and operates on
vectors or matrices of integer or floating-point data. Optimized versions of these libraries are
available for all current Intel architectures, including MMX, SSE, SSE2 and XScale. Naturally,
this library 1s only available for Intel processors. Some other vendors have their own libraries

of signal processing kernels.

An effort to consolidate signal-processing libraries to a unique API is VSIPL [29]. VSIPL is a
standard for a very complete library of signal and image processing kernels, operating on
mteger and floating point types of various precisions. This library supports signal processing
operations, like FFT, FIR and IIR filters, convolution, correlation, as well as arithmetic, logic
and linear algebra on one, two and three-dimensional arrays. An interesting concept in VSIPL
1s the portable precision types, where the minimum precision required is specified. This allows
an implementation to use a more precise type when it 1s more efficient. Implementations of
VSIPL are done by different vendors, conforming to the standard API. Currently, the basic

VSIPL profile has been implemented for SSE and AltiVec multimedia architectures.

23

MMM is a library, but at the instruction level, rather than at the kernel level. MMM operations
are much more reusable than the libraries above. Kernel libraries like BLLAS and VSIPL could

actually be built based on MMM macros.

Another low-level vector library is CVL [30]. It provides a set of parallel arithmetic, logic and
comparison operations, reductions and permutations for arbitrary length vectors. CVL serves
as a machine-independent intetface for higher-level data parallel languages like NESL. CVL is
intended for scientific applications on massively parallel architectures, and has been optimized
for CM-2, CM-5 and Cray Y-MP computers. CVL could be implemented on uniprocessor
multimedia architectures, but it would suffer from the high overhead of a function call per

vector operation.

2.4.4 Code Generation from Abstract Descriptions

Optimized code can sometimes be generated from abstract descriptions of an algorithm.
Franchetti and Puschel explored this approach for matrix transformations in their SPIRAL
project [24][25]. They generate multiple implementations of a given matrix transformation
iteratively, searching for the best run-time performance. Their system decomposes the matrix
mnto operators that are vectorizable, and generates the appropriate partitioned instructions.
Their output is C code with macros that represent parallel loads/stores, patallel floating-point
arithmetic, and permutations. The macros can be resolved to intrinsics for different

architectures. They have currently implemented the macros for SSE and SSE2.

A similar method is used by FFTW [31]]32] for the generation of FFT and similar transforms.
The transforms are decomposed into “codelets” of different sizes according to a plan. The

execution time of multiple plans is compared in search for the optimal one. Distributed with

24

the system comes a library of codelets, which were either hand-coded, or automatically
generated a priort. The most recent version of FFTW can take advantage of SIMD
mnstructions i SSE, SSE2, 3DNow! and AltiVec. It does so by using generic parallel
instructions 1 SIMD versions of the codelets. The generic instructions are translated to
specific architecture instructions by the code generator, according to a description file. FFTW
uses parallel | oad, st ore, add, subtract, mul ti pl y-add, muti pl y-subtract, unpack, and

per nut e on floating-point elements.

Another self-optimization project is ATLAS [33]. It generates adapted implementations of the
BLAS library of linear-algebra kernels, and applies dynamic programming to search for the
plan with optimal execution time. The code generator can vary several parameters, like the
minimum block size that fits in registers, loop unrolling factor, support for mul ti pl y- add
instructions, and fetch patterns. ATLAS supports SIMD instructions, based on hand-coded

kernel libraries provided by the user community.

Feedback-based automatic code generators like SPIRAL, FFTW and ATLAS can optimize for
many aspects of a computer’s architecture, like the size of the caches, number and size of
registers, and support of certain mstructions. MMM can complement this approach by
providing a common interface to the instruction sets of different architectures. As a matter of
fact, SPIRAL uses C pre-processor macros, much like MMM, to represent parallel operations
in different architectures. SPIRAL and FFIW only use a small subset of multimedia
mstruction sets. MMM implements a larger common set of instructions, because it emulates
complex instructions on architectures that don’t have them. As a result, MMM provides a

much richer set of machine-independent instructions that a code generator could use.

25

2.4.5 Other Related Research

Some researchers have experimented with emulation of parallel operations on architectures
that do not have explicit support for it, or to further subdivide existing partitions into smaller
ones. Fisher and Dietz [21] describe how it is possible to execute parallel additions and
subtractions without risk of carryover, by separating the elements with spacer bits. Zucker and
Lee implemented partitioned addition, subtraction and multiplication by a scalar using floating-

point instructions [34]. These techniques can easily be implemented within MMM macros.

2.5 Summary

Multimedia architectures can have different register lengths, alighment requirements,
programming styles, and support different partitioned instructions. All these are obstacles to
portability, but can be overcome by using MMM: a set of target-independent C pre-processor
macros that provide an interface to the different target architectures. MMM emulates long
vectors on architectures with short registers, and emulates complex instructions that are
missing on some processors. MMM programs can be portable and optimized at the same

time.

Other approaches are parallelizing compilers, data-parallel languages, optimized libraries, and
automatic code generation from abstract descriptions. None of these methods provide the

same level of performance and flexibility as MMM.

The next chapter describes the objectives and methodology used to validate MMM as a

solution to the problem of portability of optimized code.

26

Chapter 3

RESEARCH

This chapter describes the objectives and methodology followed by this research. Section 3.1
defines in detail the objectives that are addressed by MMM: portability and performance.
Section 3.2 goes through all the steps that were followed in order to validate the objectives

stated.

3.1 Objectives

The goal of this research 1s to validate MMM as a solution that allows multimedia programs to
be portable and optimized at the same time. There are two major parts to this claim: that
MMM programs are portable among diverse multimedia architectures, and that they have good
performance on all the targets. The next two sub-sections elaborate more on these two
objectives. Ease of programming is not an objective of this research, but will be addressed as

future work in Chapter 7.

3.1.1 Portability

By portable I define a program with a single source, without machine-specific sections, that
can be compiled for different targets and produce the desired results. The type of portability
that MMM accomplishes in not unlimited, an MMM program will not necessarily be portable
to all current and future multimedia architectures, while remaining optimized. But MMM
should provide portability among several diverse architectures that would otherwise be

mcompatible.

27

I say desired results, and not identical results, because it may be possible to approximate an
operation in a way that is not bit-exact, but close enough for practical purposes. For example,
one implementation may use more precision in the multiplications than required. This 1s fine

as long as there is a clear criteria defining what the desired results are.

The only machine-specific section that is allowed in portable MMM programs is the inclusion
of the MMM header file for the current target. The header files for each target are

conditionally included based on an environment definition:

#i f def SSE2

#i ncl ude "mm sse2. h"
#endi f
#i fdef SSE

#i ncl ude "mm sse. h"
#endi f

#i fdef TRI MED A

#i nclude "nmm.tm h"
#endi f
#i fdef ALTI VEC

#i nclude "nmm.al tivec. h"
#endi f

3.1.2 Performance

In the context of this research, an optimized program is one that makes efficient use of the
target’s instruction set in order to reduce the number of instructions necessary to perform the
task. Although the ultimate goal of optimization is to reduce the execution time, there are
factors that affect it, like the memory structure and instruction pipeline interactions, which are
beyond the scope of MMM. I use both instruction counts and execution speed as measures of
performance, and attempt to minimize the effects of the memory structure on my

experiments.

28

The performance of MMM optimized programs should be better than equivalent scalar
programs, even when compiled with a parallelizing compiler. It is not expected that MMM
programs out-perform hand-optimized programs for a single target, but they should come
close. An objective of this research is to determine how much performance is lost in order to

obtain portability.

3.2 Methodology

The rest of this chapter outlines a sequence of steps that I followed in order to validate that
MMM meets the objectives stated above. The steps include selecting a diverse group of target
architectures, defining and implementing a common virtual instruction set, selecting and

implementing several example programs and comparing their performance.

3.2.1 Target Architecture Selection

I selected four different target architectures with multimedia instruction sets. They are: the
TriMedia TM1300 media-processor [35], AltiVec extensions to the PowerPC G4 processor
[36], SSE2 extensions to the Pentium 4 [37], and MMX and SSE extensions to the Pentium III
combined [37]. SSE is complementary to MMX, and MMX is always supported whenever
SSE 1s, so they can be considered a single architecture. MMX and SSE are also available on
Pentium 4 processors, but the SSE2 instruction set largely supersedes the previous ones, so I
consider them different architectures. These architectures are very diverse, and thus present a
good challenge to portability. Table 3.1 shows some characteristics of their instruction sets.
They differ in their register lengths, partition sizes and types that they support, as well as in the
instructions available for each partition type. The next four sub-sections discuss the each of

these instruction sets in more depth.

29

Table 3.1

Characteristics of the instruction sets in the selected target architectures

partition types

Architecture TM1300 MMX + SSE SSE2 AltiVec
Register length 32 bits 64 bits 128 bits 128 bits
Integer 8,16 & 32 bits | 8, 16, 32 & 64 bits | 8, 16, 32 & 64 bits | 8, 16 & 32 bits

Floating point

32 bits

32 bits

32 & 64 bits

32 bits

partition types

3.2.1.1 AltiV'ec

AltiVec is the multimedia extension in Motorola PowerPC G4 processors. It is composed of
a set of 128-bit registers that can be partitioned into 8, 16 and 32-bit integer partitions, and n
32-bit floating-point partitions. Most integer instructions are supported for all integer partition
For example, vec_nadds (nul tiply-hi gh) and vec_nsum

types, with a few exceptions.

(mul ti pl y-add- pai r s) are supported only on 16-bit partitions.

AltiVec 1s programmed in an extended version of C that supports vector vatiables. All vectors
are understood to be 128-bit long, so the type uniquely identifies the number of elements in

the vector. For example:

vector char A
vector int B;

means that 4 is a vector divided into 16 sections, each of which represents a signed 8-bit

value, while B is a vector of 4 32-bit signed integer values. AltiVec also suppotts vector literals:

C
D

(vector char) (c)
(vector int) (cl, c2, c3,

c4)
In this case, C results in a vector with all the elements equal to ¢, and D results in a vector

whose four elements are equal to ¢1, c2, c¢3 and c4 respectively. Parallel operations are

30

executed using intrinsics. The intrinsics are overloaded for different vector types, so the

following operations perform absolute value on partitions of different sizes:

vector char E, F;
vector int G H,

F
H

vec_abs(E);
vec_abs(GQ;

Vectors can be loaded and stored in memory only at 16-byte alighed addresses. Unaligned
accesses must be done through data rearrangement, using the permutation instruction.
AltiVec’s permutation instruction requires a vector of indices to define the permutation

indices. Special instructions help set the permutation vector for data re-alignment:

permvector = vec_lvsl (0, pointer);
dst = vec_perm(vec_ld(0, ptr), vec_ld(0, ptr+l1l), permvector);

In this example, the mtrinsic vec_| vsl creates a permutation vector from the unaligned

address, which 1s later used to re-align the data using the permutation intrinsic vec_per m

3.2.1.2 MMX + SSE

MMX is the first of a series of extensions to Pentium processors. MMX uses a set of 64-bit
registers partitioned mnto 8, 16 and 32-bit integer sections. SSE (Streaming SIMD Extensions)
1s a set of instructions that are complementary to MMX. It adds some integer instructions on
the same registers, and a new set of 128-bit registers partitioned into 32-bit floating-point
sections. The MMX registers share resources with the scalar floating-point registers, so they
cannot be used at the same time. A special EMVS instruction must be executed before and after
using MMX and SSE integer instructions, unless no scalar floating-point operations can

happen. The SSE floating-point registers do not contend with other resources.

31

There are two methods for programming this architecture. One is to use _n64 and _nl28
types, which represent the integer and floating-point vector registers. The size and type of the
partitions are determined by the operation intrinsics. For example:

_n64 A B, C D

A
C

_mm add_pi 8(A, B)
_mm add_pi 16(C, D)

In this example 4 gets the addition of 8-bit sections, while C gets addition of 16-bit partitions.
The other method of programming 1s to use C++ vector classes, which overload the standard
C operators for vectors, and infer the type from the variable class. I use the first method of

intrinsics in MMM declarations.

Many MMM and SSE instructions can take a memory location as a second argument, as in the

following example:

_né4 A
char *pB;

A = _mm add_pi 8(A, *pB);
There are no alignment restrictions for integer loads and stores in this architecture. Loads and
stores for integer vectors are done by de-referencing pointers. Floating-point vector loads and
stores do have different performance when the address is 16-byte aligned or not, so there are

specific intrinsics to load and store floating-point vectors to aligned and unaligned addresses:

_nl28 A
A = _mm|load_ps(aligned_pointer);
A = mm| oadu_ps(unal i gned_pointer);

Memory accesses as second arguments to floating-point instructions are required to be 16-byte

aligned.

32

3.2.1.3 SSE2
Penttum 4 processors, in addition to MMX and SSE, support the SSE2 instruction set. SSE2
reuses the 128-bit registers defined in SSE, but can now divide them into 8, 16, 32 and 64-bit

integer partitions, or in 32 and 64-bit floating point sections.

This architecture is programmed very similarly to MMX and SSE, except that the new register
types are _nml28i for integer, and _ml28d for double precision floating-point. Single-precision

floating-point is supported the same way as in SSE, using the _nml28 type.

In SSE2 the integer vectors have the same alighment requirements as the floating-point
vectors in SSE. Normal memory accesses are required to be at 16-byte alighed addresses.
This 1s true for memory addresses as second arguments to operations. Unaligned loads and
stores are supported through a special set of intrinsics:

_mL28i A

A = _nm | oadu_si 128(poi nter);

3.2.1.1 TriMedia TM1300

The TriMedia processor does not have a separate set of multimedia registers, but it does have
several partitioned instructions that operate on the regular 32-bit registers. Vectors are
declared as integer variables, and the operation intrinsics define the size and type of the

partitions:

int A, B C
A = QUADAVE B, O);

In this example, A gets the average of vectors B and C divided into 8-bit unsigned partitions.

Vector loads and stores are restricted to be on 4-byte aligned addresses.

33

Unaligned loads must be emulated using two | oads and shifts. Special funnel -shift
instructions are provided to realign data:

int A

A = FUNSH FT1(*pA, *(pA+l)):
This example loads two 32-bit words from the aligned address pA, and realigns them by

concatenating the last 3 bytes of * pA with the first byte of * (pA+1) .

3.2.2 Definition of a Common Virtual Instruction Set

The next step was to define a virtual instruction set based on all of the selected targets. This
virtual architecture 1s composed of vector registers as long as the longest target registers. In
this case, it is 128-bit registers with 8, 16, and 32-bit integer partitions, and 32-bit floating point
partitions. The virtual architecture can support shorter vectors (Le. 64-bit vectors), but they

map sub-optimally to 128-bit architectures, so their use is discouraged.

The virtual instruction set includes all operations that are common, or can be emulated
efficiently on all the targets. Different MMM macros are defined for each combination of
operations, input and output vector lengths and types. Other characteristics, like special

handling of overflow, are also specified by each operation macro.

Virtual instructions can be defined in a way that the exact behavior under boundary conditions
1s undefined. For example, an addition operation may be defined to have unspecified behavior
under overflow. This allows it to be mapped to target instructions that handle overflow
differently (i.e. perform saturation, or modulo arithmetic), and thus provide for a common

instruction that otherwise would not be available.

34

The virtual instruction set does not include operations that cannot be emulated efficiently on
all targets. Therefore, there are instructions in some of the target architectures that are not
available to MMM programs. An objective of this research is to determine how much
performance is lost by not using these instructions. The virtual mnstruction set for the selected

targets is discussed in Chapter 4, and the full definition appears in Appendix A.

3.2.3 Implementation of an MMM Library for each Target

Once a common virtual instruction was defined, it was possible to implement it for the
different target architectures. I did not implement the full virtual instruction set, but only the
part that was required by the selected example programs, described below. Appendix B shows

the source code of the implementation of the MMM libraries for the four targets.

3.2.4 Example Program Selection

I selected the following examples to be implemented in MMM: 8x8 integer IDCT, 16x16
integer L,-Distance, and 16x16 L;-Distance with interpolation. These kernels are used by
MPEG2, MPEGH4, and H.263+ video compression applications, and represent a large portion
of their computational load. The 8x8 IDCT is also used in JPEG still-image compression.
Hand-optimized versions of some of these kernels are available from the selected target

processor vendors, and take advantage of the complex parallel operations available.

The three examples are tested in the context of an MPEG2 video encoder. The MPEG
Software Simulation Group test model 5 [42] is used with a sequence of 704x576 outdoor
images as input. The IDCT example is a direct replacement for the idct() function in the
MPEG2 model. The L,-Distance examples replace portions of the distl() function,
corresponding to no interpolation, and both hotizontal and vertical interpolation of 16x16

blocks. The distl() function in the MPEG2 model also handles horizontal-only and vertical-
35

only interpolation, as well as 16x8 blocks, which are not of interest for this research. The
MPEG?2 model was modified to guarantee 16-byte alignhment of the working image buffers,
and to separate the dist1() function into various components, according to the block size and

interpolation type.

3.24.1 8x8 IDCT
The IDCT works on 8x8 blocks of 16-bit signed integers. The interface is a function call with
two pointers to 16-bit integers, one for the input and one for the output, which can possibly

ovetlap:

void Idct8x8 (INT16 *pSrc, INT16 *pDst)

The input block 1s stored in a contiguous piece of memory in row-major format, so elements
of each row are stored in adjacent locations in memory. The output is stored in the same
format as the input. Fach input element can have values between —300 and 300 inclusive.
The function 1s to compute the two-dimensional IDCT of the input, and meet the accuracy

requirements specified in the IEEE 1180-1990 standard [41].

Two-dimensional IDCTs are usually implemented using a separable approach: first a one-

dimensional IDCT 1s applied to each row, and then an IDCT 1s applied to each column.

[} P B
Zoo lor Yoo los ly los lys gy Joo } Jot\ Jo2 '\ Jos | Jos | Jos | Jos | Jo7
______________________________ [} [} [} [} [} [} [}
. [} L B I - I - | I - [}
Loty tiz liz tw Yis b Yy Jro Vi Ji2V Ji3 Ve s Ve 7
—————————————————————————————— 1 1 1 1 1 1 1
; [} A B [[[[} [
Ly Iy Iy Il Iy lx ly 1y J20 ! Jai ! J22 :/23 :/24 1 J25 1)26 1]27
- - - T T T T T ST T T T T T T T . [} PO B | - . [[- [}
Iyg Iy l3p I3z Iy I35 Ly Il T30\ T34 Ja2\ T35\ T34\ T35 1 J36 1)37
__.____.___.____.___T___.____.___.___—> . : . : . : . : . : . : . :
Lo Ly lp lp ty Y Ly Ly Jao \ Jar) Jaz |\ Jus \ Jaa | Jas | Jae | a7
——————————————————————————————]]]] [} [} [}
; ; [} A B | [| [[}
Iy 151 Isp Is3 Isy Iss lsg sy S50\ JstV Js2 4 Js3 1 sa 1 Jss)\ Jse 157
—————————————————————————————— | | | | I I I
: Sl
o L1 Lz s Ly s s Ly Jeo i Js1 i J6z2 i]w i]64 :]55 :]66 :]57
______________________________ .] .] . . . [} . . [}
Iy Iy Iy lyz Iy Iy Lz 1y TV 1) Jr2\ T3V J7a | J75 \ J76 \J77
L — L 1 [} [} [} I I I —

36

This reduces the problem to the computation of one-dimensional IDCTs of length 8 over

rows and columns of an 8x8 block. The 8-element IDCT is defined as:

! m(2k +1
X, = Z:;cos%cn Y, o

2 1
where C, = 7 and C, = EfOI’ n=1...,7. This can be expressed in matrix form as:

C 4 Cl 02 03 C 4 CS C6 C7
C4 03 06 -Cy —C4 —Cl —02 —05
C4 05 - C6 - Cl - C4 C7 CZ 03
C4 C7 - C2 - 05 C4 C3 - C6 - Cl (32)
C4 - Cy —02 05 C4 - C3 —06 Cl
C4 —05 —06 Cl —C4 —C7 CZ —03
4 7% % %97 "% 9 % %
¢4 9 % %8 @9 % % 7]

where C, = COS(Ik/ 16). Borrowing the notation from [44], this mattix can be decomposed as

Cy' =

N

Gl = AMSR? 6
where

1000 1 0 0 O] 1 00000 0 O]

01000 1 0 O 00100000

00100 O 1 O 00001000
%1:00010001P_1_00000010

0ooo0o1 0 0 0 -1 8 01000000

00100 0 -1 0 00010000

01000 -1 0 O 00000100

1000-10 0 O] 000000 O 1}

37

_C4 Co Cy Cg 0 0 0 0 |
Cq Cg ~C ~Cy 0 0 0 0
Cy Cg —C4 ©Cp 0 0 0 0
MB‘_l _ cg —;2 c(;,r —ge 0 O 0 0
9@ &8 & &9
0 0 0 0 C3 —C; —¢ ~—Cg
0 0 0 0 Cg —¢ Cy C3
i 0 0 0 0 C; —Cg C3 ~Cp|

This decomposition 1s the base of all fast IDCT algorithms. Most algorithms attempt to
minimize the number of operations by further decomposing the operator M,". For example, a

Chen IDCT [51] decomposes the even part (top left quadrant) of M, as:

10 0 1|¢cg ¢4 O O 1000
4. |01 1 ofc ¢4, O O 0010
M, =) 4 4 (3.4)
01-10[0 0 ¢ c 0100
100 -1/0 0 ¢, -c, |00 0 1
And the odd patt (bottom tight quadrant) of Mg s decomposed as:
1 0o00]c; O 0 -¢f1 1 0 offt o o0 O
. 00100 cg-¢cg 0O0f1-120 0|0 -¢c4 cyq O
MAé: 3 5 0 4 ~4 (3.5)
01000 cg cg 0 0 -1 1}0 ¢4 ¢4 O
0001 0 0O c 0 0 1 -1f0 0 o0 1

3.24.2 16x16 1,-Distance

The L,-Distance kernels are used as part of Motion Estimation algorithms. A 16x16 image
block is compared against several possible locations of a reference image in search for the
location with the minimal distance between the two blocks. The distance 1s computed as the

sum of absolute differences of all the corresponding pixels in the blocks:

15 15

LlDiSt:ZZ‘Xi,j _yi,j‘ (3-6)

i=0 j=0

38

The basic function takes two pointers to 8-bit unsigned integers, one for the reference block,
and one for the mput block. RowPi t ch is an integer that represents the distance in memory
between consecutive rows, for both blocks. A fourth input (Li m t) specifies the minimal
distance found by the motion estimation algorithm on other blocks, which is useful to exit the
function early if a partial distance exceeds this limit; I refer to this as a shortcut path. The

output is an integer representing the L, distance of the two blocks:

int L1D st16x16(U NT8 *pRef, U NT8 *pln, int RowPitch, int Limt)
Both input blocks are stored in row-major format, with a separation of RowPi t ch between
consecutive rows. The input block is assumed to be alighed to a 16-byte boundary, but the

reference block is not.

3.2.4.3 16x16 L,-Distance with Interpolation
The third example 1s a variation of the 16x16 L,-Distance that computes the half-pixel
horizontal and vertical interpolation of the reference block before computing the distance.

The parameters are the same as above:

int L1Di st16x16_I nter pXY(U NT8 *pRef, U NT8 *pln,
int RowPitch, int Limt)

The interpolation computes the rounded average of each pixel with the pixels to the right

and/ot below, according to the formula:

o ij +Xi+1,j +Xi,j+1+xi+1,j+1+2J (37)

Xi,j =
4
An average error of 0.5 in the results 1s allowed for the L,-Distance function with

mterpolation. This error does not affect significantly the quality of the motion estimator, and

allows for more efficient implementations of the interpolation function.

39

It is important to note that the performance of L,-Distance implementations with a shortcut
path depends on the motion estimation algorithm used, and on the input data itself. The
execution speed depends on how often is the shortcut path taken. In order to separate the
effects of the shortcut path on the execution speed, I created versions of both L,-Distance

examples with and without a shortcut path.

3.2.5 Analysis of Reference Implementations of Examples

In order to verify that portable MMM programs have good performance, they have to be
compared with the best known implementations of the same programs. I will refer to these
programs as reference implementations. Reference implementations are hand-optimized for
each target platform, and represent the upper bound for the performance of the portable
implementations. It is also interesting to compare the performance of portable and reference
implementations with that of a scalar implementation of the same algorithm. This provides a
measurement of speedup. One of the reasons for choosing IDCT and L,-Distance as
examples is that there are hand-optimized reference implementations available from the

processor vendors.

3.2.5.1 8x8 IDCT

I found two versions of IDCT optimized for AltiVec [45, 50]. Both were implemented by
Motorola, but the second one is distributed by Apple. Both implementations perform only
vertical IDCTs, but transpose the matrix after each pass. The vertical IDCT is performed on
the eight columns in parallel, since each 128-bit register can hold one element of every column.
The algorithm used for the IDCT 1s a standard Chen algorithm [51] for the case of Apple’s,
and a modified scaled Chen algorithm for Motorola’s. Each operation in the IDCT algorithm

becomes a parallel vector operation on the whole rows. Parallel multiplications are done with

40

the vec_nr adds instruction (equivalent to nul ti pl y- hi gh, but with an extra factor of 2) and
take advantage of the addition of a third argument whenever possible (equivalent to
mul tiply-hi gh-add). The coefficients are represented with 15 bits of fractional precision,
which compensates for the factor of 2 introduced by the vec_nr adds instruction. Matrix
transposition is done by repeatedly applying the vec_ner geh and vec_ner gel instructions.
A total of 24 instructions are necessaty to perform the transposition. Constants atre
broadcasted through the vectors by using vec_spl at . Neither of these implementations meet

the IEEE 1180 standard for accuracy of IDCTs [41].

An optimized implementation of IDCT for TriMedia is discussed as an optimization case
study in their documentation [46]. Their implementation of both horizontal and vertical
IDCTs 1s based on the parallel multiplication variant of Loeffler’s IDCT algorithm [52]. The
horizontal IDCT takes advantage of the | FI R16 instruction (equivalent to mul ti pl y-add-
pai rs) to multiply by coefficients and add adjacent products. The results are then added and
subtracted as 32-bit values until the final result is converted back to 16 bits. The horizontal
IDCT 1s computed for two rows, and their results are packed into the high and low halves of
the output registers. This helps avoid transposition in the vertical IDCT. The vertical IDCT
can then use | FI R16 instructions to do the multiplications in the first IDCT stage, and then do
32-bit additions and subtractions to complete the IDCT. This implementation is only efficient
because TriMedia has relatively short registers. It does not scale well to longer register lengths.

This design meets the requirements of the IEEE 1180 accuracy standard.

The reference IDCT implementations for MMX+SSE and SSE2 are from Intel [43, 44]. They
both use basically the same algorithm. The vertical IDCT is done for all columns in parallel,

like in the case of AltiVec. The algorithm uses a decomposition with minimal number of
41

multiplications, and avoids some by moving an operator into the last stage of the horizontal
IDCT. Vector multiplications are done using the PMULHWinstruction (nmul ti pl y- hi gh), and
constants are represented with 16 bits of fractional precision. The horizontal IDCT uses the
basic decomposition in equation (3.3). Operator Py is a vector permutation that is done using
the PSHUFWinstruction. Operator M, is computed using PMADDWD (nul ti pl y- add- pai rs).
The data 1s assigned to vectors in such a way that it is possible to use parallel additions and
subtractions, rather than summing elements in the same vector. More on this is Chapter 5, as
this design 1s the base of the portable MMM version. This IDCT meets the IEEE 1180

accuracy requirements.

For the scalar version of IDCT, I used the one from the MPEG2 model, but with one obvious
optimization: inline the row and column IDCT sections instead of invoking two function calls.
Also I removed a shortcut path intended to accelerate transforms of DC signals. I found that
this shortcut at best provides a speedup of 10% on the chosen target architectures, and it is
easier to measure the instruction counts when there is only one path. Such a shortcut is
impractical for optimized IDCT implementations, because it requires a comparison of all
vector elements with zero, and that 1s not directly supported by most multimedia instruction

sets.

42

3.2.5.2 16x16 1.,-Distance

The 16x16 L;-Distance was implemented for AltiVec by Motorola [49]. They provide different
versions: one for when both blocks are aligned, and one for when one of the blocks 1s aligned
and the other unaligned. Since the alignhment of the reference block 1s not known, I use the
unaligned version always. The 16x16 block is completely unrolled. It computes the re-
alighment permutation vector using vec_| vsl, and uses it with vec_per mto re-align all input
vectors prior to computing the absolute differences. For each row it uses the emulation
vec_sub(vec_max(a, b), vec_nmin(a, b)) to compute the absolute differences of
corresponding vector elements. Then it uses vec_sumis to obtain four partial sums. It does
the same for all rows, and accumulates the partial sums using the second argument to
vec_sumis. At the end, the four partial sums are added using vec_sumns, and converted to

mnteger using vec_spl at and vec_ste.

Reference optimized 16x16 L,-Distance implementations are available for MMX+SSE 1n
assembly and in C with intrinsics [47] and for SSE2 m C with instrinsics [48]. The SSE
versions were capable of doing a full-search motion estimation over a region, so they have
some outer loops that I don’t use. I removed the loops from the C version, but the assembly
one still has the overhead. For SSE there are no alignment considerations. It uses the PSADBW
mnstruction to compute the sum of absolute differences of 8 elements, which 1s half a row. It
uses PADDWto add the partial results. On SSE2 it uses aligned loads for the iput vector, and
unaligned loads for the reference. The PSADBWinstructions can compute the sum of absolute
differences of a whole row at a time, but results in two partial results. At the end, the two
partial results are added using shi ft-ri ght and add, prior to being converted into an integer

value.

43

TriMedia discusses motion estimation in their documentation [35] for aligned loads only. It
uses the UMESWU instruction to compute the sum of absolute differences of 4 elements. It
uses a loop over rows, unrolled by a factor of eight. I did not use this example because it
cannot deal with unaligned addresses. Instead I created my own optimized versions with

different re-alignment strategies. They are discussed as target-specific optimizations in Chapter

5.

All these reference implementations are for L;-Distance without interpolation, and without
shortcut paths. There are no optimized reference designs for I;-Distance with interpolation.

The scalar implementations are derived from the dist1() function in the MPEG2 model.

3.2.6 Implementation of Portable Optimized Examples in MMM

I wrote portable-optimized implementations of the example programs in MMM, using the
virtual instruction set defined previously for the group of target architectures. Selecting an
algorithm that maps well to all the targets took some experimentation. I started with the
algorithms used by some of the hand-optimized examples, and saw how well they performed
on other targets. Since MMM can emulate long vectors efficiently on architectures with short
registers, but not the other way around, I based the MMM programs on the hand-optimized
versions for the targets with longest register lengths. In the case of my selected targets, I
based them on the 128-bit implementations for SSE2 and AltiVec. Then I applied several
modifications taken from the other reference examples, and some of my own, until I settled on

a design that performs well on all targets.

44

The selected algorithms for the MMM example programs, and details about their
implementation are discussed in Chapter 5. The full source of the example programs in MMM

1s included in Appendix C.

3.2.7 Petformance Measurement
I measured the performance of the example programs on each target architecture. Two

measurements of performance are of interest: the instruction count and the execution speed.

The instruction count was determined by adding the number of instructions in the assembly
output of the examples for each target. When there were loops, the loop mstruction count of
the loop was multiplied by the number of loop iterations. In the cases of L,-Distance with
shortcut paths, the number of iterations depends on the mput data. I did not measure

instruction counts for these cases.

The execution speed of the example programs was measured in the context of an MPEG2
encoder model processing real input images. The MMM example programs replaced
equivalent functions in the MPEG2 model, and loops were added around them. The loops
iterate thousands of times through the same functions. This helps improve measurement
accuracy, and minimize the effect of cache misses on the function calls. I timed the whole
loops using high-precision timers when available, and computed the average time per call to
each example function. On TriMedia I used a hardware cycle counter to time the programs.
On Intel architectures I used multimedia timers, which are cycle-accurate. On AltiVec I used

system timers, which are not as precise, but I compensated by increasing the loop repetitions.

The performance of MMM programs was compared to the hand-optimized versions for each

target, when available. This indicates how much performance is lost i order to obtain

45

portability with MMM. The performance of the MMM examples was also compared with that
of scalar implementations. This shows a measurement of the speedup that can be obtained by

using only portable constructs.

Another interesting experiment was to compate the portable optimized version of an example
program with a non-portable optimized version of the same algorithm. This tells how much
performance 1s lost by using only portable virtual instructions, and not by the difference in
algorithms. In order to do this, I attempted to further optimize the MMM examples by using
non-portable instructions available on each tatget architecture. All the performance

measurements are shown in Chapter 6.

3.3 Summary

In order to validate MMM as a solution to the problem of portability of optimized programs, I
chose four distinct target architectures, studied their instruction sets, designed a common
virtual instruction set, and implemented it as MMM libraries for all the targets. Then I selected
three example multimedia programs, studied hand-optimized implementations of them for the
different targets, selected a portable algorithm for each, and implemented them using MMM. I
experimented with variations of the programs until I obtamned a single version of each that
performs well on all targets. I measured the performance as execution times and instruction
counts. The next three chapters present the results of the steps described above. This mcludes
the design of the common virtual instruction set, the design of the MMM examples, and the

performance measurements.

46

Chapter 4

COMMON VIRTUAL INSTRUCTION SET

This chapter discusses the design of a common virtual instruction set. Through analysis of the
mnstruction sets of the four target architectures, I produced a set of instructions that map
efficiently to all targets. This instruction set is valid only for these four specific targets, but the
approach 1s valid for any other set of architectures. The common set supports 128-bit vectors
divided into 8, 16 and 32-bit integer, and into 32-bit floating-point partitions. Even though
SSE2 supports 64-bit mnteger and floating-point partitions, they are not commonly used by
multimedia programs. It is possible to emulate them on the other architectures if need arises,
but will be left out of the initial common instruction set. Vectors shorter than 128 bits are not
supported at this time because they map sub-optimally to architectures with 128-bit registers.
For best performance it is important that the portable programs use vectors as long as the

longest registers in the set of target architectures.

The virtual mstruction set implements parallel operations that are supported or can be
emulated easily on all the targets. The following sections give an overview of the common
operations supported grouped by type, with emphasis on the strategies used to emulate
mnstructions when required. Appendix A shows the complete common virtual instruction set,

and the mapping of each macro into mtrinsics for each target.

47

4.1 Vector Declarations

MMM macros provide a unique interface to vector declarations in different architectures. The
definition of the macros for each target follows the particular style of each. On AltiVec it uses

the vect or attribute of basic types:

#defi ne DECLARE | 16x8(var) \
vector |INT16 var;

where | NT16 is defined as a short signed integer. On SSE2, vectors are declared using the

_ml28 types:

#defi ne DECLARE | 16x8(var) \
_ ml28i var;

For MMX and SSE, integer vectors are 64-bit long, so two are necessary to simulate a 128-bit

vectot:

#defi ne DECLARE |16x8(var) \
__nb4 var##_0; \
__ b4 var ##_1;

In the case of TriMedia, four 32-bit variables are needed to declare a 128-bit vectot:

#defi ne DECLARE |16x8(var) \
int var## 0; \
int var##_1; \
int var## 2; \
i nt var##_3;

A different MMM declaration macro is required for every partition type. Table 4.1 shows all

the MMM vector declaration macros supported.

48

Table 4.1
MMM vector declarations

Partition Type MMM Macro Name
8-bit signed integer DECLARE_| 8x16
8-bit unsigned integer DECLARE_U8x16
16-bit signed integer DECLARE_| 16x8
16-bit unsigned integer | DECLARE_U16x8
32-bit signed integer DECLARE_| 32x4
32-bit unsigned integer | DECLARE_U32x4
32-bit floating-point DECLARE_F32x4

Another important function is to declare constant arrays of vectors. These are really memory
buffers that are statically initialized, but with guaranteed alignment. Constant atrays of vectors
are useful to declare large sets of constants that can later be loaded into vectors when needed.
Declaration of arrays of vectors is done slightly different on each architecture. For example, a

macro to declare an array of 4 32x4 vectors on AltiVec is:

#defi ne DECLARE CONST | 32x4x4(var, cl1, cl2, cl13, cl4, \
c21, c22, c23, c24, \
c31, c32, ¢33, c34, \
c4l, c42, c43, c44) \

vector INT32 var[4] = {(vector INT32) (cll, cl2, c13, cl14), \
(vector INT32) (c21, c22, c23, c24), \
(vector INT32) (c31, c¢32, ¢33, c34), \
(vector INT32) (c4l1l, c42, c43, c44)};

The parameter var is the name of the array. Note that the assighment uses vector literals.
Using the vector qualifier in the declaration guarantees 16-byte alignment. Individual constant

vectors can be accessed by indexing into the array:
DECLARE CONST | 32x4x2(A, 1, 1, 1, 1, 2, 2, 2, 2);
DECLARE_| 32x4 B;
B =A1];

49

The first line in this example declares a constant array of vectors called .4, and initializes it to
constant values. Then the vector B loads the second vector of the array .4, which was set to
[2 2 2 2]. Constant arrays of vectors on MMX, SSE and SSE2 are declared as a two-
dimensional array of scalars. Using the qualifier __decl spec(al i gn(16)) guarantees the

alighment:

#defi ne DECLARE_CONST_| 32x4x4(var, cl1, cl12, c13, cl4
c21, c22, c23, c24
c31, ¢32, ¢33, c34
c4l, c42, c43, c44)

__decl spec(align(16)) INT32 var[4][4] = {c11, cl2, c13, cl4,
c21, c22, c23, c24,
c31, c32, ¢33, c34,
c4l, c42, c43, c44},

o o e e o —

On TriMedia there is no construct to force 16-byte alighment of static variables. However,
there is also no requirement that constant vectors are 16-byte aligned, only that they are 4-byte

aligned, which is the default alignment of all static variables.

MMM needs to know the size of the constant array at compile time, and it is impractical to
have different macros for all possible array sizes. For this reason, MMM implements only the
sizes required by the example programs. A more general solution 1s discussed in Chapter 7 as

future work.

4.2 Set Instructions

These instructions allow programs to set the values of vector elements to specified values.

They are implemented in AltiVec using vector literals:

#define SET | 16x8(dst, cl1, c2, c3, c4, c5, ¢6, c7, c8) \
dst = (vector INT16) (cl1, c2, c3, c4, c5, c6, c7, c8);

50

On MMX, SSE and SSE2 there are intrinsics for this purpose. For example, in SSE2:

#define SET | 16x8(var, cl, c2, ¢c3, c4, c5, ¢c6, c7, c8) \
var = _nmmset_epi 16(cl, c2, c3, c4, c5, c6, c7, c8);

On TriMedia it uses assignment for 32-bit elements, and packing with shifts and ors for

smaller partitions:

#define SET_|16x8(dst, cl, c2, c3, c4, c5, c6, c7, c8) \

dst## 0 = (c2 << 16) | c1; \
dst## 1 = (c4 << 16) | c3; \
dst## 2 = (c6 << 16) | c5; \
dst## 3 = (c8 << 16) | c7

If the SET macro is used with constant arguments, then these shi fts and ors are eliminated
through constant propagation by the vendor compiler. A special case is when all elements are

to be set to the same value. In this case the implementation 1s faster by using assignment:

#define SET1_|16x8(var, c) \
var##_0 = var## 1 = var##_2 = var## 3 = (¢ << 16) | c;

There are intrinsics that can set all elements of a vector to the same value on MMX, SSE and
SSE2. On AltiVec it must be done by using vector literals. Another special case is when all
elements are to be set to zero, which i1s implemented more efficiently in MMX, SSE and SSE2

by using xor .

Another operation that falls in this group is vector copy. Since vectors may be represented by
several variables, a macro 1s required to copy one vector to another. Table 4.2 summarizes the

supported set macros.

51

Table 4.2
MMM set instructions

=R = ol I R IV IV N
MMM Macro | Description MR EERRES

Sl s T I s T R = T I e
SET Set each element VIiVvIVIVIVIVIY
SET1 Set all elements to the same value VIiVvIVvIVIVIVIY
CLEAR Set all elements to zeto VIiVvIVIVIVIVIY
coPY Copy one vector to another VIiVvIVvIVIVIVI]Y

4.3 Load and Store Instructions

There are separate MMM macros for loading and storing vectors to 16-byte aligned and
unaligned addresses. Alighed loads and stores are done as straightforward pointer
dereferences, ot through load/store intrinsics. Table 4.3 shows the definition of an al i gned-

| oad macro on all targets:

Table 4.3
Implementations of vector load macro on all targets
. #define LOAD A | 16x8(var, ptr) \
AltiVec var = vec_ld(0, (vector INT16 *) (ptr));
SSE2 #define LOAD A | 16x8(var, ptr) \

var = _mm|oad_si 128((__ml28i *) (ptr));
MMX+SSFE, #define LOAD A | 16x8(var, ptr) \

var## 0 = *((__nm64 *) (ptr)); \
var##_1 = *(((__nb4 *) (ptr))+1);
. . #define LOAD A | 16x8(var, ptr) \
TriMedia var## 0 = *((int *) (ptr)); \
var##_ 1 = *(((int *) (ptr))+1); \
var## 2 = *(((int *) (ptr))+2); \
var## 3 = *(((int *) (ptr))+3);

Multiple loads are required in TriMedia and MMX+SSE, because the registers are smaller than
128 bits. Even though loading and storing is independent of the partition size, different
macros are required for each vector type because of type checking requirements in AltiVec.

Also, floating-point vector loads/stores use different intrinsics in SSE and SSE2.

52

Unaligned loads/stores for integer vectors are the same as aligned ones in MMX+SSE, but
different for floating-point vectors. There are different intrinsics for aligned and unaligned
loads/stotes for floating-point vectors in SSE, and for both integer and floating-point vectots
in SSE2. In AltiVec it is necessaty to perform two aligned loads, and re-align the data using
permutation. The permutation vector must be computed separately, but can be reused for re-
aligning multiple input vectors (i.e. multiple rows of a matrix that have the same alignment).

This is supported in MMM by using a separate macro to prepare the alighment:

#def i ne PREPARE LOAD ALI GNVENT(i ndex, ptr) \
nmm al i gn_vect or ##i ndex = vec_lvsl (0, ptr);

The permutation vector 1s stored statically, and can be used later by multiple unaligned loads:

#define LOAD U U8x16(var, ptr, index) \
var = vec_pern(vec_ld(0, (vector U NT8 *) (ptr)), \
vec_|d(0, ((vector U NT8 *) (ptr)) + 1), \

mm al i gn_vect or ##i ndex) ;

There are multiple instances of the permutation vector, and are selected by passing in the index
to both the prepare and the | oad macros. This concept of alignment preparation is also
useful in TriMedia, where unaligned loads also need to be emulated. In the case of TriMedia,
the re-alignment 1s done through shi fts, so the preparation macro records the shift amounts

that will be required later by the unaligned loads:

#defi ne PREPARE_LQAD AL| GNMENT(i ndex, ptr) \
mmm shift_right ##i ndex = (((int) (ptr)) & 0x3)<<3; \
mmm shift | eft ##index = 32 - nmmshift_right_ ##i ndex;

Note that in TriMedia the alignment requirement is 4 bytes, and not 16 like in AltiVec and
SSE2. But in order to homogenize the mterface, the alignment requirement 1s kept at 16 bytes
for all MMM programs. The unaligned loads use the prepared shift amounts to re-align the

data:

53

#define LOAD U U8x16(var, ptr, index)

var## 0 = (*(((UI NT8 *) ptr)+1)
(*((UNT8 *) ptr)
var##_ 1 = (*(((U NT8 *) ptr)+2)
(*(((UINT8 *) ptr)+1)
var## 2 = (*(((UINT8 *) ptr)+3)
(*(((UINT8 *) ptr)+2)
var##_3 = (*(((U NT8 *) ptr) +4)
(*(((UNT8 *) ptr)+3)

I have also defined a special | oad- adj acent macro that loads two overlapping vectors with
one byte offset between them. This is used m one of the example programs to interpolate
adjacent vectors. This operation is implemented very efficiently by applying two sets of re-

alignments to the same inputs. For example, in AltiVec it is done by using two permutations

on the same inputs:

#define LOAD ADJ_UBx16(varl, var2, ptr,

<<
>>
<<
>>
<<
>>
<<
>>

mmm shift_| eft ##i ndex) |
mmm shi ft_ri ght _##i ndex) ;
mmm shi ft_| eft_##i ndex) |
mm shi ft_right ##i ndex);
mmm shi ft_| eft ##i ndex) |
mm shi ft_right ##i ndex);
mmm shi ft_| eft_##i ndex) |
mmm shi ft_ri ght _##i ndex) ;

i ndex1, index2) \

varl = vec_perm(vec_| d(0, (vector U NT8 *) (ptr)),
vec_|d(0, ((vector U NT8 *) (ptr)) + 1),

var2 = vec_perm(vec_| d(0, (vector U NT8 *) (ptr)),

\
\
mmm al i gn_vect or ##i ndex1) ; \
\
\

vec_ |1 d(0, ((vector U NT8 *) (ptr)) + 1),
nm_al i gn_vect or ##i ndex2) ;

The compiler keeps the loaded inputs in registers and reuses them in the second permutation.
Another useful operation is a masked-store. This operation uses a vector as a mask to
stored elements. There are intrinsics that directly support this for 8-bit partitions in MMX,

SSE and SSE2, and can be emulated easily on the other platforms by doing a | oad, a bit-wise

sel ect and a store. All the different load and store instructions are shown in Table 4.4.

54

— = —

Table 4.4
MMM load and store instructions

ololo o LT
MMM Macro Description x | x § é J & |A

el e T I s I I e T
LOAD A Load aligned VIiVvIVIVIV|V]V
STORE_A Stote aligned VIV VIV |V |V Y
PREPARE_LOAD_ALI GNMENT | Prepare unaligned load VIV VIV IVIV]V
PREPARE_STCRE_ALI GNVENT | Prepare unaligned store VIV IVIVIVIV]V
LOAD U Load unaligned VIiVIV V|V |V Y
STORE_U Store unaligned VIiVvIVIVIV|V]V
LOAD ADJ Load two adjacentvectors | v | v | V |V |V | V | V
STORE_NMASKED Conditional store v |V

4.4 Rearrangement Instructions

There are a number of instructions in the target mstruction sets to deal with data
rearrangement within vectors, or to combine data from two vectors. One operation that is
well supported 1n all the targets is interleaving partitions of two vectors. Since intetleaving the
whole input vectors would result in a vector twice as long, the instructions actually operate on
one half of each mput vector. For example, an interl eave-hi gh operation on 16-bit
partitions combines the top four partitions of each input vector to compose an 8-element

result vector:

A \
\
B[]\ —]\
N N
c NN N S R s

55

Similarly, there is an i nt er| eave- | owinstruction. Another useful rearrangement operation is
a broadcast, where the value of a particular element 1s copied to all the vector elements.
Broadcast can be implemented in SSE and SSE2 with permutation intrinsics. AltiVec has an
instruction specifically for this purpose: vec_spl at . TriMedia can easily do broadcasts on 32-
bit partitions using assighment, because each 32-bit section of the vector is represented by a
different variable, but on smaller partitions it has to emulate it. For example, to broadcast the
second 16-bit element in a 16x8 vector, it has to replicate it once into a 32-bit variable, and

then copy it into the other 32-bit variables:

#defi ne BROADCAST 2 _116x8(dst, src) \
dst## 0 = PACKL6MSB(src## 1, src##_1); \
dst## 3 = dst##2 = dst## 1 = dst## 0;

It is also possible to broadcast pairs of elements. This is equivalent to broadcasting elements
of twice the size, but different macros are required to satisfy the type checking requirements in

AltiVec.

Other permutations ate possible, but not a general permutation. AltiVec does have general-
purpose permutation instructions, controlled by a permutation vector. SSE and SSE2 have
permutation intrinsics with the indices passed as immediate values, but with some restrictions:
they can operate on 16 and 32-bit partitions, but not on 8-bit ones. Also, on SSE2,
permutation of 16-bit partitions is restricted to one half of the vector, 1.e. the destination of
each element must be in the same half of the vector as the source. With these restrictions it is
not possible to have a general-purpose permutation operation in MMM. A pre-compiler
might be able to emulate arbitrary permutations, but that is outside the scope of MMM; such a

system 1s proposed as future work in Chapter 7. For this research, I implemented only specific

56

permutations that are required by the example programs. The list of supported rearrangement

mstructions i1s shown below in Table 4.5.

Table 4.5
MMM rearrangement instructions

PERMUTE_02134657 | Specific permutation

212 1S 1S XXX
MMM Macro Description lElele|y|g|y
gl s T I s T A = T
I NTERLEAVE_H Interleave high halves VIVIVIV|IV|IV|V
| NTERLEAVE L Intetrleave low halves VIiVvIiVIV|IVIV]V
BROADCAST_x Broadcast x element VIiVvIVvIVIVIV]Y
BROADCAST_PAI R X | Broadcast x™ pait of elements VIiVvIVvIVIVIVIY
vV
V|V

PERMUTE_01237654 | Specific permutation

4.5 Conversion Instructions

This section groups several instructions that perform type conversions. There are instructions
to convert between vector and scalar variables, between integer and floating-point, and to

reduce or expand the precision of the partitions.

Vectors in TriMedia are represented by scalar variables, so the conversion between them is
trivial. This 1s not so in the other architectures, where vectors are held i different registers as
scalars, so special intrinsics have to be used to convert between them. Scalar to vector
conversions store the value of the scalar variable into the lowest element of the vector. The
opposite happens in vector-to-scalar conversions. The conversion process is especially
complicated in AltiVec; one must store a single element of the vector into the address of the
scalar variable, but the address of the scalar variable is required to match the alignment of the

vector element. Since the alignhment of the scalar variable is not known, the solution 1s to

57

broadcast the lowest element to the whole vector, and then store whichever element matches

the alignment:

#define CVT_U32_U32x4(dst, src) \
vec_ste(vec_splat(src, 3), 0, &dst);

Pack instructions are used to reduce the precision of the vector elements. This instruction
combines two input vectors into one. The lower half of each element in the first vector 1s
packed together with the lower half of each element in the second vector, to produce a vector

with twice as many partitions as each input vector:

A \ B L~

c TN [N | 2] =

This operation can be done with truncation, or with saturation. A truncati ng- pack ignores
the top half of each element. A saturating-pack clips the full-precision value before
packing. SSE, SSE2 and AltiVec support pack instructions only with saturation, and TriMedia
supports them only with truncation. One can emulate truncation by masking-out the upper
half of each element prior to running a sat ur ati ng- pack. On TriMedia one can emulate a
sat urati ng- pack by clipping the inputs prior to the truncati ng- pack. If the inputs are
known not to exceed the lower half, one could use either type of pack. For these cases, MMM

defines pack instructions with unspecified reduction type.

The opposite operation is ext end, where partitions are extended to partitions with twice the
precision. Signed partitions are extended with sign-extension, while unsigned partitions are

padded with zeros. Ext end operations operate on one half of the input vector. For example,

58

an ext end- hi gh operation on a 16x4 vector extends the first two elements of the input into

32-bit partitions of a 32x2 vector:

A \

B sign extend \ sign extend \

The ext end- | ow instructions do the same but on the last half of the input vector. Table 4.6

lists all the conversion operations supported in MMM.

Table 4.6
MMM conversion instructions
©o|lo|o|o|<|<|<

MMM Macro Description g % é g § g §
CVT_vector_scal ar | Convert scalar to vector - N _/ v
CVT_scal ar_vector | Convert vector to scalar VAR
CVvT_fl oat _int Convert integet to floating-point v
CVT_int _f1 oat Convert floating-point to integer Vv
PACK_T Pack with truncation Vivi]iVv]vV
PACK S Pack with saturation Viv]vV
PACK_N Pack with unspecified reduction VI iVv]Vv]V
EXTEND_H Extend high half of vector VI iVv]Vv]V
EXTEND_L Extend low half of vector vIivIiv]y

59

4.6 Bit-wise Logic Instructions

Bit-wise operations are independent of the partition type and size. But in SSE and SSE2 there
are different intrinsics for bit-wise operations on integer than on floating-point vectors, so two
different macros are required. For consistency, macros are defined for each vector type. The
basic logic operations and, or and xor are supported, as well as andn (and-not). A bit-wise
conditional sel ect operation uses the bits in one vector to select between the corresponding
bits of two other input vectors. AltiVec has an intrinsic operation for sel ect. In the other

architectures it is emulated using and, or and andn. For example, on SSE2 it is implemented

as:

#define SEL |8x16(dst, srcl, src2, nask) \
dst = _mmor_si128(_mm and_si 128(src1, mask), \
_mm andnot _si 128(src2, nask));

Table 4.7 shows all the bit-wise logic operations supported in the common virtual instruction

set.
Table 4.7
MMM bit-wise logic instructions
©clo el |T|T
MMM Macro Description < | %X |3 |8|J ||]&
Sl s T I = T B =
AND Logical and VIV IVIV|VIV]Y
ANDN And-not VIiVvIiVvIVIVI]V]V
R Logical or VIVIVIV[V[V]Y
XOR Logical xor VIiVvIVvIVIVIVIY
SEL Bit-wise select VIiVvIiVvIVIVI]V]V

60

4.7 Shift Instructions

Partitioned shift instructions operate on each section of a vector, without carrying over to the
adjacent ones. The usual types of shifts are supported: shift-left (SLL), shift-right-
I ogi cal (SRL), shift-right-arithmetic (SRA), plus a rotate-left instruction (ROL).
The shift amounts can be immediate values or run-time variables; different MMM macros exist
for these two cases. Not all parallel shift operations are supported for all partition types on the
target processors. The only partitioned shift instruction supported by TriMedia is shi ft -
right-arithmetic on 16-bit partitions. Only AltiVec supports parallel shift on 8-bit
partitions. One can emulate shifts on smaller partitions by masking the run-over bits. For
example, to emulate a shift-left imstruction on 8-bit partitions in TriMedia, one can
compute result for the even and odd partitions separately using masks and 32-bit shi f t s, and

then combine the results:

#define SLL_I 16x8(dst, src, amount) \
dst## 0 = ((src##_0 << anmount) & OxOOFFOOFF) | \
(((src##_0 & OxFFOOFF00) << armount) & OxFFOOFFO0O);

The emulation could be done simpler if one could prepare a mask for just the run-over bits.
Unfortunately it 1s not easy to generate the mask for arbitrary shift amounts. For shifts with
immediate amounts, a pre-compiler would be able to generate the appropriate masks and do a
better emulation. I propose this solution as future work in Chapter 7. Table 4.8 shows all the

shift macros supported in MMM. Shift mnstructions do not apply to floating-point vectors.

61

Table 4.8
MMM shift instructions

©clo ol |T|T

MMM Macro Description | X133 |XJ|&J|&
il s T I s T = T I

SLL Shift-left logical VIiVvIiVvIiVI|V]V

SLL | Shift-left logical immediate VIiVvI|VI|IVI|IV]|V

SRL Shift-right logical VIiVvIiVvIVI|V]V

SRL_| Shift-right logical immediate VIiVvIiVvVIV|VI|V

SRA Shift-right arithmetic VIiVvIiVvIVI]V]V

SRA | Shift-right atithmetic immediate VIiVvI V]IV |VI]V

ROL Rotate left VIiVvIiVvIVI]V]V

ROL_I Rotate left immediate VIiVvIiVvIiVI]V]V

4.8 Floating-Point Arithmetic Instructions

Parallel floating-point arithmetic instructions atre supported by all the target architectures. The
usual basic arithmetic: add, subtract, multiply, and divide are supported directly or
through simple emulations. Other instructions supported are mul ti ply-add, ni ni mum
maxi num reciprocal (1/x), and square-root. The list of suppotted floating-point

instructions 1s shown in Table 4.9.

62

Table 4.9

MMM floating-point arithmetic instructions

MMM Macro Description %
ADD Add "~
suB Subtract v
MILT Multiply v
MULT_ADD Multiply-add Vv
RY, Divide J
M N Minimum Vv
MAX Maximum Vv
SQRT Squate root Vv
REC Reciprocal v
RSQRT Reciprocal of square root Vv

4.9 Integer Arithmetic Instructions

Parallel integer arithmetic is more complex than floating-point because of precision and

overflow issues.

Integer additions and subtractions can overflow. The standard way of

handling overflow is to use modulo arithmetic, which basically ignores the carry bit. Many

mstruction sets also support saturation handling of overflow, where the result under overflow

1s the largest number representable by the precision. Not all targets support both types of

overflow handling on all vector types. For example, TriMedia supports 16-bit parallel addition

with saturation directly, but not with modulo. In order to emulate it, one can do a 32-bit

addition, but prevent an overflow from bit 15 to bit 16. This is done by masking out bit 15

from both operands, which prevents any overflow, doing the 32-bit addition, and then adding

the masked bits again using xor :

63

#define ADD Mi 16x8(dst, srcl, src2) \

dst## 0 = (srcl## 0 & OXFFFFEFFF) + (src2## 0 & OxFFFFEFFF) \
N (srcl## 0 & 0x00008000) ~ (src2## 0 & 0x00008000);\
dst## 1 = (srcl## 1 & OXFFFFEFFF) + (src2## 1 & OXFFFFEFFF) \
N (srcl##_1 & 0x00008000) ™ (src2## 1 & 0x00008000);\
dst## 2 = (srcl## 2 & OXFFFFEFFF) + (src2## 2 & OxFFFFEFFF) \
N (srcl##_2 & 0x00008000) ™ (src2## 2 & 0x00008000);\
dst## 3 = (srcl## 3 & OXFFFFEFFF) + (src2##_3 & OxFFFFEFFF) \
N (srcl##_3 & 0x00008000) ™ (src2## 3 & 0x00008000);

It is possible that an application does not care about the overflow handling, because the range
of the data cannot result in ovetflow. For cases like these, I created a set of instructions with
no specified overflow handling. These instructions are mapped to either modulo or saturation
nstructions, or into instructions on larger partitions (if no overflow is possible, then a 32-bit

addition is equivalent to partitioned 8 or 16-bit additions).

Full-precision integer products require twice as many bits as the operands, so they don’t fit in
the same type of vectors as the mputs. Several variants of parallel multiplication deal with this
in different ways. One way 1s to discard the most-significant half of the product, and keep the

lower half. T call this mul ti ply-1ow

A ~J] —~{ B — | — | ~
\F>%|D§§D§<lm/
V N ‘V/ V
. X 7T =z

Similarly, a mul ti pl y- hi gh stores the most-significant half of the product, and discards the
lower half. MMM supports nul ti pl y-hi gh and nul tiply-1 ow for 16-bit integer partitions

only. TriMedia does not support them directly, but can emulate them using 32-bit mul ti pl y-

64

hi gh and mul ti pl y- | ow. For example, to emulate the mul ti pl y- hi gh operation on the left

half of a 32-bit register, one can mask the lower 16 bits and use a 32-bit nul ti pl y- hi gh:

dst _high = I MILM srcl1## 0 & OxFFFFO000, src2## 0 & OxFFFFO0000);

The right half of the result can be computed with mul ti ply-| ow (the standard * operator).

The lower 16 bits of the operands are sign-extended to 32-bits using the SEX16 intrinsic:

dsl | ow = SEX16(srcl## 0) * SEX16(src2## 0);

The two partial results are combined using the PACK16MSB imstrinsic to form the packed
mul tiply-hi gh result of the 32-bit vector. The same process is repeated for each 32-bit

section in the 128-bit vectors:

#define MIULT_H | 16x8(dst, srcl, src2) \

dst## 0 = PACKL6MBB(| MULM srcl## 0 & OxFFFF0000, \
src2##_0 & OXFFFF0000), \

SEX16(srcl##_0) * SEX16(src2## 0)); \
dst## 1 = PACKL6MBB(| MULM srcl## 1 & OxFFFF0000, \
src2##_1 & OXFFFF0000), \

SEX16(srcl## 1) * SEX16(src2## 1)); \
dst## 2 = PACKL6MSB(| MULM srcl## 2 & OxFFFF0000, \
src2##_2 & OXFFFF0000), \

SEX16(srcl## _2) * SEX16(src2## 2)); \
dst ## 3 = PACKL6MSB(| MULM srcl## 3 & OXFFFF0000, \

src2##_3 & OxFFFF0000), \
SEX16(srcl##_3) * SEX16(src2##_3));

AltiVec supports a variant of mul ti pl y- hi gh with the intrinsic vec_madds. This instruction
extracts the most-significant 17 bits of the 32-bit products, adds corresponding 16-bit elements
of a third input vector, and saturates the sum into a 16-bit result. Using vec_nadds with a
zero third input is almost equivalent to rmul ti pl y- hi gh, except that the results are bits 15-30
of the 32-bit product, instead of bits 16-31. One way to emulate mul ti pl y- hi gh is to shift

one of the operands to the right by one bit prior to the multiplication:

65

#define MIULT_H | 16x8(dst, srcl, src2) \
dst = vec_madds(srcl, vec_sra(src2, (vector U NT16) (1)), \
(vector INT16) (0));

This emulation loses one bit of precision in one of the operands, but it 1s still useful to many
applications. This instruction is used in the implementation of the IDCT example, with
satisfactory results. The fact that AltiVec’s vec_madds instruction can add a third input vector
opens room for a combined MMM macro mul ti pl y- hi gh-add. This can be easily emulated
on the other targets by a separate vector addition following the mul ti pl y- hi gh operation.

For example in SSE2, a macro for mul ti pl y- hi gh- add with saturation is defined as:

#define MIULT_H ADD S | 16x8(dst, srcl, src2, src3) \
dst = _mm add_epi 16(_mm rul hi _epi 16(srcl, src2), src3);
Another useful way to do integer multiplications 1s to add two products together. The

mul ti pl y- add- pai r s instruction performs 16-bit multiplication and adds the 32-bit products

of adjacent partitions. The results are 32-bit values:

A ~ ~ — B | — | — L

/
AN

I~
I~

66

The mul ti pl y-add- pai rs instruction on 16-bit integer partitions is supported directly by all
the target instruction sets. In addition, AltiVec supports this operation with an additional
parallel addition to the product result, with saturation or modulo handling of overflow. Since
the addition of the third vector can be easily emulated in the other targets, it 1s included in the

common instruction set.

One special operation available on several targets is sad (sum of absolute differences). This
instruction computes the absolute value of the differences of corresponding vector elements,

and adds the results together:

A ~ ~ ~ ~ B [— | — | — | _—

C N2

Sad 1s only supported on 8-bit unsigned partitions. None of the target architectures can do a
full sad on 128-bit vectors, but they do provide pieces that help implement it. SSE2 has a sad
mstruction on 128-bit vectors, but returns two partial sums: the sum of the lower 8 sections 1s
returned in bits 0-15 of the result vector, and the sum of the upper 8 sections on bits 64-79.

MMM supports sad in the same way as SSE2, with two partial results:

#def i ne SAD2_UBx16(dst, srcl, src2) \
dst = _mm sad_epu8(srcl, src2);

67

SSE operates on 64-bit registers, so it has to use two instructions to emulate the operation on

128-bit vectors. The two instructions result naturally in two partial results:

#define SAD2_U8x16(dst, srcl, src2) \
dst## 0 = _m psadbw(srcl##_0, src2## 0); \
dst## 1 = m psadbw(srcl## 1, src2## 1);

TriMedia supports sad on 32-bit registers with the UMEBUU intrinsic. For a 128-bit vector, a
total of four partial results result from the four UMEBUU instructions. One can emulate the

desired two partial sums by adding pairs of partial results:

#defi ne SAD2_U8x16(dst, srcl, src2)
dst## 0 = UMESBUU(srcl## 0, src2## 0) +
UMESBUU(srcl## 1, src2##_1);
dst## 2 = UMESUU(sSrcl## 2, src2## 2) +
UMEBUU(sr cl1## 3, src2##_3);

— e — —

AltiVec does not have a sad instruction, but one can emulate it by using parallel maxi mum
m ni numand subtract: |a-b| = max (a, b) — min (a, b). Then the results need to be

summed into two partial results using the intrinsics vec_sumés and vec_sungs:

#define SAD2_ U8x16(dst, srcl, src2) \
dst = (vector U NT32) vec_sunRs(vec_sumis(\
vec_sub(vec_max(srcl, src2), vec_mn(srcl, src2)), \

(vector U NT32)(0)), (vector INT32) (0));

The vec_sun®s intrinsic in AltiVec can add a third vector. This can be useful to accumulate
partial results of multiple vectors. A sad-add instruction is supported in MMM for this
purpose. A separate macro SUMR_32x4 is used to sum the two partial results into a single

scalar value.

Other parallel arithmetic operations supported are aver age, nmi ni numand maxi nrumof 8 and
16-bit partitions. Table 4.10 shows all the mteger arithmetic instructions supported by the

virtual instruction set.

68

Table 4.10

MMM integer arithmetic instructions

©|w©o|o|o | |<
MMM Macro Description g % é g § g
ADD_M Add with modulo VIiVvIVvIV|VI]V
ADD_S Add with saturation vIiviv]y
ADD_N Add with unspecified handling of overflow | v | vV | V | V
SUB_M Subtract with modulo VIVI|VI|V V]|V
SUB_S Subtract with saturation VIiVvI|V|V
SUB_N Subtract with unspecified handling of VIiVvIiVIV|V]V
ovetflow
MULT_L Multiply low v
MULT_L_ADD M | Multiply low and add with modulo v
MIULT_L_ADD N | Multiply low and add with unspecified Vv
handling of overflow
MILT_H Multiply high v
MIUT_H ADD S | Multiply high and add with saturation v
MULT_ADDPAI RS | Multiply and add pairs Vv
MULT_ADDPAI RS | Multiply, add pairs and add a third input v
_ADD_M vector with modulo
MULT_ADDPAI RS | Multiply, add paits and add a third input Vv
_ADD_S vector with saturation
MULT_ADDPAI RS | Multiply, add pairs and add a third input v
_ADD_N with unspecified handling of overflow
AVG Average v v
MN Minimum v |V
MAX Maximum v |V
CLIP Clip all elements to a value Vv
SAD2 Sum of absolute differences with two v
partial sums
SAD2_ADD_M SAD and add with modulo Vv
suve Add two partial sums Vv

69

4.10 Comparison Instructions

There are several instructions that can perform parallel comparisons. For each partition, the
result is either zero if the comparison is false, or all bits set to ones if it is true. Parallel
comparison operators are useful when combined with bit-wise sel ect, or masked-store
operations. SSE, SSE2 and AltiVec support parallel comparison instructions directly;
TriMedia does not. On TriMedia a parallel comparison can be emulated using 32-bit

comparisons and masks, and the MUX intrinsic to set the result to all zeros or all ones:

#define COVWP_EQ | 16x8(dst, srcl, src2) \
dst## 0 = MUX((srcl## 0 & OxFFFFO000) == \
(src2##_0 & OxFFFF0000), OxFFFFO000, 0) | \

MUX((srcl## 0 & OxO0000FFFF) == \

(src2##_0 & Ox0000FFFF), Ox0000FFFF, 0); \

The same is done for dst ##_1, dst##_2 and dst ##_3, to complete the 128-bit comparison.

The parallel comparison operations supported in the common virtual instruction set are shown

in Table 4.11.
Table 4.11
MMM comparison instructions
©clo|lo|lo|g LT
MMM Macro Description P § § § & §
el e T R N T G e T
CWP_EQ Compare equal VIivIVvIVvIVIV]Y
awP_Gr Compare greater-than VIiVvIVvIVIVIVI]Y
CGWP_GTE Compare greatet-than or equal Vv
CWP_LT Compare less-than VIiVvIVvIVIVIVI]Y
CWP_LTE Compare less-than or equal v
CVP_NEQ Compatre not equal Vv

70

4.11 Summary

This chapter discussed the common virtual mnstruction set, a group of instructions that can be
emulated efficiently on all the four target architectures. The instructions defined cover vector
declaration, load and store, set, shift, bit-wise logical, floating-point and integer arithmetic,
conversion and rearrangement operations. All vectors and operations are 128 bits long.
Multiple variables are used to emulate the vectors on architectures with smaller registers.
Several strategies are used to emulate operations that are not directly supported on some
mstruction sets. The resulting common virtual instruction set 1s fairly complete, and should be

enough for many applications.

The complete list of MMM macros in the common virtal instruction set is in Appendix A. It
lists the instruction or instructions each macro maps to on each target. The next chapter

shows how example programs are written using these macros.

71

Chapter 5

EXAMPLE PROGRAMS

This chapter discusses the implementation of the example programs selected: Inverse Discrete
Cosine Transform (IDCT) of 8x8 blocks, L;-Distance of 16x16 blocks, and 16x16 L,-Distance
with horizontal and vertical interpolation. The context and background of these examples was

covered in Section 3.2.4. Optimized reference mmplementations wete discussed in Section

3.2.5.

The examples in this chapter are implemented in MMM using the common virtual instruction
set defined in Chapter 4. For each example, I discuss the algorithm and instructions used by
the portable MMM programs. Then I describe variations that execute the fastest on each

target architecture.

5.1 8x8 IDCT

The portable version of IDCT 1s based on Intel’s algorithm for SSE2 [44], which is also the
same algorithm used in the MMM+SSE version [43]. It performs first a horizontal IDCT of
every row, and then a vertical IDCT of each column. I will explain the horizontal IDCT

portion first, and then the vertical in the next section.

72

5.1.1 Horizontal IDCT

The horizontal IDCT implements the decomposition in equation (3.3), repeated below for

convenience:
R T
Cs ZEABMB% 1)
1 000 1 0 0 O] 1 0000 0 0 O]
0100 0 1 0 O 00100O0O0O0DO0
0010 0 O 1 o0 000O0O1O0O00D0
A8_1=00010001F)_1_00000010
0ooo0o10 0 o0 -1| 8 01 000O0OO0ODO
0010 0 O -1 0 000O10O0O00O0
0100 0 -1 0 O 000OO1O0D0O0
1000 -1 0 0 O] |0 000000 1
_c4 Co Cy Cg 0 0 0 0 |
Cqs Cg —c4—c20 0 0 0
C4 ~C ~C4 ©C 0 0 0 0
M_1=C4 “C ¢ -¢cg 0 O 0 0
8 0 © 0 0 ¢ ¢ €5 C
0 0 0 0c3—c7—cl—c5
0 0 0 005—(‘,l c7 C3
0 0 0 0c7—05 3 ~¢ |

The first thing the program does is to declare all the vector variables that it will need. All data
vectors are 128-bit long, with 16 or 32-bit signed integer partitions. The mapping of these

variables mnto registers is done by the target compiler.

void Idct8x8 (INT16 *pSrc, |INT16 *pDst)
{

DECLARE_I 16x8(X) /* Input row */
DECLARE | 16x8(XP) /* Input row permuted */
DECLARE | 16x8(XB) /* Two columms of row repeated 4 tines */

DECLARE | 32x4(MP) /* Partial results of operator M */

DECLARE | 32x4(ME) /* Result of operator M even part */
DECLARE_| 32x4(MO /* Result of operator M odd part */
DECLARE_| 32x4(Al) /* Partial results of operator A */

DECLARE_| 32x4(A2)

73

DECLARE | 16x8(YO0) /* Row | DCT outputs */
DECLARE_| 16x8(Y1)
DECLARE_| 16x8(Y2)
DECLARE_| 16x8(Y3)
DECLARE_| 16x8(Y4)
DECLARE_| 16x8(Y5)
DECLARE_| 16x8(Y6)
DECLARE_| 16x8(Y7)

The results of the horizontal IDCT are held in the local vector variables YO — Y7, and then
used as inputs to the vertical IDCT. This 1s different from Intel’s implementation, which
stores all but two of the intermediate results into memory. Small constant vectors are declared

as local variables, and then set to their desired values:

DECLARE_| 32x4(Const Round12Bi t)
SET1_| 32x4(Const Round12Bit, 0x800)

Larger arrays of constants are declared as static arrays of vectors outside the scope of the

IDCT function, using the MMM macros designed for this purpose:

/* Operator MB coefficients in 2x4 groups, scaled by CL */

DECLARE_CONST_| 16x8x4(Const M C1, ClC4, ClC2, C1C4, Cl1C6, ClC4, -ClCs, Cl4, -Clc2,
Cl4, Cl1cs, -Cl4, -Cl2, -Cl4, Cc1cz, C1c4, -C1Gs,
Cclc, c1a, ccs, -ccr, Cics, -c1c1, Ccicr, -Cuics,
Clc5, C1c7, -cic, -C1cs, cicr, Cc1cs, Cics, -cia)

/* Operator MB coefficients in 2x4 groups, scaled by C */

DECLARE_CONST_| 16x8x4(Const M C2, C2C4, Q2C2, CQC4, 205, C2C4, -C208, G4, -2,
A, Qo -Q:A, -, -A, 2, ¢, -C20s,
Cle, QC3, c3, -C7, @c, -c12, cr, -C20s,
C2C5, Q2C7, -Cle2, -Q2GC5, C7, 2C3, C3, -Cl®);

/* COperator MB coefficients in 2x4 groups, scaled by C3 */

DECLARE_CONST_| 16x8x4(Const M C3, C3C4, 2C3, C3C4, C306, C3C4, -C3C6, C3C4, -C2C3,
C3C4, C3Cs, -C3C4, -C2C3, -C3C4, C2C3, C3C4, -C3Cs,
ClC3, (C3C3, C3C3, -(C3C7, C3C5, -Clc3, C3C7, -C3G5,
C3C5, C3C7, -C1c3, -C3C5, C3C7, C3C3, @3C3, -C1X);

/* Operator MB coefficients in 2x4 groups, scaled by C4 */

DECLARE_CONST_| 16x8x4(Const M C4, CAC4, QC4, CAC4A, €406, 44, -CACB, A4, -Q2C4,
CAC4, CACB, -CAC4, -Q2G4, -AG4, @24, C4C4, - CACs,
ClC4, C3C¢4, C3C4, -CAC7, CAC5, -ClC4, CAC7, - CAGS,
4G5, CAC7, -Clc4, -CACS, C4AC7, C3CG4, QG3¢4, -C1¥);

Each of these arrays represents the coefficients in operator M,’, but scaled by C,, C,, C; and C,

respectively. Using four different sets of coefficients saves operations in the vertical IDCT.

74

This 1s discussed further in the next section. The coefficients are represented as 16-bit signed

numbers, with 15 bits of fractional precision. The definition of the constants is as follows:

#define CLClL 31521 /* Cos(1*pi/16)*Cos(1*pi/16) << 15 */
#define CLQ2 29692 /* Cos(1*pi/16)*Cos(2*pi/16) << 15 */
#define CLC3 26722 /* Cos(1*pi/ 16)*Cos(3*pi/16) << 15 */
#define CLC4 22725 [* Cos(1*pi/ 16)*Cos(4*pi/16) << 15 */
#define CLC5 17855 /* Cos(1*pi/16)*Cos(5*pi/16) << 15 */
#define CLC6 12299 /* Cos(1*pi/ 16)*Cos(6*pi/16) << 15 */
#define CLC7 6270 /* Cos(1*pi/16)*Cos(7*pi/16) << 15 */

#define C2C2 27969 /* Cos(2*pi/16)*Cos(2*pi/16) << 15 */
#define C2C3 25172 /* Cos(2*pi/16)*Cos(3*pi/16) << 15 */
#defi ne CQ2C4 21407 /* Cos(2*pi/16)*Cos(4*pi/16) << 15 */
#define C2C5 16819 /* Cos(2*pi/ 16)*Cos(5*pi/16) << 15 */
#define C2C6 11585 /* Cos(2*pi/ 16)*Cos(6*pi/16) << 15 */
#define C2C7 5906 /[* Cos(2*pi/16)*Cos(7*pi/16) << 15 */

#define C3C3 22654 /* Cos(3*pi/16)*Cos(3*pi/16) << 15 */
#define C3C4 19266 /* Cos(3*pi/16)*Cos(4*pi/16) << 15 */
#define C3C5 15137 /* Cos(3*pi/ 16)*Cos(5*pi/16) << 15 */
#define C3C6 10426 /* Cos(3*pi/16)*Cos(6*pi/16) << 15 */
#define C3C7 5315 /[* Cos(3*pi/16)*Cos(7*pi/16) << 15 */

#define CACA 16384 /* Cos(4*pi/16)*Cos(4*pi/16) << 15 */
#define CAC5 12873 /* Cos(4*pi/ 16)*Cos(5*pi/16) << 15 */
#define CAC6 8867 [* Cos(4*pi/16)*Cos(6*pi/16) << 15 */
#define CAC7 4520 [* Cos(4*pi/16)*Cos(7*pi/16) << 15 */
The horizontal IDCT of each row 1s computed using the appropriate set of coefficients. The

order is chosen so that the last outputs are the first to be used by the vertical IDCT, which

improves the chance that they can be kept in registers, and not have to be stored in memory.

ROWIDCT(Y3, (pSrc + 3 * 8), ConstMC3);
ROWIDCT(Y5, (pSrc + 5 * 8), ConstMC3);
ROWIDCT(Y1l, (pSrc + 1 * 8), ConstMCl);
ROWIDCT(Y7, (pSrc + 7 * 8), ConstMCl);
ROWIDCT(Y2, (pSrc + 2 * 8), ConstM C2);
ROWIDCT(Y6, (pSrc + 6 * 8), ConstM C2);
ROWIDCT(YO, (pSrc + 0 * 8), ConstM C4);
ROWIDCT(Y4, (pSrc + 4 * 8), ConstM C4);

Each horizontal IDCT is computed using the decomposition in equation (5.1) directly. It first

loads one row of the mput array:

75

#define RONIDCT(Y, pSrc, pConst);
{

/* Load input row */

LOAD A | 16x8(X, pSrc);

— — - —

Operator Py’ permutes the inputs from order [0 123 456 7] into order [0 24 6 1 3 57]. This
particular permutation is expensive to implement in SSE2. Instead I permute it into order

02134657

PERMUTE_I 16x8_02134657(XP, X);

It is not important that the pairs of elements are shuffled, because of the way they are used
next. The implementation of operator M, is easiest understood by working backwards.

Consider the even part of the operator. It is of the form:

Coo Co Coo GCso
_ C c C
ML =| o Ci Gy Gy (5.2
Coo G2 G2 Gy

CO,B C1,3 C2,3 C3,3

The desired result of this operator is:

X5Coo T X5C10 T X,Cp 0 + XCs0 Xo
XoCo1 T X3Cy 0 ¥ X,Co 0 + XsCqp | M L X,

+ + + — Wlae (5.3)
XoCo2 T X;C 5 T X4Cp 0 + XsCs 5 Xy

| XoCo3 + XCpa F X4Ch 5+ XgCs3 |

We can use the nul ti pl y-add- pai rs instruction to compute two products and an addition
of the form A[B+CI[D, where 41 & C and B & D ate adjacent pattitions in two vectors.
Since the vectors are 128-bits long, four of these operations can be done 1n parallel. If we pack
the first two coefficients of every row into a vector Cj,=[c, €, Cy1 €11 Cyp €15 Cy3 €3], and do a

mul ti pl y- add- pai r s operation with a vector that has mputs 0 and 2 repeated: X,,=[x, X, X,

76

X, X, X, X, X,], we obtain a vector with the left half of the desired results for each row of

equation (5.3):

M,, = [X()C(),()+X2C1,() X()C(),1+X2C1,1 X(1Cr),2+X2C1,2 X0C0,3+X2C1,3]

Fach of the elements in vector M, is a 32-bit integer. A similar arrangement can produce a

vector with the right half of the desired results:

M, = [X4C2,r1+X6C3,() X4C2,1+X6C3,1 X4C2,2+X6C3,2 X4C2,3+X6C3,3]

These two vectors can be added using parallel addition to obtain the desired result. The same
technique can be applied to the odd patt of operator M,". In order to create the vector X, in
MMM I used the br oadcast - pai r operation, which copies two adjacent elements to the rest

of the vector. Elements x;, and x;, are the first pair in vector XP:

BROADCAST_PAI R 0_I 16x8(XB, XP);
The coefficients for operator M,' are stored in memory, so they need to be read into a

temporary vector before they are used:

LOAD A | 16x8(Tenp, &pConst[0]);
MULT_ADDPAI RS_| 16x8(MP, XB, Tenp);

For SSE and SSE2 this | oad operation is removed by the target compiler, because the
mul ti pl y-add- pai rs instruction can take a memory address as the second argument. The
same instructions are used to compute M,,, which is then added to M,, to complete the even
part of operator M,". The addition is combined with the second mul ti pl y- add- pai rs, as
this can be done with a single instruction in AltiVec. Since the inputs to the IDCT only use 9

bits, and the constants use 15, the products use at most 24 bits of each 32-bit partition. We

77

can safely use addition with unspecified handling of overflow. The inputs x;, and x; are the

third pair in vector XP, and the constants are the second row in the array pConst :

BROADCAST_PAI R 2_116x8(XB, XP);
LOAD A | 16x8(Tenp, &pConst[1]);
MJULT_ADDPAI RS_ADD _N_| 16x8(ME, XB, Tenp, M);

Now vector ME holds the four results of the even part of M,’, as 32-bit values. The odd part

1s computed 1n a very similar way:

BROADCAST_PAIR 1 |116x8(XB, XP);
LOAD A | 16x8(Tenp, &pConst[2]);
MULT_ADDPAI RS | 16x8(MP, XB, Tenp);

BROADCAST_PAI R 3_116x8(XB, XP);
LOAD A | 16x8(Tenp, &pConst[3]);
MULT_ADDPAI RS ADD N | 16x8(MO, XB, Tenp, MP);

1000 1 0 0 O]
0100 O 1 0 O
0010 O O 1 O
. . _ 0001 O O O0 1
The last part of the horizontal IDCT is operator Asl = 00010 0 O 1
0010 O O -1 0
0100 O -1 0 O
1000-10 0 O]

The top half of this operator adds the first four rows of the input with the second four. This
1s simply the parallel addition of vectors ME and MO. The bottom part is the subtraction of ME
and MO, but in reverse order. For the time being it will just do the subtraction, and correct the

order later. Once again we use addition and subtraction with unspecified overflow handling:

ADD_N_| 32x4(ME, ME, ConstRound12Bit);
ADD_N_| 32x4(Al, ME, M) ;
SUB N I32x4(A2, ME, MD):

The first operation adds a rounding amount to both Al and A2. This helps preserve accuracy

when converting back to 16 bits. This is done next with arithmetic shi ft - ri ght s and packs:

78

SRA | _132x4(Al, Al, 12);
SRA | _132x4(A2, A2, 12);
PACK N I32x4(Y, Al, A2);

Only the least significant 12 bits are shifted out, to preserve accuracy. This is compensated at
the end of the vertical IDCT. After the shifts, the quantities are known to be within the lower
16 bits, so we can use the conversion instruction with unspecified reduction type. Lastly, we

correct the order of the last four elements by using a permutation:

PERMUTE_| 16x8_01237654(Y, Y);

5.1.2 Vertical IDCT

The vertical IDCT is performed for the eight columns in parallel. The eight outputs of the
horizontal IDCT (YO — Y7) are the inputs to the vertical IDCT. Every operation in the IDCT
becomes a parallel operation on the mput vectors, so it makes sense to use an IDCT with
minimal number of operations. The IDCT algorithm is based on decomposition (5.1), but

factorizes matrix M, further as follows:

M,* = Fy E;'B; "Dy’ G4
10000 0 0 O 101 000 0 0]
06010000 o0 O 01 0 1 00 0 O
001000 0 O 01 0 -100 0 O

whereF8‘1=00010 0 0 0 g1-|/10-1000 0 0
00001 0 0 o0 "8 000 0 10 1 o0
00000c4c40 00 0 0 10-10
00000c¢c, -c, O 00 0 0 01 0 1
00000 O 0 1 00 0 0 01 0 -1

79

11 0 0 0 0 0 O] & 0 0 0 00
1-10 000 0 0 0 ¢, 0 0 00
00 1t 00 0 0 0 ¢, O 0 0 00
. 00t -100 00 - 0 0 0c, 00 00
87100 0 01 4 0 0f"¢ 0 0 0 0¢c 0 00
0 00 0y -100 0 0 0 000 0c
000000 1t 0 0 0 0 0c 00
00 0000t~ 0 0 0 0 0 0c, O

and t, = tan(ﬁk/ 16). Operator Py’ in (5.1) is a permutation of the inputs. No operation is

necessary because each input is represented by a different variable. Operator D, represents a
scaling factor for each input. This has already been done by using scaled coefficients in the
horizontal IDCTs. The constants ?,, 2, 7, and ¢, are represented as unsigned 16-bit integers

with 16 fractional bits.

#define TANL (Ul NT16) 13036 /* Tan(1*pi/16) << 16 */
#define TAN2 (Ul NT16) 27146 /* Tan(2*pi/16) << 16 */
#define TAN3 (Ul NT16) 43790 /* Tan(3*pi/16) << 16 */
#define COS4 (U NT16) 46341 /* Cos(4*pi/16) << 16 */

The horizontal IDCT declares four vectors and sets all their elements to these constants, plus a

few other constant vectors used for rounding:

DECLARE_| 16x8(Const Tanl)
DECLARE | 16x8(Const Tan2)
DECLARE | 16x8(Const Tan3)
DECLARE | 16x8(Const Cos4)
DECLARE_| 16x8(Const Corr)
DECLARE_| 16x8(Const Round5Bi t)
DECLARE | 16x8(Const Round5Bi t Corr)

SET1_I| 16x8(Const Tanl, TANL1)

SET1_I| 16x8(Const Tan2, TAN2)

SET1_| 16x8(Const Tan3, TAN3)

SET1_| 16x8(Const Cos4, CCs4)

SET1_I| 16x8(Const Corr, Ox1)

SET1_I| 16x8(Const Round5Bit, 0x10)
SET1_I| 16x8(Const Round5Bi t Corr, 0xF)

80

The vectors are declared as signed instead of unsigned because the multiply-high
operations are only available for signed partitions. This makes no difference for the constants
TANL and TAN2, because they are less than 0.5 and thus have the same meaning as signed or
unsigned quantities. But TAN3 and COS4 are greater than 0.5 and become negative when

interpreted as signed quantities. For example, the hexadecimal number 0xB505 interpreted as

an unsigned value equals 46341, which is COS(IT / 4) with 16 fractional bits. But 0xB505

interpreted as a signed number is —19195, which equals COS(IT / 4)—1. When using signed
multiplication with these constants we can obtain the desired result by adding the operand to
the product: X® C = Xo (C + l) = XoC+ X, where * denotes unsigned multiplication, and o 1s

signed multiplication.

Operator B, is done using parallel 16-bit multiplications (mul ti pl y- hi gh), additions and
subtractions. Whenever possible, a combined mul ti pl y- hi gh- add instruction 1is used.

There is no 1isk of overflow, so I use instruction with no special handling of overflow:

ADD N | 16x8(B0, YO, Y4)

SUB_N_ | 16x8(B1, YO, Y4)

MULT_H ADD N | 16x8(B2, Y6, ConstTan2, Y2)
MULT_H | 16x8(Tenp, Y2, Const Tan2)

SUB_N_| 16x8(B3, Tenp, Y6)

MULT_H ADD N | 16x8(B4, Y7, ConstTanl, Y1)
MULT_H | 16x8(Tenp, Y1, ConstTanl)

SUB N | 16x8(B5, Tenp, Y7)

MULT_H ADD_N_| 16x8(Tenp, Y5, ConstTan3, Y5)
ADD N | 16x8(B6, Tenp, Y3)

MULT_H ADD N | 16x8(Tenp, Y3, ConstTan3, Y3)
SUB_N | 16x8(B7, Y5, Tenp)

Operator E," requires only additions and subtractions. Some constant cotrection vectors are
added to help reduce the truncation error. The rounding vectors are also added here, so that

they get propagated into all the outputs:

81

ADD N | 16x8(EO0, BO, B2)

ADD N | 16x8(EO, EO, ConstRound5Bit)
SUB N | 16x8(E3, B0, B2)

ADD N | 16x8(E3, E3, Const Round5Bit Corr)
ADD N | 16x8(El1, B1, B3)

ADD N |16x8(ELl, E1l, ConstRound5Bit)
SUB N | 16x8(E2, B1, B3)

ADD N | 16x8(E2, E2, Const Round5Bit Corr)
ADD N | 16x8(E4, B4, B6)

ADD N |16x8(E4, E4, ConstCorr)

SUB N | 16x8(E5, B4, B6)

SUB N | 16x8(E6, B5, B7)

ADD_N | 16x8(E6, E6, ConstCorr)
ADD_N | 16x8(E7, B5, B7)

Operator F;” involves a couple of products and a few more additions:

ADD | 16x8(Tenp, E5, EB6)

MULT_H ADD N | 16x8(F5, Tenp, Const Cos4, Tenp)
ADD_N_| 16x8(F5, F5, ConstCorr)

SUB_N | 16x8(Tenp, E5, EB)

MULT_H ADD N | 16x8(F6, Tenp, ConstCos4, Tenp)
ADD N | 16x8(F6, F6, ConstCorr)

Finally, operator A," adds or subtracts pairs of vectors, scales the outputs to the right level by
shifting-out the lowest 5 bits, and stores the results. The shift amount is fixed, so we can use

the shi ft -i mmedi at e instruction:

/* YO */

ADD N |16x8(Tenp, EO, E4)

SRA | _116x8(Tenp, Tenp, 5)
STORE_A | 16x8((pDst + 0*8), Tenp)

[* Y7 */

SUB_N_| 16x8(Tenp, EO, E4)

SRA | _116x8(Tenp, Tenp, 5)
STORE A | 16x8((pDst + 7*8), Tenp)

/[* Y1 */

ADD N | 16x8(Tenp, E1, F5)

SRA | _116x8(Tenp, Tenp, 5)
STORE A | 16x8((pDst + 1*8), Tenp)

/* Y6 */

SUB N | 16x8(Tenp, El, F5)

SRA | _116x8(Tenp, Tenp, 5)
STORE_A | 16x8((pDst + 6*8), Tenp)
[* Y2 */

ADD N _| 16x8(Tenmp, E2, F6)

82

SRA | 116x8(Tenp, Tenp, 5)
STORE_A | 16x8((pDst + 2*8), Tenp)

[* Y5 */

SUB_N_| 16x8(Tenp, E2, F6)

SRA | _116x8(Tenp, Tenp, 5)
STORE_A | 16x8((pDst + 5*8), Tenp)

/[* Y3 */

ADD N | 16x8(Tenp, E3, E7)

SRA | _116x8(Tenp, Tenp, 5)
STORE A | 16x8((pDst + 3*8), Tenp)

/* Y4 */

SUB_N | 16x8(Tenp, E3, E7)

SRA | 116x8(Tenp, Tenp, 5)
STORE A | 16x8((pDst + 4*8), Tenp)

The IDCT concludes with the macro:

END_CPTI M ZEDX) ;
}

which empties the MMX registers. This 1s required before any other program can use floating-
point registers; it does nothing on the other architectures. As a general rule MMM programs

use this instruction after any optimized module.

This IDCT meets the IEEE 1180 accuracy requirements in all the four target architectures.

The final form of the IDCT implementation in MMM appears in Appendix C.

5.1.3 Tatget-Specific Optimizations

This section discusses attempts to further optimize the IDCT for each target architecture, but
maintaining the same algorithm. I tested variations in the implementation and instructions
that favor each specific architecture, even if it makes the program non-portable. The purpose
of this exercise is to determine how much performance is lost to portability for a given

algorithm.

83

On AltiVec, the emulation of nul ti ply-hi gh instructions requires a shift of one of the

arguments, to account for the implicit factor of 2 added by the vec_nmadds intrstruction.

#define MIULT_H | 16x8(dst, srcl, src2) \
dst = vec_nadds(srcl, vec_sra(src2, (vector U NT16) (1)), \
(vector INT16) (0));

This can be avoided by using constants with 15 fractional bits, instead of 16. This also
resolves the problem of having constants greater than 0.5 be mnterpreted as negative numbers.
Constants with 15 bits of precision can never be negative. This saves three extra additions.

With these optimizations the IDCT runs 4% faster than the portable version.

On TriMedia the IDCT can be made a little faster (1.3%) by storing all the coefficients for
operator M, in local variables, rather than in memory. This is possible because TriMedia has
a very large number of registers. For SSE and SSE2 I could find no way to improve upon the

portable MMM version. The performance measurements of all versions are shown in Chapter

6.

5.2 16x16 L,-Distance

This example computes the L;-Distance of a 16x16 block, as described 1n Section 3.2.4.2.

5.2.1 Portable MMM Design

The portable MMM version of 16x16 L;-Distance 1s completely unrolled, and it always
assumes that the reference block 1s unaligned. It accumulates two partial sums of the absolute
differences of each row, and adds them into a single quantity at the end. It starts by declaring
vector variables that hold one row of each block (RL and I'), one vector to accumulate the

partial sums, and the integer result. It clears the partial sum to zero:

84

U NT32 L1Di st 16x16(Ul

{

int RowPitch,

DECLARE_U8x16(R1)
DECLARE_U8x16(1)
DECLARE_U32x4(Sad)
Ul NT32 Sum

CLEAR U32x4(Sad)

NT8 *pRef, U NT8 *pln,

int Limt)

/* Hol ds one row of reference bl ock */
/* Hol ds one row of input block /

/* Vector with two partial sunms */

/* Integer result */

The reference block 1s assumed to be unaligned. I use the following MMM macro to prepare

the re-alignment of all rows:

PREPARE_LOAD AL|I GNVENT(1, pRef)

The first parameter 1s the realignment index, as there can be multiple re-alignments prepared.

On AltiVec, this macro computes a permutation vector based on the address of pRef. On

TriMedia, 1t computes shift amounts. On SSE and SSE2 it does nothing. Then it accumulates

the sum of absolute differences of each row in a completely unrolled manner:

SAD ROW Sad, pRef
SAD_ROW Sad, pRef
SAD_ROW Sad, pRef
SAD_RON Sad, pRef
SAD_RON Sad, pRef
SAD_ROW Sad, pRef
SAD_ROW Sad, pRef
SAD_ROW Sad, pRef
SAD_RON Sad, pRef
SAD_RON Sad, pRef
SAD_ROW Sad, pRef
SAD_ROW Sad, pRef
SAD_ROW Sad, pRef
SAD_RON Sad, pRef
SAD_RON Sad, pRef
SAD_ROW Sad, pRef

0* RowPi t ch,
1* RowPi t ch,
2* RowPi t ch,
3*RowPi t ch,
4* RowPi t ch,
5* RowPi t ch,
6* RowPi t ch,
7* RowPi t ch,
8* RowPi t ch,
9* RowPi t ch,
+10* RowPi t ch,
+11* RowPi t ch,
+12* RowPi t ch,
+13* RowPi t ch,
+14* RowPi t ch,
+15* RowPi t ch,

+ 4+ +++++ o+ o+

pln
pln
pln
pln
pln
pln
pln
pln
pln
pln
pln
pln
pln
pln
pln
pln

0*RowPi tch, 1)
1*RowPi tch, 1)
2*RowPi tch, 1)
3*RowPi tch, 1)
4*RowPi tch, 1)
5*RowPi tch, 1)
6*RowPi tch, 1)
7*RowPi t ch, 1)
8*RowPi t ch, 1)
9* RowPi t ch, 1)
+10* RowPRi t ch, 1)
+11*RowPRi tch, 1)
+12* RowPRi t ch, 1)
+13*RowPRi t ch, 1)
+14* RowRi t ch, 1)
+15* RowPRi t ch, 1)

+ 4+ +++++ o+ o+

The SAD_ROW macro computes the sum of absolute differences of a row and accumulates the

partial results. It uses the SAD2_ADD MMM macro

efficient than a separate add in some architectures:

85

to accumulate the tresult, which is more

#defi ne SAD RONdst, pRef, pln, index) \

LOAD U UBx16(R1, pRef, index) \
LOAD A USx16(1, pln) \

SAD2_ADD M UBx16(dst, RL, I, dst)
After all rows have been processed, the vector Sad holds two partial sums. They are added

and the result 1s converted into an integer value. The sum is returned after clearing the state:

SUMR_U32x4(Sum Sad)

END_OPTI M ZEDX)
return Sum

}

This example does not take advantage of the Li mi t parameter. In order to decide to exit the
function early, one must compare a partial distance with the limit. In a scalar implementation
this does not represent much overhead, and can be done after every row. But in an optimized
implementation, the branch penalty introduced can be expensive. Also, since the optimized
MMM implementation maintains two partial sums in a vector, one needs to add the two and
convert the result to an integer before doing the comparison. For this reason, I implemented a

version of 16x16 L;-Distance with a single shortcut path after half the rows:

SAD RON Sad, pRef + 6*RowPitch, pln + 6*RowPitch, 1)
SAD RON Sad, pRef + 7*RowPitch, pln + 7*RowPitch, 1)

/* Shortcut */
SUM2_U32x4(Sum Sad)
if (Sum> Limt) {
END _OPTI M ZEIX)
return Sum

}

SAD RON Sad, pRef + 8*RowPitch, pln + 8*RowPitch, 1)
SAD ROWN Sad, pRef + 9*RowPitch, pln + 9*RowPitch, 1)

The benefit of the shortcut path depends on the input data and in the motion estimation
algorithm. Chapter 6 shows speed measurements of these examples in the context of an

MPEG?2 video encoder with natural outdoor images as mputs.

86

5.2.2 Target-Specific Optimizations

On TriMedia 1t is slightly faster to accumulate the sum of absolute differences of each row into
a single integer value, which is accumulated for all rows. This has the same number of
operations per row, but saves some overhead in the beginning and end. It results in a 1.4%
speed improvement. On AltiVec it is more efficient to keep four partial sums, rather than two.
This saves one vec_sun®s instruction per row. Summing four partial results at the end is no
more complex than two, using the vec_suns instruction. Also, keeping the permutation
vector in a local variable rather than a global saves some instructions. After these
optimizations, this example becomes identical to the reference implementation by Motorola

[49]. T could find no target-specific improvements to this program for SSE and SSE2.

5.3 16x16 L,-Distance with Interpolation

This example computes the I;-Distance of a 16x16 block, but also performs horizontal and

vertical half-pixel interpolation on the reference block.

5.3.1 Portable MMM Design
The interpolation is defined as the average of four pixels: the current, the one to the right, the

one below, and the one below and to the right:

(5.5)

avg(a,b,c,d):{a+b+C+d+2J

4

MMM supports instructions that compute the average of two vectors. Using them one can

produce an approximation to the four-pixel average:

87

{(a+§+1)J_{(c+g+1)J+l

avg(a,b,c,d)=avg(avg(a,b),avg(c,d)) = (5.6)

2

In simulations, this approximation was found to mntroduce a mean error of 0.37 to the average

value (in the range of 0-255). This is acceptable for the purposes of motion estimation.

This example starts very similar to the previous one, except that it declares two more vectors

to hold additional rows of the reference block:

int L1Di st16x16_InterpXY(U NT8 *pRef, U NT8 *pln,
int RowPitch, int Limt)
{

DECLARE _U8x16(R1) /* Hol ds one row of reference bl ock */
DECLARE_U8x16(R2)

DECLARE_U8x16(R3)

DECLARE_U3x16(B) /* Hol ds one row of input block */

DECLARE U32x4(Sad) /* Vector with two partial sums */
U NT32 Sum /* Integer result */
CLEAR _U32x4(Sad)

The horizontal interpolation needs to load two adjacent vectors of the reference block; this is
the top row of the block, and an overlapping row that starts one pixel to the right. Both of
these can possibly be unaligned with respect to 16-byte boundaries, so I prepare the re-

alignment of both using different indices:

PREPARE_LOAD ALI GNVENT(1, pRef)
PREPARE_LOAD ALI GNVENT(2, pRef +1)

Then I load the two adjacent rows using the MMM macro defined for this purpose, and

average them:

LOAD ADJ_USx16(R2, R3, pRef, 1, 2)
AVG USx16(R2, R2, R3)

88

Now R2 holds the first row interpolated. I need to do the same for the second row, do
vertical interpolation, load the input block row and compute the sum of absolute differences.

All this 1s done inside a macro:

#defi ne SAD | NTERP_RON dst, pRef, pln, indexl, index2)

—

COPY_UBx16(R1l, R2)

LOAD ADJ_WBx16(R2, R3, pRef, indexl, index2)

AVG UBx16(R2, R2, R3) /* Interpolate horizontally */
AVG UBx16(R1, R1, R2) /* Interpolate vertically */
LOAD_A U8x16(1, pln)

SAD2_ADD M U8x16(dst, R1l, |, dst)

— e e e —

This macro assumes that R2 holds the average of the previous row. It copies it to RL before
loading and averaging the next row into R2. It then averages Rl and R2 as vertical
mnterpolation. Then it loads the input row, which is aligned, and computes the sum of absolute

differences. This 1s applied to all rows 1n an unrolled fashion:

SAD_| NTERP_RON Sad, pRef + 1*RowPitch, pln + O*RowPitch, 1, 2)
SAD | NTERP_RON Sad, pRef + 2*RowPitch, pln + 1*RowPitch, 1, 2)
SAD | NTERP_ROW Sad, pRef + 3*RowPitch, pln + 2*RowPitch, 1, 2)
SAD | NTERP_ROW Sad, pRef + 4*RowPitch, pln + 3*RowPitch, 1, 2)
SAD | NTERP_ROW Sad, pRef + 5*RowPitch, pln + 4*RowPitch, 1, 2)
SAD | NTERP_RON Sad, pRef + 6*RowPitch, pln + 5*RowPitch, 1, 2)
SAD_| NTERP_RON Sad, pRef + 7*RowPitch, pln + 6*RowPitch, 1, 2)
SAD | NTERP_ROW Sad, pRef + 8*RowPitch, pln + 7*RowPitch, 1, 2)
SAD | NTERP_ROW Sad, pRef + 9*RowPitch, pln + 8*RowPitch, 1, 2)
SAD | NTERP_ROW Sad, pRef +10*RowPitch, pln + 9*RowPitch, 1, 2)
SAD_| NTERP_RON Sad, pRef +11*RowPitch, pln +10*RowPitch, 1, 2)
SAD_| NTERP_RON Sad, pRef +12*RowPitch, pln +11*RowPitch, 1, 2)
SAD | NTERP_ROW Sad, pRef +13*RowPitch, pln +12*RowPitch, 1, 2)
SAD | NTERP_ROW Sad, pRef +14*RowPitch, pln +13*RowPitch, 1, 2)
SAD | NTERP_ROW Sad, pRef +15*RowPitch, pln +14*RowPitch, 1, 2)
SAD_| NTERP_RON Sad, pRef +16*RowPitch, pln +15*RowPitch, 1, 2)

Finally, the two partial sums are added and converted into an integer result:

SUM2_U32x4(Sum Sad)
END_OPTI M ZEIX)
return Sum

89

There is also a version with a shortcut path in the middle, after 8 rows. It is shown in

Appendix C.

5.3.2 Target-Specific Optimizations

On TriMedia one can use FUNSHI FTx instructions (combine right-most x bytes from one
vector with left-most 4-x bytes from second) to re-align data, but they require that the offset
amount is known at compile time. TriMedia requires 4-byte alignhment in the | oads, so only
four cases or realignment are possible. Using a switch statement, one can replicate the L,-
Distance function four times, one for each alignment offset. This technique adds some
branching overhead, and does not help in the L,-Distance example without interpolation, but
in this case it improves the execution speed by 3.3%. On AltiVec it is beneficial to use four
partial sums, and keep the re-alighment permutation vectors in local variables, like in the

previous example.

5.4 Summary

This chapter discussed how portable versions of the example programs were written based on
the MMM macros for the common virtual instruction set defined in Chapter 4. These
examples use some of the most complex partitioned instructions available in the instruction
set. The two 16x16 L;-Distance examples have two versions each, one with a shortcut path,
and one without. The portable implementations of the examples were designed to perform
fairly well on all targets. I discussed possible target-specific optimizations that can be used by
non-portable versions to run even faster, to compare against the portable versions. Chapter 6

presents the performance measurements of all the example programs.

90

Chapter 6

RESULTS

This chapter discusses the performance of the MMM example programs and the reference
implementations. There are a total of five example programs, counting the variations with and
without shortcut paths. The examples are 8x8 IDCT, 16x16 L;-Distance without shortcut,
16x16 L,-Distance with shortcut, 16x16 I,-Distance with interpolation without shortcut, and
16x16 L;-Distance with interpolation and shortcut. For each of these programs there are up to
five versions running on each of the four targets: the portable MMM version, one or two
vendor optimized reference versions, one version based on the portable design but further
optimized for each target (I refer to this as the MMM-Opt version), plus a scalar version. The
execution speed is measured for all programs, and the instruction count for the examples
without shortcuts. The execution times presented are averages derived from the measurement
of loops of calls to each example function. The average results are rounded to a single

fractional digit.

From these measurements I derive the speedup and reduction in instruction counts for all
optimized examples with respect to the scalar versions. The speedup is computed as:

Timeg,,

Speedup = —
Ti meOptimized

(6.1)

91

The reduction in instruction counts is computed similatly:

InstructionCountg_,,

InstructionCount ;e

6.2)

The following sub-sections present the results on each target platform.

6.1 TriMedia TM1300

The programs in this section were compiled with the TriMedia compiler version 2.1. They
were run on a TriMedia TM1300 processor at 133 MHz. The execution speed was measured
using the hardware cycle counter. The programs were invoked consecutively several thousand
times to dilute the effects of cache misses on the first call. Table 6.1 shows the execution
times of all the programs on TriMedia. The speed of the reference version is quoted from the

documentation [46].

Table 6.1

Execution times in cycles on TriMedia TM1300
Version 8x8 IDCT 16x16 L,-Distance 16x16 L;-Distance with

Interpolation
No shortcut Shortcut No shortcut Shortcut

MMM 230 119.8 81.3 202.5 205
MMM-Opt 227 118.3 78.6 196.1 185.5
Reference 170
Scalar 626 457.3 158.3 1200.5 1062.6

From these measurements we can derive the speedup obtained by the different optimized

versions with respect to the speed of the scalar implementation. Table 6.2 and Figure 6.1

show the speedup of all versions of the examples running on TriMedia.

92

Table 6.2

Speedup of optimized examples on TriMedia TM1300

Version 8x8 IDCT 16x16 L,-Distance 16x16 L;-Distance with
Interpolation
No shortcut Shortcut No shortcut Shortcut
MMM 2.72 3.82 1.95 5.93 5.18
MMM-Opt 2.76 3.87 2.01 6.12 5.73
Reference 3.68
Figure 6.1
Speedup of optimized examples on TriMedia TM1300
7.00 ~
6.00 +
5.00
o 4.00 7 B MMM
£] 0 MMM-Opt
& 3.00 m Reference
2.00 +
1.00 ~
0.00 - —
IDCT L1-Dist L1-Dist Shortcut L1-Dist L1-Dist Iterp.
Interpolate Shortcut

The execution speeds of the portable MMM examples are very close to the target-specific

implementations of the same algorithms (MMM-Opt versions). The speedup is within 10% of

the MMM-Opt versions in all examples.

This indicates that no more than 10% of

performance 1s lost for using portable instructions only. The reference version of IDCT is

26% faster than the portable one, because it uses an algorithm that fits better to TriMedia’s

short register length.

93

The instruction counts were measured for the programs without shortcuts. They are shown in
Table 6.3. I have no measurement for the reference version, as I don’t have an actual working
implementation of it. I also could not measure the instruction count of the MMM-Opt version

of L,-Distance with interpolation, because it has a variable execution path.

Table 6.3
Instruction counts on TriMedia TM1300
Version 8x8 IDCT 16x16 L;-Distance 16x16 L;-Distance
with Interpolation
MMM 918 503 862
MMM-Opt 911 498 957
Scalar 1644 1703 4943

Like before, it 1s useful to compare the instruction counts with respect to the scalar

implementation. Table 6.4 below shows the reduction in the instruction counts for these

examples.
Table 6.4
Reduction in instruction counts on TriMedia TM1300
Version 8x8 IDCT 16x16 1;-Distance 16x16 L;-Distance
with Interpolation
MMM 1.79 3.39 5.73
MMM-Opt 1.80 3.42

The instruction counts are very similar for the portable and target-specific versions. This
confirms that not much is lost by using portable instructions only. It is interesting to note that
the speedups measured on this platform are greater than the reduction in the instruction
counts. This happens because the optimized versions improve the scheduling of instructions

into parallel functional units.

94

6.2 MMX + SSE

The programs were run on a Pentium III processor running at 600 MHz. The programs were
compiled with the Intel C/C++ compilet version 7.0. The execution time was measured using
multimedia timers, which are cycle accurate. The reference IDCT example is written 1n
assembly [43]. There are two L,-Distance reference implementations from [47]. The first is
written in assembly, but has some unnecessary loop overhead. The second reference 1s written
in C with intrinsics; I removed the unnecessary loops from this example. The MMM-Opt
versions are 1dentical to the portable ones, because I could find no way to improve upon them.
Table 6.5 shows the execution times of the examples on this processor; Table 6.6 and Figure

6.2 show the speedup obtained by the optimized examples with respect to the scalar version.

Table 6.5
Execution times in cycles on MMX + SSE
Version 8x8 IDCT 16x16 L,-Distance 16x16 L;-Distance with
Interpolation
No shortcut Shortcut No shortcut Shortcut
MMM 348.8 226.2 138.2 335.9 334
MMM-Opt 348.8 226.2 138.2 335.9 334
Referencel 307.9 226.4
Reference? 234.2
Scalar 1634.9 1310.7 315 3391.8 2882.3
Table 6.6
Speedup of optimized examples on MMX + SSE
Version 8x8 IDCT 16x16 L,-Distance 16x16 L;-Distance with
Interpolation
No shortcut Shortcut No shortcut Shortcut
MMM 4.69 5.79 2.28 10.10 8.63
MMM-Opt 4.69 5.79 2.28 10.10 8.63
Referencel 5.31 5.79
Reference? 5.60

95

Figure 6.2
Speedup of optimized examples on MMX + SSE

12.00 -
10.00
8.00 -
g_ EMMM
OMMM-Opt
B 6.00 - P
o - - O Reference 1
@ OReference 2
4.00 -
2.00 +
0.00 - —
IDCT L1-Dist L1-Dist L1-Dist L1-Dist Iterp.
Shortcut Interpolate Shortcut

The reference IDCT example 1s 12% faster than the portable version, even though they
implement the same algorithm. Both implementations have the same number of arithmetic
operations, but the reference version has less data moves. The portable version has 5.2%
more instructions, as seen below on Table 6.7. The rest of the speed difference is because the
assembly version has a more efficient instruction schedule then what the Intel compiler

generates for the portable version.

The L,-Distance example is actually faster than both reference implementations. It might be
possible to improve the assembly version by removing the unnecessary outer loops, but I
cannot tell how much it would improve. The L;-Distance examples with shortcut paths
produce less speed improvement. This 1s because of optimized version has a single shortcut

path in the middle, while the scalar version checks after every row, and because the shortcut

96

path represents a larger overhead to the optimized versions than to the scalar one. The

instruction counts of the examples without shortcut paths appear in Table 6.7. Then Table 6.8

and Figure 6.3 show the reduction in instruction counts with respect to the scalar versions.

Table 6.7

Instruction counts on MMX + SSE
Version 8x8 IDCT 16x16 L,-Distance 16x16 L;-Distance

with Interpolation

MMM 556 156 231
MMM-Opt 556 156 231
Referencel 527 210
Reference2 154
Scalar 2764 1762 4278

Table 6.8

Reduction in instruction counts on MMX + SSE

Vetsion 8x8 IDCT 16x16 L,-Distance 16x16 L,-Distance
with Interpolation

MMM 4.97 11.29 18.52

MMM-Opt 4.97 11.29 18.52

Referencel 5.24 8.39

Reference2 11.44

The reduction i the instruction count for the IDCT example is similar to the speedup
obtained. But in the L;-Distance examples, the reduction in the instruction count is much
larger than the speedup. For example, the portable L;-Distance example has over 11 times less
instructions than the scalar version, but is only about 5.8 times faster. The L;-Distance with
mterpolation has over 18 times less instructions and 1s about 10 times faster. This indicates

that other resources, like memory access, are the bottleneck of these programs.

97

Figure 6.3
Reduction in instruction counts on MMX + SSE

20.00 ~

18.00

16.00 -

14.00 4

12.00

B MMM

0 MMM-Opt

| Reference 1
8.00 | |OReference 2

10.00

6.00 -

Instruction Count Reduction

4.00 -

2.00 ~

0.00 -

IDCT L1-Dist L1-Dist Interpolate

6.3 SSE2

This architecture was tested on a Penttum 4 processor running at 1.7 GHz. The programs
wetre generated by the Intel C/C++ compiler 7.0, and measured using cycle-accurate
multimedia timers. The reference IDCT mmplementations are from Intel [44]; the first 1s
written in assembly, and the second in C++ vector classes. Both implement the same
algorithm as the MMM version. The reference I,-Distance implementation [48] 1s written i1 C
with intrinsics, and does not have the outer loop overhead that the SSE examples had. Table
6.9 shows the execution times of the example programs on SSE2. Once again, I could not
find a way to speed-up the portable MMM examples further, so the MMM-Opt versions are

the same as the portable MMM ones.

98

Table 6.9

Execution times in cycles on SSE2

Version 8x8 IDCT 16x16 L,-Distance 16x16 L;-Distance with
Interpolation

No shortcut Shortcut No shortcut Shortcut
MMM 315.4 166.3 117.4 301.2 326
MMM-Opt 315.4 166.3 117.4 301.2 326
Referencel 325.9 172.9
Reference2 370.8
Scalar 1555.5 1071.8 285.7 3873 3094.5

Table 6.10 and Figure 6.4 show the speedup with respect to the scalar version. On this
platform, the portable MMM programs out-performed all other versions. The reference
IDCTs and the MMM version use the same algorithm (the MMM version was derived from
this reference design). They differ only in that the MMM version keeps the results of the

horizontal IDCT 1 local variables, mstead of storing them in memory. This helped save

some load/store instructions.

Table 6.10

Speedup of optimized examples on SSE2

Vetsion 8x8 IDCT 16x16 L;-Distance 16x16 L;-Distance with
Interpolation
No shortcut Shortcut No shortcut Shortcut
MMM 493 6.44 2.43 12.86 9.49
MMM-Opt 493 6.44 2.43 12.86 9.49
Referencel 4.77 6.20
Reference2 4.19

99

Figure 6.4
Speedup of optimized examples on SSE2

14.00 -
12.00 +
10.00
o 8.00 - B MMM
g O MMM-Opt
] [Reference 1
& 6.00]
o ’ O Reference 2
4.00 -
2.00 - [
0.00 - e
IDCT L1-Dist L1-Dist L1-Dist L1-Dist Iterp.
Shortcut Interpolate Shortcut

Table 6.11 shows the instruction counts of these programs. The MMM versions have the
lowest instruction counts of all versions. Table 6.12 and Figure 6.5 show the reduction in

mstruction counts achieved by the optimized programs on SSE2.

Table 6.11

Instruction counts on SSE2
Version 8x8 IDCT 16x16 L;-Distance 16x16 L;-Distance

with Interpolation

MMM 265 112 167
MMM-Opt 265 112 167
Referencel 285 119
Reference2 304
Scalar 2764 1762 4278

100

Table 6.12

Reduction in instruction counts on SSE2

Version 8x8 IDCT 16x16 L;-Distance 16x16 L;-Distance
with Interpolation
MMM 10.43 15.73 25.62
MMM-Opt 10.43 15.73 25.62
Referencel 9.70 14.81
Reference2 9.09
Figure 6.5
Reduction in instruction counts on SSE2
30.00
25.00 -
£ 20.00 -
E B MMM
£ 1500 & MMM-Opt
8 M Reference 1
5 O Reference 2
2 10.00
5.00 4
0.00
IDCT L1-Dist L1-Dist Interpolate

We see that the reductions in instruction counts are much higher than the speedups obtained,
even mote so than in the SSE examples. This tells that the resource contention is even more

severe in this architecture.

101

6.4 AltiVec

The example programs were compiled for AltiVec using Apple’s gcc 931.1, and run on a
PowerPC G4 processor running at 400 MHz. The execution speed was measured using the
clock() system call. To mmprove the measurement accuracy, I timed blocks of thousands of
calls to the programs. This also reduces the effect of cache misses on the execution times. The
first IDCT reference implementation is the one from Motorola [45], and the second one is
from Apple [50]. Both are written in C with intrinsics. The L;-Distance reference i1s from
Motorola [49]. Table 6.13 has the execution times of the examples on AltiVec. Table 6.14 and

Figure 6.6 show the speedups.

Table 6.13

Execution times in clocks on AltiVec

Version 8x8 IDCT 16x16 L,-Distance 16x16 L,-Distance with
Interpolation

No shortcut Shortcut No shortcut Shortcut
MMM 44.7 33.3 26.9 44.8 459
MMM-Opt 429 29.4 251 411 43.2
Referencel 49.6 29.4
Reference2 49.9
Scalar 219 249.6 69 646.8 532.4

Table 6.14

Speedup of optimized examples on AltiVec

Version 8x8 IDCT 16x16 L,-Distance 16x16 L,-Distance with
Interpolation
No shortcut Shortcut No shortcut Shortcut
MMM 4.90 7.50 2.57 14.44 11.60
MMM-Opt 5.10 8.49 2.75 15.74 12.32
Referencel 4.42 8.49
Reference2 4.39

102

Figure 6.6

Speedup of optimized examples on AltiVec

18.00 ~

16.00 -

14.00 -

12.00 -

10.00 -

8.00 -

Speedup

6.00 -

4.00 -

2.00 4

0.00 -
IDCT

L1-Dist

L1-Dist
Shortcut

L1-Dist
Interpolate

L1-Dist Iterp.
Shortcut

H MMM

0 MMM-Opt

[Reference 1
O Reference 2

The reference IDCT mmplementations are both slower than the portable MMM version. The

algorithm used by them requires transposition of the block, which is very inefficient. The best

performance is from the MMM-Opt version, which is 4% faster than the portable one. The

portable L;-Distance example is slower than the reference because it has an extra operation to

compute two partial results in the sad macros.

The MMM-Opt version uses four partial

results, and obtains the same performance as the reference version. Overall, the execution

speeds of the MMM versions are within 12% of the best implementations. The mstruction

counts of the examples are shown in Table 6.15:

103

Table 6.15
Instruction counts on AltiVec

Version 8x8 IDCT 16x16 L;-Distance 16x16 L;-Distance
with Interpolation

MMM 372 225 308

MMM-Opt 365 186 292

Referencel 253 186

Reference2 279

Scalar 1446 1461 5080

Figure 6.7 and Table 6.16 show the reduction in the mnstruction counts for the programs

without shortcuts on AltiVec. We observe than the reduction factors are comparable to the

speedups obtained for these programs.

The reference IDCT examples use 30% less

nstructions, but are actually slower than the portable MMM version, because they have more

memory accesses.

Table 6.16

Reduction in instruction counts on AltiVec
Version 8x8 IDCT 16x16 L;-Distance 16x16 L;-Distance

with Interpolation

MMM 3.89 6.49 16.49
MMM-Opt 3.96 7.85 17.40
Referencel 5.72 7.85
Reference2 5.18

Figure 6.7
Reduction in instruction counts on AltiVec

20.00 ~

18.00

16.00

14.00 4

12.00 4 H MMM
0 MMM-Opt
[Reference 1

10.00 -

8.00 - O Reference 2

6.00 -

Instruction Count Reduction

4.00

2.00 ~

0.00 -

IDCT L1-Dist L1-Dist Interpolate

6.5 Summary

This chapter presented the performance measurements of the example programs and
reference implementations. For each program, it presented the execution time and the
speedup with respect to the scalar version. Similary, for examples without shortcut paths it

showed the instruction counts and the reduction factor with respect to the scalar versions.

It was seen that for all but one case, the performance of the portable MMM versions 1s within
12% of the best known implementations. The only case in which the performance difference
1s more is the IDCT example for TriMedia, which is 26% slower than the reference version.
The design in the reference version is more suitable to TriMedia’s short register lengths. Even

so, the portable IDCT still provides a significant speedup of 2.72 over the scalar version on

105

TriMedia. On the other architectures, the IDCT obtain speedups factors close to 5. For some
of the other examples the speedup is even higher, up to a factor of 15 for L,-Distance with
interpolation on AltiVec. Instruction counts are reduced by factors of up to 20, like in the case
of L;-Distance with interpolation on SSE2. For SSE2 the portable programs perform better

than any other version, including the assembly versions by Intel.

106

Chapter 7

CONCLUSIONS AND FUTURE WORK

In this dissertation I have presented a simple, yet powerful method to write portable optimized
code. The results presented prove that using MMM, complex multimedia programs can be
portable and optimized at the same time. The example programs written in MMM were
compiled into very diverse multimedia architectures, and obtained speedups comparable to the
best available hand-optimized versions. There is a natural tradeoff between performance and
portability; it is expected that some performance will be lost by using only portable
mstructions. The results presented show that with MMM this loss is within 12% for a given
algorithm. Beyond this, higher performance can only be obtained by using completely

different algorithms for each target.

This 1s the first method to address the portability of arbitrary, complex optimized programs
that use complex partitioned instructions. Other portability methods cannot provide the same
flexibility and performance as MMM. Parallelizing compilers are only efficient on simple
program structures, optimized kernel libraries and automatic code generators are limited to
specific applications, and existing data-parallel languages cannot express complex partitioned

operations.

Four very distinct target architectures were chosen to prove the method: AltiVec, MMX+SSE,
SSE2 and TriMedia TM1300. The register lengths vary from 32 bits to 128-bits. The

alignment requirements are unique on each of them. Regarding the instruction sets and

107

programming styles, only SSE and SSE2 are alike; the other architectures are completely
different. Very few research efforts have been able to generate optimized code for such a wide

variety of architectures.

The method presented can be applied to any group of architectures, as long as they have
enough in common. Multimedia instruction sets are particularly challenging because they
combine long partitioned registers with complex mstructions. But the method can also be

applied to other types of architectures, like DSP instruction sets.

MMM has been demonstrated to be effective for writing portable optimized multimedia
applications. The same method can be applied to other fields, like signal processing and
scientific applications. Any optimized program that uses complex and/or partitioned

mnstructions can be made portable by this method.

7.1 MMM Limitations

Using C pre-processor macros proved to be a simple and flexible way to emulate instructions,
but there are a few instructions that cannot be handled in a general way through static macros.
This 1s the case for permutation instructions. It is not possible to have a general permutation
macro because not all architectures have general permutation instructions. But certain
permutations can be implemented efficiently using a sequence of rearrangment instructions.
An interesting research topic would be to create a “permutation compiler” that takes an
arbitrary permutation of two vectors (like in AlttVec’s permutation instruction), and tries to

emulate it using a library of available rearrangment instructions.

108

Another case where static macros have difficulty is in the emulation of shift-immediate
instructions for small partitions, as discussed in Section 4.7. The most efficient emulation
technique is to shift the entire vector, and mask-out the run-over bits. The shift amount is
known ahead of time, so creating the mask wouldn’t be hard, but it does require a dynamic

system.

A third example of static macro limitations is in the declaration of arrays of constant vectors.
This was observed in Section 4.1. A static macro is not capable of initializing an array of
arbitrary size. The best solution for this is to define a language syntax for declaring arrays of

vectors, and have a compiler translate it into the style required by each architecture.

There 1s also the issue of code style when using macros like MMM. For a given operation, a
different macro exists for every partition type, which makes the macro names very long. Also,
the requirement that the destination of each operation has to be passed as an argument is not
very intuitive. A more elegant approach would be to use data-parallel extensions to C with

native vector types and overloaded operations. This 1s posposed in the next section.

7.2 The Next Step: MMC

The next step from MMM 1s to develop a Multimedia C language, or MMC. It would be an
extension to C that supports vector types natively, but only for a limited set of lengths and
types, like the virtual vectors supported by MMM. It would not support arbitrary length
vectors like other data-parallel languages; using vectors as long as the largest register length in
the set of targets is all that is needed in order to make efficient programs. Applications that
work on larger data sets can divide it into sections equal to the virtual register length without a

loss 1n performance.

109

MMC would also be different from other data-parallel languages in that it would not try to
map all vector operations into standard language operators. Instead it would use intrinsic
functions to access a library of virtual instructions. The virtual instructions for each target
would be defined as macros in a library file, much like MMM macros are defined today. The
emulation of complex instructions and long registers would be done the same way as in

MMM.

Developing MMC requires defining the language syntax for declaration and manipulation of
vector variables. Then it needs a source-to-source translator for each target archtecture. The
source-to-source translator would take MMC as an input, and use a macro library to generate
C code with intrinsics for each target architecture. It might be possible to create a retargetable
translator based on the macro libraries. This MMC translator could be complemented with a

permutation compiler and an improved shift emulator, as discussed in the previous section.

I believe that the MMC language proposed above would be a practical solution. It would solve
the limitations, and preserve the flexibility and proven performance of MMM. With an
elegant, flexible infrastructure like MMC it makes sense to use it to write all optimized
programs, instead of writing target-specific code. Even if one decides to implement different
algorithms for different target architectures, they can still be written in MMC. This would
allow them to be ported to future target platforms very easily. If one needs a particular
mnstruction that is not available in the virtual instruction set, it can be added. This way the

library of virtual instructions would grow over time, and adapt to new applications.

110

Appendix A

VIRTUAL INSTRUCTION SET DEFINITION

This appendix contains a complete list of the MMM macros supported for the selected set of
target architectures. The instructions grouped by instruction type. For each macro, the tables
below show the intrinsics they map to in each architecture, or the instructions involved in the

emulation. The _mm_ prefix was dropped from all MMX, SSE and SSE2 intrinsics to save

space.
A.1Vector Declaration
Table A.1
MMM vector declaration macros
MMM Macro TriMedia MMX+SSE SSE2 AltiVec
DECLARE_| 8x16 | i nt _nb64 _mL28i vect or char
DECLARE _U8x16 | unsigned int | _nb4 _mL28i vect or unsigned
char
DECLARE | 16x8 | i nt 64 _mL28i vector short
DECLARE U16x8 | unsigned int | _nb4 _mL28i vect or unsigned
short
DECLARE | 32x4 | i nt _mb64 _mL28i vector int
DECLARE_U32x4 | unsigned int | _nb4 _mL28i vect or unsigned
i nt
DECLARE_F32x4 | f 1 oat _ni28 _ni28 vector fl oat
DECLARE _CONST | short[][] __decl spec __decl spec vector short[]
_116x8x4 (align(16)) (align(16))
short[]][] short[]]]

111

A.2 Set Instructions

Table A.2

MMM set instructions

MMM Macro

TriMedia

MMX+SSE

SSE2

AltiVec

SET_18x16
SET_USx16

Enul ate with
= <<, |

set _pi 8

set _epi 8

SET 1 16x8
SET_U16x8

Enul ate with
= <<, |

set _pi 16

set _epi 16

SET | 32x4
SET_U32x4

set _pi 32

set _epi 32

SET_F32x4

set_ps

set_ps

SET1_I 8x16
SET1_U8x16

Enul ate with
= <<, |

setl pi8

setl epi 8

SET1_I| 16x8
SET1_U16x8

Enul ate with
=<<|

setl pi 16

setl epi 16

SET1_| 32x4
SET1_U32x4

set1l_pi 32

setl_epi 32

SET1_F32x4

setl ps

setl ps

CLEAR | 8x16
CLEAR UBx16
CLEAR | 16x8
CLEAR U16x8
CLEAR | 32x4
CLEAR U32x4

setzero_si 64

setzero_si 128

CLEAR F32x4

setzetro_ps

setzero_ps

OCPY_| 8x16
COPY_USx16
COPY_| 16x8
COPY_U16x8
CCPY_| 32x4
COPY_U32x4
COPY_F32x4

112

A.3 Load and Store Instructions

Aligned instructions are suffixed with _A_ and unaligned with _U_.

Table A.3
MMM load and store instructions
MMM Macro TriMedia MMX+SSE | SSE2 AltiVec
LOAD A | 8x16 vV=*p vV=*p | oad_si 128 vec_|d
LOAD A UBx16
LOAD A |16x8
LOAD A U16x8
LOAD A | 32x4
LOAD A U32x4
LOAD A F32x4 v=*p | oad_ps | oad_ps vec_|d
STORE_A |8x16 *p=v *p=v store_si 128 vec_st
STORE_A U8x16
STORE_A | 16x8
STORE_A U16x8
STORE_A | 32x4
STORE_A U32x4
STORE_A F32x4 *p=v store_ps store_ps vec_st
PREPARE_LQAD Conput e Do not hing | Do not hi ng vec_| vsli
ALl GNIVENT shi ft
amount s
PREPARE_STORE Conput e Do not hing | Do not hi ng vec_| vsr
ALl GNIVENT shi ft
anmount s
LOAD U | 8x16 Emul at e v=*p | oadu_si 128 Emul at e
LOAD U UBx16 with *p, with
LOAD U | 16x8 <<, >>, | vec_| d,
LOAD U U16x8 vec_perm
LOAD U | 32x4
LOAD U U32x4
LOAD U F32x4 Emul at e | oadu_ps | oadu_ps Emul at e:
with *p, vec_ld,
<<, >>, | vec_perm
LOAD ADJ | 8x16 Emul at e vli=*p | oadu_si 128 Emul at e
LOAD ADJ_U8x16 with *p, v2=*(p+1) with
LOAD ADJ_| 16x8 <<, >>, | vec_| d,
LOAD ADJ Ul6x8 vec_perm
LOAD_ADJ_| 32x4
LOAD_ADJ_U32x4
LOAD ADJ F32x4 Ermul at e | oadu_ps | oadu_ps Emul at e:
with *p, vec_ld,
<<, >>, | vec_perm
STORE U | 8x16 Emul at e *p=v storeu_si 128 | Enul ate
STORE U U8x16 with *p, with

113

STORE_U | 16x8 <<, >> |, vec_st,
STORE_U U16x8 & vec_perm
STORE U | 32x4 vec_sel
STORE_U _U32x4
STORE_U F32x4 Emul at e storeu_ps storeu_ps Emul at e
with *p, with
<<, >>, |, vec_st,
& vec_perm
vec_sel
STORE_MASKED | 8x16 Emul at e maskmove masknoveu_ Emul at e:
STORE_MASKED_U8x16 with *p, sicd - | si128 vec_st,
|, & ~ vec_sel

114

A.4 Rearrangement Instructions

The _H_ suffix stands for high and _L_ for low m i nt er| eave instructions. The _x_ in the

broadcast macros is the element index that is to be copied.

Table A.4

MMM rearrangement instructions
MMM Macro TriMedia MMX+SSE SSE2 AltiVec
| NTERLEAVE H | 8x16 | MERGENVSB unpackhi _pi 8 unpackhi _epi 8 vec_ner geh
| NTERLEAVE_H U8x16
| NTERLEAVE H | 16x8 | PACK16MSB | unpackhi _pi 16 | unpackhi _epi 16 vec_ner geh
| NTERLEAVE_H U16x8
| NTERLEAVE H |32x4 | = unpackhi _pi 32 | unpackhi _epi 32 vec_ner geh
| NTERLEAVE_H U32x4
| NTERLEAVE _H F32x4 | = unpackhi _ps unpackhi _ps vec_ner geh
| NTERLEAVE L_18x16 | MERGELSB unpackl o_pi 8 unpackl o_epi 8 vec_ner gel
| NTERLEAVE_L_U8x16
| NTERLEAVE L _116x8 | PACK16LSB | unpackl o_pi 16 | unpackl o_epi 16 vec_ner gel
| NTERLEAVE_L_U16x8
| NTERLEAVE_L_| 32x4 | = unpackl o_pi 32 | unpackl o_epi 32 vec_nmer gel
| NTERLEAVE_L_U32x4
| NTERLEAVE_L_F32x4 | = unpackl o_ps unpackl o_ps vec_nmer gel
BROADCAST_x_ | 8x16 Enul at e: Enul ate: Isl, |Enulate: Isl, vec_spl at
BROADCAST_x_U38x16 =, <<, | or, shuffle or, shuffle
BROADCAST x_| 16x8 Emul at e: shuffle_pi 16 Emul ate with vec_spl at
BROADCAST_x_U16x8 = <<, | shuffl e,

shufflelo

BROADCAST_x_| 32x4 = shuf fl e_pi 16 shuf f | e_epi 32 vec_spl at
BROADCAST_x_U32x4
BROADCAST _x_F32x4 = shuffl e_ps shuffle_ps vec_spl at

BROADCAST PAIR X_

Sane as BROADCAST {1/ U}32x4 but typecasted to

| 16x8, U16x8 {I'/U} 16x8
BROADCAST _PAI R x__ Sane as BROADCAST {I/U}16x8 but typecasted to
| 8x16, U8x16 {I'/U} 8x16
PERMUTE_| 16x8_ Enul at e shuf fl e_pi 16 shuffl el o_epi 16 | vec_perm
02134657 wth =
PACK16NEB,
PACK16LSB
PERMUTE_| 16x8__ Emul at e: shuffle_pi 16 shuf fl ehi _epi 16 | vec_perm
01237654 =, RALI

115

A.5 Conversion Instructions

The macro names are CVT_{dst type}_{src type}, where the source and destination types

can be vectors or scalars. This covers pack and ext end operations too; they are conversions

between vectors with different partition types. Conversions with truncation have the suffix

T, the ones with saturation have _S_, and the ones with unspecified reduction type have

N. The _H_ suffix stands for high and _L_ means low in ext end operations.

Table A.5
MMM convetsion instructions
MMM Macro TriMedia MMX+SSE SSE2 AltiVec
CVT _I32x4 132 = cvtsi 32 _si64 | cvtsi 32 si128 | vec_ | de,
CVvT_U32x4 _U32 vec_spl at
CVT_132_132x4 = cvtsi 64 _si32 | cvtsi 128 si 32 | vec_ste,
CvT_U32_U32x4 vec_spl at
CVT_F32x4_132x4 (float) cvt pi 32x2_ps | cvtepi 32_ps vec_ctf
CVT_I 32x4_F32x4 (int) cvtt_ps2pi cvttps_epi 32 vec_cts
PACK_T_I| 16x8 MERGEDUAL16LSB | Emul ate with | Enulate with vec_pack
PACK_T_U16x8 &, packs &, packs
PACK_T_I 32x4 PACK16LSB Enulate with | Emulate with vec_pack
PACK_T_U32x4 &, packs &, packs
PACK S | 16x8 Emul ate with packs pi 16 packs epi 16 vec_packs
DUALI CLI PI,
MERGEDUAL 16LSB
PACK_S Ul6x8 Emul ate with packs_pul6 packus_epi 16 vec_packs
DUALUCLI PI,
MERGEDUAL16LSB
PACK S | 32x4 Emul ate with packs_pi 32 packs_epi 32 vec_packs
| CLI PI,
PACK16LSB
PACK N | 16x8 MERGEDUAL16LSB | packs_pi 16 packs _epi 16 vec_pack
PACK N _Ul6x8 MERGEDUAL16LSB | packs_pul6 packus_epi 16 vec_pack
PACK N I 32x4 PACK16LSB packs_pi 32 packs_epi 32 vec_pack
PACK_N_U32x4
EXTEND H | 8x16 Ermul ate with Emul ate with | Emulate with vec_unpackh
VERGEMVSB, unpackhi , unpackhi, sra
DUALASR sra
EXTEND H U8x16 VERGENVSB unpackhi _pi 8 | unpackhi _epi 8 | vec_unpackh
EXTEND H | 16x8 Emul ate with Emul ate with | Emulate with vec_unpackh
PACK16MNMSB, unpackhi , unpackhi ,
SEX16 srai srai

116

EXTEND H U16x8 PACK16MSB unpackhi _ unpackhi _ vec_unpackh
pi 16 epi 16
EXTEND L _|8x16 Emul ate: ROLI, Emul ate with | Enmulate with vec_unpackl
MERCGEMSB, unpackl o, unpackl o, sl ,
DUALASR sl, sra sra
EXTEND L _U8x16 Emul ate with unpackl o_pi 8 | unpackl o_epi 8 | vec_unpackl

MERGEMSB, SRLI

EXTEND_L_| 16x8

SEX16

Emul ate with

Emul ate with

vec_unpackl

unpackl o, unpackl o, sl ,
sl, sra sra
EXTEND L _U16x8 PACK16LSB unpackl o_ unpackl o_ vec_unpackl

pi 16 epi 16
A.6 Bit-wise Logic Instructions
Table A.6
MMM bit-wise logic instructions
MMM Macro TriMedia MMX+SSE SSE2 AltiVec
AND | 8x16, U8x16 & and_si 64 and_si 128 vec_and
AND | 16x8, Ul6x8
AND | 32x4, U32x4
AND F32x4 & and_ps and_ps vec_and
ANDN | 8x16, UBx16 | Bl TANDI NV andnot _si 64 andnot _si 128 | vec_andc
ANDN | 16x8, Ul6x8
ANDN_| 32x4, U32x4
ANDN_F32x4 Bl TANDI NV andnot _ps andnot _ps vec_andc
OR | 8x16, U8x16 | or_si 64 or_si 128 vec_or
OR_116x8, Ul6x8
OR | 32x4, U32x4
OR_F32x4 | or_ps or_ps vec_or
XOR | 8x16, U8x16 n Xor _si 64 xor_si 128 vec_xor
XOR 1 16x8, Ul16x8
XOR_| 32x4, U32x4
XCOR _F32x4 A XOr _ps Xor _ps vec_xor
SEL_|8x16, U8x16 Enulate with Enulate with | Enulate with | vec_sel
SEL 116x8, Ul6x8 & |, & |, andnot | & |, andnot
SEL_132x4, U32x4 Bl TANDI NV
SEL_F32x4 Emul ate with Emulate with Emulate with &, | vec_sel

& |, &, |, andnot |, andnot
Bl TANDI NV

117

A.7 Shift Instructions

Macros with the | _ suffix take immediate shift amounts.

Table A.7

MMM shift instructions
MMM Macro | TtiMedia MMX+SSE SSE2 AltiVec
SLL_I8x16 Emulate with | Enulate with Enulate with vec_sl
SLL_U8x16 <<, & | sll, and, or sll, and, or
SLL_|16x8 Emulate with | sl _pil6 sl | _epi 16 vec_sl
SLL_U16x8 <<, & |
SLL_I 32x4 << sl | _pi 32 sl | _epi 32 vec_sl
SLL_U32x4
SLL_ | _18x16 | Enulate with | Enulate with Enulate with vec_sl (
SLL | UBx16 | LSLI, & | slli, and, or slli, and, or vec_splat())
SLL_ | _116x8 | Enulate with [slli_pil6 slli_epi16 vec_sl (
SLL | _U16x8 | LSLI, & | vec_splat())
SLL_I _132x4 | LSLI slli_pi32 slli_epi32 vec_sl (
SLL_ | _U32x4 vec_splat())
SRL_|8x16 Emulate with | Enulate with Enulate with vec_sr
SRL_U8x16 >> & | srl, and, or srl, and, or
SRL_|16x8 Emulate with | srl_pi 16 srl _epi 16 vec_sr
SRL_U16x8 >>, & |
SRL_| 32x4 << srl _pi 32 srl _epi 32 vec_sr
SRL_U32x4
SRL | _18x16 | Enulate with | Enulate with Enulate with vec_sr(
SRL | UBx16 | LSRI, &, | srli, and, or srli, and, or vec_splat())
SRL | _116x8 | Enulate with |srli_pil6 srli_epi 16 vec_sr(
SRL | _U16x8 | LSRI, & | vec_spl at())
SRL_I _132x4 | LSRI srli_pi32 srli_epi32 vec_sr(
SRL_| _U32x4 vec_splat())
SRA | 8x16 Emulate with | Enulate with Enulate with vec_sra
SRA U8x16 DUALASR, &, sra, and, or sra, and, or

|
SRA | 16x8 DUALASR sra_pi 16 sra_epi 16 vec_sra
SRA U16x8
SRA | 32x4 >> sra_pi 32 sra_epi 32 vec_sra
SRA_U32x4
SRA | _18x16 | Enulate with | Enulate with Enulate with vec_sra(
SRA | _UBx16 | DUALASR, &, srai, and, or srai, and, or vec_spl at())
|

SRA | _116x8 | DUALASR srai _pi 16 srai _epi 16 vec_sra(
SRA | _Ul6x8 vec_splat())
SRA | _132x4 | ASRI srai _pi 32 srai _epi 32 vec_sra(
SRA | _U32x4 vec_splat())

118

ROL_18x16 Enualte with | Enulate with Emul ate with vec_rl
ROL_U8x16 ROL, >>, &, sll, srl, & | sll, srl, & |
|
ROL_116x8 Enualte with | Enulate with Emul ate with vec_rl
ROL_U16x8 RO, &, | sll, srl, & | sll, srl, & |
ROL_| 32x4 ROL Emul ate with Emul ate with vec_rl
ROL_U32x4 sll, srl, & | sll, srl, & |
ROL | 18x16 | Enualte with | Emulate with Emul ate with vec_rl (
ROL_I _U8x16 | ROLI, & | slli, srli, & | |slli, srli, & | |vec_splat())
ROL_I _116x8 | Emualte with | Emulate with Enulate with vec_rl (
ROL_I _Ul6x8 | ROLI, & | stli, srli, & | |slli, srli, & | |vec_splat())
ROL_I _I132x4 | RCLI Enulate with Enulate with vec_rl (
ROL_I _U32x4 stli, srli, & | |slli, srli, & | |vec_splat())
A.8 Floating-Point Arithmetic Instructions
Table A.8
MMM floating-point arithmetic instructions
MMM Macro TriMedia MMX+SSE SSE2 AltiVec
ADD F32x4 + add_ps add_ps vec_add
SUB F32x4 - sub_ps sub_ps vec_sub
MULT_F32x4 * mul _ps mul _ps vec_rmadd
MJULT_ADD F32x4 | Enmulate with | Emul ate Emul at e vec_nadd
o+ with mul, + [with mul, +
Dl V_F32x4 / div_ps div_ps Enulate with
vec_rmadd,
vec_re
M N_F32x4 FM N m n_ps m n_ps vec_mn
MAX_F32x4 FMAX max_ps max_ps vec_max
SQRT_F32x4 FSQRT sqrt_ps sqrt_ps Emul ate with
vec_rsqrte,
vec_re
REC F32x4 / rcp_ps rcp_ps vec_re
RSQRT_F32x4 Emul ate with |rsqrt_ps rsqrt_ps vec_rsqrte
!, FSQRT

A.9 Integer Arithmetic Instructions

Operations with modulo handling of overflow append _M ; those with saturation append _S
and unspecified behavior under overflow append _N_.

identified with _L_ and _H_ respectively.

119

Low and high multiplications are

Table A.9

MMM integer arithmetic instructions

MMM Macro TriMedia MMX+SSE SSE2 AltiVec
ADD M | 8x16 Enmul ate with add_pi 8 add_epi 8 vec_add
ADD M U8x16 + & N
ADD M | 16x8 Enmul ate with add_pi 16 add_epi 16 vec_add
ADD M U16x8 + & N
ADD M | 32x4 + add_pi 32 add_epi 32 vec_add
ADD M U32x4
ADD S |8x16 Enmul ate with adds_pi 8 adds_epi 8 vec_adds
+, DUALI CLI PI,
>> <<, &, |
ADD S U8xx6 Enmul ate with adds_pu8 adds_epu8 vec_adds
+, DUALUCLI PI,
>> <<, & |
ADD S |16x8 DSPI DUALADD adds_pi 16 adds_epi 16 vec_adds
ADD S U16x8 Enmul ate with adds_pul6 adds_epul6 vec_adds
DSPUADD, <<,
>> & |
ADD N | 8x16 + add_pi 8 add_epi 8 vec_add
ADD N U8x16
ADD N | 16x8 + add_pi 16 add_epi 16 vec_add
ADD N _U16x8
ADD N | 32x4 + add_pi 32 add_epi 32 vec_add
ADD N _U32x4
SUB M | 8x16 Emul ate with - | sub_pi 8 sub_epi 8 vec_sub
SUB_M UBx16 y & N
SUB M | 16x8 Emul ate with - | sub_pi 16 sub_epi 16 vec_sub
SUB_M Ul6x8 y & N
SUB M | 32x4 - sub_pi 32 sub_epi 32 vec_sub
SUB_ M U32x4
SUB S | 8x16 Emul ate with - | subs_pi 8 subs_epi 8 vec_subs
, DUALI CLI PI,
>> <<, & |
SUB_ S UBxx6 Enmul ate with - | subs_pu8 subs_epu8 vec_subs
, DUALUCLI PI,
>> <<, & |
SUB_S | 16x8 DSPI DUALSUB subs_pi 16 subs_epi 16 vec_subs
SUB S Ul6x8 Emul ate with subs_pul6 subs_epul6 vec_subs
DSPUSUB, <<,
>> & |
SUB N | 8x16 Emul ate with - | sub_pi 8 sub_epi 8 vec_sub
SUB_N _UBx16 , & N
SUB N | 16x8 DSPI DUALSUB sub_pi 16 sub_epi 16 vec_sub
SUB_N U16x8
SUB N | 32x4 - sub_pi 32 sub_epi 32 vec_sub
SUB_N_U32x4
MULT L _|16x8 Ermul ate with mul | o_pi 16 mul | o_epi 16 | vec_m add

120

MULT L _ADD M | 16x8 Enmul ate with Emul at e Enul at e vec_nl add
*O>> <<, &, with nmullo, with nmull o,
[, + 7 add add
MULT L _ADD N | 16x8 Enmul ate with Emul at e Enul at e vec_nl add
*O>>, <<, &, with mullo, with mull o,
| , DSPI DUALADD | add add
MULT _H I 16x8 Ermul ate with mul hi _pi 16 mul hi _epi 16 | vec_nadds
* I MULM &,
PACK16MEB
MULT H ADD S | 16x8 Ermul ate with Emul at e Emul at e vec_rmadds
* I MULM &, wi th mul hi, wi th mul hi,
PACK16NMSB, adds adds
DSPI DUALADD
MULT_ADDPAI RS | 16x8 |ifirl6 madd_pi 16 nadd_epi 16 vec_nsum
MULT_ADDPAI RS ADD M | Emul ate with Emul at e Ermul at e vec_msum
_116x8 | FIR16, & * wi th nmadd, with madd,
add add
MJULT_ADDPAI RS ADD S | Enul ate with Enul at e Emul at e vec_nsumns
_116x8 | FI R16, wi th nmadd, with madd,
DSPI DUALADD adds adds
MULT_ADDPAI RS _ADD N | Emul ate with Enul at e Emul at e vec_nsum
_116x8 | FI R16, w th madd, wi th nmadd,
DSPI DUALADD add add
AVG _U8x16 QUADAVG avg_pu8 avg_epu8 vec_avg
AVG U16x8 Emul ate with avg _pulé avg_epulé vec_avg
& +, >> |
M N _UBx16 QUADUM N m n_pu8 m n_epu8 vec_min
M N_| 16x8 Emul ate with mn_pil6 mn_epi 16 vec_mn
IMN, & |
MAX_UBx16 QUADUNVAX mex_pu8 max_epu8 vec_max
MAX | 16x8 Ermul ate with max_pi 16 max_epi 16 vec_max
| MAX, &, |
CLIP_l 16x8 DUALI CLI PI Enul ate Enmul at e Emul ate
with mn with mn with
vec_mn,
vec_spl at
SAD2_U8x16 UMESUU sad_pu8 sad_epu8 Emul at e
with sum
(max- m n)
SAD2_ADD M U8x16 Emul ate with Enul ate Enmul at e Enul ate
UMESBWU, + with sad, with sad, with sum
add add (max-m n)
SUM2_U32x4 + Emul at e Emul at e vec_suns
with +, with
_mto_int add_epi 32,
srli_si128

121

A.10 Comparison Instructions

The suffix EQ stands for equal, NEQ for not equal, GT for greater than, GTE for greater than or

equal, LT for less than, and LTE for less than or equal.

Table A.10
MMM comparison instructions

MMM Macro TriMedia MMX+SSE SSE2 AltVec

CVMP_EQ |1 8x16 Emul ate with cnpeq_pi 8 cnpeq_epi 8 | vec_cnpeq

CVP_EQ U3x16 MIX, ==, &,

CVP_EQ | 16x8 Emul ate with cnpeq_pi 16 cnpeq_epi 16 | vec_cnpeq

CVP_EQ U16x8 MJX, ==, &,

CMP_EQ | 32x4 Emul ate with cnpeq_pi 32 cnpeq_epi 32 | vec_cnpeq

CVP_EQ U32x4 MUX, ==

CMP_EQ F32x4 Emul ate with crpeq_ps cnpedq_ps vec_cnpeq
MJX, ==

CVMP_GT_1 8x16 Emul ate with cnpgt _pi 8 cnpgt _epi 8 | vec_cnpgt

CVP_GTI_U3x16 MIX, >, & |

CVP_GT_116x8 Emul ate with cnpgt _pi 16 cnpgt _epi 16 | vec_cnpgt

CVP_GTI_U16x8 MIX, >, & |

CMP_GT_I 32x4 Emul ate with cnpgt _pi 32 cnpgt _epi 32 | vec_cnpgt

CVP_GT_U32x4 MJX, >

CMP_GT_F32x4 Emul ate with cnpgt _ps cnpgt _ps vec_cnpgt
MJX, >

CVP_GTE_F32x4 Emul ate with cnpge_ps cnpge_ps vec_cnpge
MJX, >=

CVP_LT 18x16 Ermul ate with Ermul ate with cnplt_epi 8 vec_cnpl t

CVP_LT U8x16 MIX, <, & | cnpgt, andnot

CVP_LT 116x8 Ermul ate with Ermul ate with cnplt_epi 16 | vec_cnplt

CWVP_LT _U16x8 MIX, <, & | cnpgt, andnot

CVP_LT I 32x4 Ermul ate with Ermul ate with cnplt_epi 32 | vec_cnplt

CVP_LT _U32x4 MIX, < cnpgt, andnot

CVP_LT _F32x4 Ermul ate with cnplt_ps cnplt_ps vec_cnplt
MJX, <

CWP_LTE_F32x4 Ermul ate with cnpl e_ps cnpl e_ps vec_cnpl e
MJX, <=

CVP_NEQ F32x4 Ermul ate with cnpneq_ps cnpneq_ps vec_andc,
MJX, I'= vec_cnpeq

122

Appendix B

MMM LIBRARY IMPLEMENTATIONS

The sections below show the actual implementation of the MMM macro libraries for the four

different target architectures. The libraries implement the portion of the virtual instruction set

that is used by the example programs only.

B.1 TriMedia TM1300

/***

*
*
*
*
*
*
*
*
*

mmtmh

This file includes Multi-Media Macro library definitions
for the TriMedia TML300 architecture.

This library was devel oped by Juan Carl os Roj as
as part of his PhD research at Northeastern University.

***/

#ifndef _ MW TM
#define _ MWL.TM__

#i ncl ude "custom defs. h"

/*

** Preci se Basic Types

*/

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

/*

** \ector

*/

#def i ne
i nt
i nt
i nt
i nt

| NT8

I NT16
I NT32
Ul NT8
U NT16
Ul NT32

char

short

i nt

unsi gned char
unsi gned short
unsi gned i nt

Decl arati ons

DECLARE_| 16x8(var) \

var ##_0;
var##_1;
var ##_2;
var ##_3;

\
\
\

123

#defi ne DECLARE_UBx16(var) \
unsi gned int var## 0; \
unsi gned int var## 1; \
unsi gned int var## 2; \
unsi gned int var##_3;

#defi ne DECLARE_| 32x4(var) \
int var## 0; \
int var##_ 1; \
int var## 2; \
int var##_3;

#defi ne DECLARE_U32x4(var) \
unsigned int var##_0; \
unsi gned int var## 1; \
unsigned int var##_2; \
unsi gned int var## 3;

#def i ne DECLARE_CONST_I| 16x8x4(var, cl11,
c21,
c31,
c41,

INT16 var[4][8] = {cl11, c12, c13,
c21, c22, c23,
c31, c¢32, c33,
c4l1, c42, c43,

/*
** Set Instructions
*/

#define SET1_I| 16x8(var, c) \

cl4,
c24,
c34,
c44,

var##_0 = var##_1 = var##_2 = var##_3

#define SET1_I| 32x4(var, c) \

var## 0 = var## 1 = var##_2 = var## 3

#defi ne CLEAR U32x4(var) \

var## 0 = var## 1 = var##_2 = var## 3

#defi ne COPY_UB8x16(dst, src) \

dst##_0 = src##_0; \
dst## 1 = src## 1; \
dst## 2 = src##_2; \
dst## 3 = src##_3;

/*
** Load and Store Instructions
*/

#define LOAD A |16x8(var, ptr) \
var ##_0 (int *) (ptr)); \
var##_1 ((int *) (ptr))+1); \
var ##_2 ((int *) (ptr))+2); \
var ##_3 ((int *) (ptr))+3);

* ok kK|

NN AN~

124

cl5, cl6,
c25, c26,
c35, c¢36,
c45, c46,

(c << 16)

cl2, cl13, cl4,
c22, c23, c24,
c32, ¢33, c34,
c42, c43, c44,

cl5,
c25,
c35,
c45,

cl7,
c27,
c37,
c47,

C;

cl8,
c28,
c38,
c48};

cl6,
c26,
c36,
c46,

\
\
\

cl7,
c27,
c37,
c47,

cl8,
c28,
c38,
c48)

—— - —

#define LOAD_A UBx16(var, ptr) \

var## 0 = *((int *) (ptr)); \
var## 1 = *(((int *) (ptr))+1); \
var##_2 = *(((int *) (ptr))+2); \
var## 3 = *(((int *) (ptr))+3);

#define STORE_A |16x8(ptr, var) \
*((int *) (ptr)) = var##_0; \
*(((int *) (ptr))+1) = var## 1; \
*(((int *) (ptr))+2) var##_2; \
*(((int *) (ptr))+3) var ##_3;

/* Static re-alignnment values */
static int mmtmshift_left_1
static int mmtmshift_right_1;
static int mmtmshift_left_2
static int mmtmshift_right_2;

#defi ne PREPARE_LOAD ALl GNVENT(i ndex, ptr) \
mm_t mshi ft_right_##index = (((int) (ptr)) & 0x3)<<3; \
mm tmshift_|eft_ ##i ndex = 32 - mmm.tmshift_right_##i ndex;

#define LOAD U U3x16(var, ptr, index) \

var## 0 = ((*(((int *) (ptr))+1)) << mmmtmshift_|eft_##index) | \
(*(((unsigned int *) (ptr))) >> mmtmshift_right_ ##i ndex); \
var##_ 1 = ((*(((int *) (ptr))+2)) << mmm.tmshift_|eft_##index) | \
(*(((unsigned int *) (ptr))+1) >> mmtmshift_right_##i ndex); \
var##_ 2 = ((*(((int *) (ptr))+3)) << mmm.tmshift_|eft_##index) | \
(*(((unsigned int *) (ptr))+2) >> mmmtmshift_right_##i ndex); \
var##_3 = ((*(((int *) (ptr))+4)) << mmmtmshift_|eft_##index) | \
(*(((unsigned int *) (ptr))+3) >> mmmtmshift_right_ ##i ndex);

#define LOAD_ADJ_U8x16(varl, var2, ptr, indexl, index2) \
varl## 0 = ((*(((int *) (ptr))+1)) << mmmtmshift_|eft_##i ndex1) | \
(*(((unsigned int *) (ptr))) >> mmtmshift_right_##i ndex1); \
varl## 1 = ((*(((int *) (ptr))+2)) << mmm.tmshift_| eft_##i ndex1) | \
(*(((unsigned int *) (ptr))+1) >> mmmtmshift_right_##i ndexl);
varl## 2 = ((*(((int *) (ptr))+3)) << mmm.tmshift_|eft_##i ndexl) | \
(*(((unsigned int *) (ptr))+2) >> mmtmshift_right_##i ndexl);
var1## 3 = ((*(((int *) (ptr))+4)) << mm.tmshift_|eft_##i ndexl) | \
(*(((unsigned int *) (ptr))+3) >> mm.tmshift_right_##i ndexl);
var2## 0 = ((*(((int *) (ptr))+1)) << nmm.tmshift_I|eft_##i ndex2) | \
(*(((unsigned int *) (ptr))) >> mmtmshift_right_ ##i ndex2); \
var2##_1 = ((*(((int *) (ptr))+2)) << mm.tmshift_I|eft_##i ndex2) | \
(*(((unsigned int *) (ptr))+1) >> mm.tmshift_right_##i ndex2);
var2## 2 = ((*(((int *) (ptr))+3)) << mm.tmshift_|eft_##i ndex2) | \
(*(((unsigned int *) (ptr))+2) >> mm._tmshift_right_##i ndex2);
var2##_3 = ((*(((int *) (ptr))+4)) << mm.tmshift_I|eft_##i ndex2) | \
(*(((unsigned int *) (ptr))+3) >> mm.tmshift_right_##i ndex2);
/*
** Rearrangenent Instructions
*/
#defi ne BROADCAST_PAIR 0 | 16x8(dst, src) \
dst## 0 = src## 0; \
dst##_1 = src##_0; \
dst## 2 = src## 0; \
dst##_3 = src##_0;

#defi ne BROADCAST _PAIR 1 |16x8(dst, src) \
dst## 0 = src## _1; \

125

dst##_1 = src##_1; \
dst## 2 = src## _1; \
dst##_3 = src##_1;
#defi ne BROADCAST _PAIR 2 |16x8(dst, src) \
dst## 0 = src## 2; \
dst##_1 = src##_2; \
dst## 2 = src## 2; \
dst##_3 = src##_2;
#defi ne BROADCAST_PAI R 3_116x8(dst, src) \
dst## 0 = src##_3; \
dst##_1 = src##_3; \
dst##_2 = src##_3; \
dst## 3 = src##_3;

#defi ne PERMUTE_| 16x8_02134657(dst, src) \
{\
int top; \
tnp = PACKL6LSB(src## 1, src##_0); \
dst##_1 = PACKL6NMBB(src##_1, src## _0); \
dst## 0 = tnp; \
tnp = PACKL6LSB(src## 3, src##_2); \
dst ##_3 PACK16NVBB(src##_3, src## 2); \
dst ## 2 tnp; \

}

#defi ne PERMUTE_| 16x8_01237654(dst, src) \
{\

int tnp; \
dst## 0 = src## 0; \
dst##_1 = src##_1; \

tnp = ROLI (16, src## 3); \

dst## 3 = ROLI (16, src##_2); \
dst## 2 = tnp; \

}

/*

** Conversion |Instructions

*/

#defi ne PACK_N_I32x4(dst, srcl, src2) \

dst##_0 = PACK16LSB(srcl## 1, srcl##_0); \
dst##_1 = PACKL6LSB(srcl##_3, srcl## 2); \
dst##_2 = PACKL6LSB(src2##_1, src2## 0); \
dst ##_3 = PACKL6LSB(src2##_3, src2##_2);

/*

** Shift Instructions

*/

#define SRA | _| 16x8(dst, src, amount) \

dst##_0 = DUALASR(src## 0, anount); \
dst##_1 = DUALASR(src##_ 1, anmount); \
dst##_2 = DUALASR(src## 2, anount); \
dst ##_3 = DUALASR(src##_3, anmount);

126

#define SRA | | 32x4(dst, src, anmount) \
dst##_0 = ASRI (anmount, src##_0); \
dst##_1 = ASRI (anmount, src##_1); \
dst##_2 = ASRI (anmount, src##_2); \
dst##_3 = ASRI (anmount, src##_3);

/*

** Integer Arithnetic Instructions

*/

#define ADD_N_ | 16x8(dst, srcl, src2) \

dst##_0 = DSPI DUALADD(srcl## 0, src2## 0); \
dst## 1 = DSPlI DUALADD(srcl## 1, src2##_1); \
dst## 2 = DSPlI DUALADD(srcl## 2, src2##_2); \
dst ##_3 = DSPI DUALADD(sr cl## 3, src2##_3);
#define ADD N | 32x4(dst, srcl, src2) \
dst## 0 = srcl## 0 + src2##_0; \
dst## 1 = srcl## 1 + src2## 1; \
dst## 2 = srcl## 2 + src2## 2; \
dst## 3 = srcl## 3 + src2##_3;
#define SUB_N | 16x8(dst, srcl, src2) \
dst## 0 = DSPlI DUALSUB(srcl## 0, src2## _0); \
dst##_1 = DSPI DUALSUB(srcl## 1, src2## 1); \
dst## 2 = DSPlI DUALSUB(srcl## 2, src2##_2); \
dst ##_3 = DSPI DUALSUB(srcl## 3, src2##_3);
#define SUB_N | 32x4(dst, srcl, src2) \
dst## 0 = srcl## 0 - src2##_0; \
dst## 1 = srcl## 1 - src2## 1; \
dst## 2 = srcl## 2 - src2##_2; \
dst## 3 = srcl## 3 - sSrc2##_3;

#define MULT_H | 16x8(dst, srcl, src2) \

dst## 0 = PACKL6MBB(| MILM srcl## 0 & OxFFFF0000, src2## 0 & OxFFFF0000),
SEX16(srcl## 0) * SEX16(src2## 0)); \

dst## 1 = PACKL6MBB(| MILM srcl## 1 & OxFFFF0000, src2## 1 & OxFFFF0000),
SEX16(srcl## 1) * SEX16(src2## 1)); \

dst## 2 = PACKL6MBB(| MULM srcl## 2 & OXFFFFO000, src2## 2 & OXxFFFF0000),
SEX16(srcl##_2) * SEX16(src2## 2)); \

dst ## 3 = PACKL6MBB(| MULM srcl## 3 & OXFFFF0000, src2## 3 & OxFFFF0000),

SEX16(srcl## 3) * SEX16(src2## 3));

#define MULT_H ADD N | 16x8(dst, srcl, src2, src3) \
dst ##_0 = DSPlI DUALADD(PACK16MSB(| MULM srcl## 0 & OxFFFFO000, \
src2##_0 & OxFFFFO000), \
SEX16(srcl##_0) * SEX16(src2## 0)), src3## 0); \
DSPI DUALADD(PACK16MBB(| MULM srcl##_1 & OxFFFFO000, \
src2##_1 & OxFFFF0000), \
SEX16(srcl## 1) * SEX16(src2##_ 1)), src3##_1); \
dst ##_2 = DSPl| DUALADD(PACK16MSB(| MULM srcl##_ 2 & OxFFFFO000, \
Src2##_2 & OxFFFFO000), \
SEX16(srcl##_2) * SEX16(src2## 2)), src3## _2); \
DSPI DUALADD(PACK16MBB(| MULM srcl##_3 & OxFFFFO000, \
src2##_3 & OxFFFF0000), \
SEX16(srcl##_3) * SEX16(src2## _3)), src3##_3);

dst## 1

dst ##_3

127

#define MULT_ADDPAI RS_| 16x8(dst, srcl, src2) \

dst## 0 = | FIRL6(srcl## 0, src2##_0); \
dst## 1 = | FIRL6(srcl## 1, src2##_1); \
dst##_2 = | FIRL6(srcl## 2, src2##_2); \
dst##_3 = | FIRL6(srcl## 3, src2##_3);

#define MULT_ADDPAI RS_ADD N | 16x8(dst, srcl, src2, src3) \

dst## 0 = | FIRL6(srcl## 0, src2##_0) + src3##_0; \
dst## 1 = |FIRL6(srcl## 1, src2##_1) + src3##_1; \
dst##_2 = | FIRL6(Srcl## 2, src2##_2) + src3##_2; \
dst## 3 = | FIRL6(srcl## 3, src2## 3) + src3##_3;

#define AVG U8x16(dst, srcl, src2) \

dst## 0 = QUADAVG(srcl## 0, src2## 0); \
dst##_1 = QUADAVGE srcl##_1, src2## 1); \
dst## 2 = QUADAVG(srcl## 2, src2## 2); \
dst##_3 = QUADAVE srcl## 3, src2##_3);

#define SAD2_ADD M U8x16(dst, srcl, src2, src3) \
dst## 0 = UMEBUU(srcl## 0, src2##_0) + UVEBUU(srcl## 1, src2##_1) + src3##_0;
\

dst ##_2 UMEBUU(srcl##_2, src2## 2) + UMESBUU(srcl## 3, src2## _3) + src3##_2;

#define SUM2_U32x4(dst, src) \
dst = src## 0 + src## 2;

/*

** M scel aneous

*/

#define MALLOC ALl GN16(si ze) _cache_nal | oc(si ze)
#defi ne END_OPTI M ZEDX)

#endif /* __MWMTM__ */

128

B.2 MMX + SSE

/***

* mmm sse. h

*

*
*
*
*
*
*
*

This file includes Miulti-Media Macro library definitions
for Intel MW & SSE instruction sets.

This library was devel oped by Juan Carl os Roj as
as part of his PhD research at Northeastern University.

***/

#ifndef _ MW SSE__

#def i

#i ncl

/*

ne MW SSE

ude <xmmntrin. h>

** Preci se Basic Types

*/

#def i
#def i
#def i
#def i
#def i
#def i

/*

ne | NT8 char
ne INT16 short
ne | NT32 | ong
ne Ul NT8 unsi gned char
ne U NT16 unsigned short
ne U NT32 unsigned |ong

** \ector Declarations

*/

#def i

#def i

#def i

#def i

ne DECLARE | 16x8(var) \
nb4 var##_0; \
n64 var##_1;

ne DECLARE U8x16(var) \
n64 var##_0; \
n64 var##_1;

ne DECLARE | 32x4(var) \
nb4 var##_0; \
n64 var##_1;

ne DECLARE U32x4(var) \
\

n64 var ##_0;
n64 var##_1;

129

#defi ne DECLARE_CONST_| 16x8x4(var, cl1l1, c12, cl13
c21, c22, c23
c31, c32, ¢33,
c41, c42, c43

__decl spec(align(16)) INT16 var[4][8] = {cll
c21,
c31,
c41,

/*

** Set |nstructions

*/

#define SET1_I| 16x8(var, c) \

var## 0 = _mmset1_pi 16(c); \

var##_1 = var##_0

#define SET1_I| 32x4(var, c) \

var## 0 = _mmset1_pi 32(c); \
var##_1 = var##_0

#defi ne CLEAR U32x4(var) \

var## 0 = _nmsetzero_si64(); \

var##_1 = _nmm setzero_si 64();

#define COPY_UBx16(dst, src) \

dst## 0 = src## 0; \

dst##_1 = src##_1;

/*

** | oad and Store Instructions

*/

#define LOAD A |16x8(var, ptr) \

var## 0 = *((_nb4 *) (ptr)); \

var## 1 = *(((__nB4 *) (ptr))+1);

#define LOAD_A UBx16(var, ptr) \

var## 0 = *((__nb4 *) (ptr)); \

var## 1 = *(((__nmb4 *) (ptr))+1);

#define STORE_A |16x8(ptr, var) \

*((__mB4 *) (ptr)) = var##_0; \

*(((_nmb4 *) (ptr))+1) = var##_1

#defi ne PREPARE_LOAD_ALI GNVENT(i ndex, ptr)

#define LOAD U U3x16(var, ptr, index) \

var##_0 = *((__nmb4 *) (ptr)); \
var## 1 = *(((__nmb4 *) (ptr))+1);

#define LOAD ADJ_U8x16(varl, var2, ptr, indexl

varl## 0 = *((__ n64 *) (ptr)); \
var1##_1 = *(((__nmb4 *) (ptr))+1); \
var2## 0 = *((__ *) (ptr+l1)); \
var2##_1 = *(((__nmb4 *) (ptr+l))+1);

130

cl4,
c24,
c34,
c44,
cl2,
c22,
c32,
c42,

cl5,
c25,
c35,
c45,
cl3,
c23,
c33,
c43,

i ndex2) \

cl6,
c26,
c36,
c46,
cl4,
c24,
c34,
c44,

cl7,
c27,
c37,
c47,
cl5,
c25,
c35,
c45,

cl8,
c28,
c38,
c48)
cl6,
c26,
c36,
c46,

— - —

cl7,
c27,
c37,
c47,

cl8,
c28,
c38,

c48};

\

/*
** Rearrangenent Instructions
*/

#defi ne BROADCAST_PAIR 0 | 16x8(dst, src) \
dst##_0 = _m pshuf w(src##_0, 0x44); \
dst##_1 = dst##_0;

#defi ne BROADCAST _PAIR 1 |16x8(dst, src) \
dst##_0 = _m pshuf w(src##_0, OxEE); \
dst##_1 dst ##_0;

#defi ne BROADCAST _PAIR 2 |16x8(dst, src) \
dst##_0 _m pshufw(src##_1, 0x44); \
dst## 1 = dst## 0

#defi ne BROADCAST_PAI R 3_116x8(dst, src) \
dst## 0 = _mpshufw(src##_1, OxEE); \
dst## 1 dst## 0

#defi ne PERMUTE_| 16x8_02134657(dst, src) \
dst## 0 = _m pshufw(src##_0, 0xD8); \
dst##_1 = _m pshuf w(src##_1, 0xD8);

#defi ne PERMUTE_| 16x8_01237654(dst, src) \
dst##_0 = src##_0; \
dst##_1 = _mpshufw(src##_1, 0x1B)

/*

** Conversion |Instructions

*/

#defi ne PACK_N_I32x4(dst, srcl, src2) \

dst##_0 = _m packssdw(srcl## 0, srcl##_1); \
dst##_1 = _m packssdw(src2## 0, src2##_1);
/*
** Shift Instructions
*/
#define SRA | | 16x8(dst, src, ampunt) \
dst##_0 = _nmsrai_pi 16(src## 0, anount); \
dst## 1 = _mmsrai_pi 16(src##_1, anount);
#define SRA | | 32x4(dst, src, amount) \
dst## 0 = _nmsrai _pi 32(src##_0, amount);\
dst## 1 = _mmsrai_pi32(src##_1, anount);
/*

** Integer Arithnetic Instructions
*/

#define ADD_N_| 16x8(dst, srcl, src2) \
dst##_0 = _nm add_pi 16(srcl## 0, src2##_0); \
dst## 1 = _mm add_pi 16(srcl##_ 1, src2## 1);

#define ADD_N_| 32x4(dst, srcl, src2) \
dst##_0 = _nm add_pi 32(srcl## 0, src2##_0);\
dst## 1 = _mm add_pi 32(srcl##_1, src2## 1);

#define SUB_N | 16x8(dst, srcl, src2) \
dst##_0 = _nmsub_pi 16(srcl## 0, src2##_0); \

131

dst##_1 = _nmsub_pi 16(srcl## 1, src2## 1);

#define SUB_N | 32x4(dst, srcl, src2) \
dst##_0 = _nmsub_pi 32(srcl## 0, src2## _0);\
dst##_1 = _mmsub_pi 32(srcl##_1, src2## 1);

#define MULT_H_ I 16x8(dst, srcl, src2) \
dst##_0 = _nm ul hi _pi 16(srcl##_0, src2## 0); \
dst## 1

_mm rrul hi _pi 16(srcl##_1, src2##_1);

#define MULT_H ADD N | 16x8(dst, srcl, src2, src3) \
dst##_0 = _nm add_pi 16(_nmm mul hi _pi 16(srcl## 0, src2##_0), src3## 0); \
dst## 1

_mm add_pi 16(_mm nul hi _pi 16(srcl## 1, src2##_1), src3##_1);

#defi ne MULT_ADDPAI RS_| 16x8(dst, srcl, src2) \
dst## 0 = _m pmaddwd(srcl## 0, src2## 0);\
dst## 1

_m praddwd(srcl## 1, src2##_1);

#define MULT_ADDPAI RS_ADD N | 16x8(dst, srcl, src2, src3) \
dst## 0 = nmadd_pi 32(src3## 0, _m pnaddwd(srcl## 0, src2## 0));\
dst## 1

_mm add_pi 32(src3##_1, _m praddwd(srcl## 1, src2##_1));

#defi ne AVG U8x16(dst, srcl, src2) \
dst## 0 = _m pavgb(srcl## 0, src2## 0); \
dst## 1 _m pavgb(srcl##_1, src2## 1);

#define SAD2_ADD M U8x16(dst, srcl, src2, src3) \

dst##_0 = _mm add_pi 32(_m psadbw(srcl##_0, src2## _0), src3##_0); \
dst##_1 = _nm add_pi 32(_m psadbw(srcl##_1, src2##_1), src3##_1);
#defi ne SUM2_U32x4(dst, src) \
dst = mto_int(src## 0) + mto_int(src##_1);
/*
** M scel aneous
*/

#i fdef __| NTEL_COWPI LER

#define MALLOC ALl GN16(si ze) _nm nal | oc(size, 16)
#el se

#define MALLOC ALI GN16(si ze) _aligned_nmalloc(size, 16)
#endi f

#def i ne END_OPTI M ZED() \
_mmeenpty();

#endif /* MW SSE__ */

132

B.3 SSE2

/***

* mmm sse. h

*

*
*
*
*
*
*
*

This file includes Miulti-Media Macro library definitions
MW & SSE instruction sets.

for

Inte

This library was devel oped by Juan Carl os Roj as

as part of his PhD research at Northeastern University.

#i fndef _ MW SSE2_
#define _ MW SSE2

#i ncl ude <enmm ntrin. h>

char
short
| ong
unsi gned char
unsi gned short
unsi gned | ong

Decl arati ons

/*

** Preci se Basic Types
*/

#define | NT8
#define INT16
#define | NT32
#define U NT8
#define U NT16
#define U NT32
/*

** \ector

*/

#defi ne DECLARE_| 16x8(var) \

_ m28

var;

#defi ne DECLARE_UBx16(var) \

_ ml28i

var;

#defi ne DECLARE_I 32x4(var) \

_ m28

var;

#defi ne DECLARE_U32x4(var) \

_ ml28i

#defi ne DECLARE_CONST_| 16x8x4(var

__decl spec(align(16))

/*

* % Set

*/

var;

I nstructions

#define SET1_I| 16x8(var, c) \

var

= _mmsetl_epi 16(c);
#define SET1_I| 32x4(var, c) \

I NT16 var[4][8]

cll, cl2
c21, c22
c31, c32
c4l, c42

133

cl3,
c23,
c33,
c43,

= {cl1,

c21,
c31,
c4al,

cl4,
c24,
c34,
c44,
cl2,
c22,
c32,
c42,

cl15,
c25,
c35,
c45,
cl3,
c23,
c33,
c43,

***/

cl6,
c26,
c36,
c46,
cl4,
c24,
c34,
c44,

cl7,
c27,
c37,
c47,
c15,
c25,
c35,
c45,

cls, \
c28, \
c38, \
c48) \
cl6, cl7,
c26, c27,
c36, c37,
c46, c47,

c18,
c28,
c38,
c48};

var = _mmsetl_epi 32(c);

#defi ne CLEAR U32x4(var) \
var = _nmxor_si 128(var, var);

#defi ne COPY_UBx16(dst, src) \

dst = srgc;
/*
** Load and Store Instructions
*/

#define LOAD A |16x8(var, ptr) \
var = _mmload_si 128((__nl28i *) (ptr));

#define LOAD_A U3x16(var, ptr) \
var = _mmload_si 128((__nl28i *) (ptr));

#define STORE_A |16x8(ptr, var) \
_mmstore_si128((__ml28i *) (ptr), var);

#defi ne PREPARE_LOAD_ ALI GNVENT(i ndex, offset)

#define LOAD U U3x16(var, ptr, index) \
var = _mmloadu_si 128((__nl28i *) (ptr));

#defi ne LOAD_ADJ_U8x16(varl, var2, ptr, indexl, index2) \
varl = mmloadu_si128((__ml28i *) (ptr)); \
var2 = _mmloadu_si 128((__ml28i *) (ptr + 1));

/*

** Rearrangenent Instructions

*/

#defi ne BROADCAST_PAIR 0_| 16x8(dst, src) \
dst = _mmshuffle_epi 32(src, 0x00);

#defi ne BROADCAST_PAIR 1 _|16x8(dst, src) \
dst = _mmshuffle_epi 32(src, 0x55);

#defi ne BROADCAST_PAIR 2_116x8(dst, src) \
dst = _mmshuffle_epi 32(src, OxAA);

#defi ne BROADCAST_PAI R 3_116x8(dst, src) \
dst = _mmshuffle_epi 32(src, OxFF);

#def i ne PERMUTE_| 16x8_02134657(dst, src) \
dst = _mmshufflel o_epi 16(_nm shuf fl ehi _epi 16(src, 0xD8),

#defi ne PERVMUTE_| 16x8_01237654(dst, src) \
dst = _mm shufflehi _epi 16(src, O0x1B);

/*

** Conversion Instructions

*/

#defi ne PACK_N_I32x4(dst, srcl, src2) \
dst = _nmm packs_epi 32(srcl, src2);

/*

** Shift Instructions

*/

#define SRA | _| 16x8(dst, src, amount) \
dst = _mmsrai _epi 16(src, anmount);

134

0xD8) ;

#define SRA | | 32x4(dst, src, anmount) \

dst = _mm srai _epi 32(src, anount);
/*
** |Integer Arithnetic Instructions
*/

#define ADD N | 16x8(dst, srcl, src2) \
dst = _nmm add_epi 16(srcl, src2);

#define ADD N | 32x4(dst, srcl, src2) \
dst = _nmm add_epi 32(srcl, src2);

#define SUB_N_ | 16x8(dst, srcl, src2) \
dst = _mm sub_epi 16(srcl, src2);

#define SUB_N_ | 32x4(dst, srcl, src2) \
dst = _mm sub_epi 32(srcl, src2);

#define MULT_H | 16x8(dst, srcl, src2) \
dst = _mmnul hi _epi 16(srcl, src2);

#define MULT_H ADD N | 16x8(dst, srcl, src2, src3) \
dst = _mm add_epi 16(_nmm rul hi _epi 16(srcl, src2), src3);

#define MULT_ADDPAI RS_| 16x8(dst, srcl, src2) \
dst = _nmm nadd_epi 16(srcl, src2);

#define MULT_ADDPAI RS_ADD N | 16x8(dst, srcl, src2, src3) \
dst = _mm add_epi 32(_mm madd_epi 16(srcl, src2), src3);

#defi ne AVG U8x16(dst, srcl, src2) \
dst = _mm avg_epu8(srcl, src2);

#define SAD2_ADD M U8x16(dst, srcl, src2, src3) \
dst = _mm add_epi 32(src3, _nmsad_epu8(srcl, src2));

#define SUM2_U32x4(dst, src) \
dst = _mmcvtsi128_si 32(_nm add_epi 32(src, _mmsrli_si1l28(src, 8)));

/*
** M scel aneous
*/
#i fdef __ | NTEL_COWPI LER
#define MALLOC ALI GN16(si ze) _nm nal | oc(size, 16)
#el se
#define MALLOC ALI GN16(si ze) _aligned_malloc(size, 16)
#endi f

#def i ne END_OPTI M ZEDX)

#endif /* MW SSE2__ */

135

B.4 AltiVec

/**

* mmm.al tivec. h

*
This file includes Multi-Media Macro library def
for the AltiVec instruction set.

*

*

*

* This library was devel oped by Juan Carl os Roj as
* as part of his PhD research at Northeastern Univ
*
*

R S S R R R ko o o S S R R R S R R R R o o o

#i fndef _ MW ALTI VEC _
#define __ MW ALTI VEC _

/*
** Preci se Basic Types
*/

/* Precise basic types */
#define | NT8 si gned char
#define INT16 signed short
#define INT32 signed int
#define U NT8 unsi gned char
#define U NT16 unsigned short
#define U NT32 wunsigned int

/*
** \ector Declarations
*/

#defi ne DECLARE_| 16x8(var) \
vector |INT16 var;

#defi ne DECLARE_U3x16(var) \
vector Ul NT8 var;

#defi ne DECLARE_| 32x4(var) \
vector |NT32 var;

#defi ne DECLARE_U32x4(var) \
vector Ul NT32 var;

#def i ne DECLARE_CONST_| 16x8x4(var, cl1l1, cl12, c13, cl4
c21, c22, c23, c24
c31, c32, c33, c34
c4l1l, c42, c43, c44

vector |INT16 var[4] = {(vector |INT16) (c11, c12,
(vector INT16) (c21, c22,
(vector INT16) (c31, c32,
(vector |INT16) (c4l, c42,

136

kkkkkkhkkk

initions

ersity.

*********/

, c15, cl6,
, €25, 26,
, ¢35, c36,
, c45, c46,

cl3, cl4,
c23, c24,
c33, ¢34,
c43, c44,

cl5,
c25,
c35,
c45,

cl7,
c27,
c37,
c47,

cl6,
c26,
c36,
c46,

cl8,
c28,
c38,
c48) \

——

cl7,
c27,
c37,
c47,

c18),
c28),
c38),
c48)};

\

/*
** Set Instructions
*/

#define SET1_I| 16x8(dst, c) \
dst = (vector INT16) (c);

#define SET1_I| 32x4(dst, c) \
dst = (vector INT32) (c¢);

#defi ne CLEAR U32x4(dst) \
dst = (vector U NT32)(0);

#define COPY_UBx16(dst, src) \

dst = src;
/*
** Load and Store Instructions
*/

#define LOAD A |16x8(var, ptr) \
var = vec_Id(0, (vector INT16 *) (ptr));

#define LOAD A UBx16(var, ptr) \
var = vec_ld(0, (vector U NT8 *) (ptr));

#define STORE_A |16x8(ptr, var) \
vec_st(var, 0, (vector INT16 *) (ptr))

/* Static re-alignemt vectors */
static vector U NT8 mmm align_vectorl
static vector U NT8 nmm al i gn_vector?2

#defi ne PREPARE_LOAD ALl GNVENT(i ndex, ptr) \
nmmm_al i gn_vect or ##i ndex = vec_lvsl (0, ptr);

#define LOAD U U3x16(var, ptr, index) \
var = vec_pern(vec_ld(0, (vector UNT8 *) (ptr)), \
vec_l d(0, ((vector U NT8 *) (ptr)) +
1), mmm al i gn_vect or ##i ndex) ;

#define LOAD_ADJ_U8x16(varl, var2, ptr, indexl, index2) \
varl = vec_perm(vec_l d(0, (vector U NT8 *) (ptr)), \
vec_l d(0, ((vector U NT8 *) (ptr)) +
1), mmm al i gn_vect or ##i ndex1); \
var2 = vec_pern(vec_l d(0, (vector U NT8 *) (ptr)), \
vec_|d(0, ((vector UNT8 *) (ptr)) +
1), mmm al i gn_vect or ##i ndex2) ;

137

/*
** Rearrangenent Instructions
*/

#def i ne BROADCAST PAI R 0_| 16x8(dst,

src) \

dst = (vector |NT16)(vec_spl at((vector

#defi ne BROADCAST PAIR 1_| 16x8(dst,

src) \

dst = (vector |NT16)(vec_splat((vector

#def i ne BROADCAST PAI R 2 | 16x8(dst,

src) \

dst = (vector |NT16)(vec_splat((vector

#defi ne BROADCAST_PAI R 3_| 16x8(dst,

src) \

dst = (vector |NT16)(vec_spl at((vector

#defi ne PERMUTE_I 16x8_02134657(dst,

src) \

I NT32) (src),

I NT32) (src),

I NT32) (src),

I NT32) (src),

dst = vec_pern{src, src, (vector U NT8) \
(0, 1, 4, 5 2, 3, 6, 7, 8 9, 12, 13, 10, 11, 14, 15));

#defi ne PERMUTE_I 16x8_01237654(dst,

src) \

dst = vec_pern{src, src, (vector U NT8) \
(0, 1, 2, 3, 4, 5 6, 7, 14, 15, 12, 13, 10, 11, 8, 9));

/*
** Conversion |Instructions
*/

#define PACK_N_I32x4(dst, srcl, src2) \

dst = vec_pack(srcl, src2);

/*
** Shift Instructions
*/

#define SRA | | 16x8(dst, src, amount) \
dst = vec_sra(src, (vector U NT16) (anount));

#define SRA | _| 32x4(dst, src, amount) \
dst = vec_sra(src, (vector U NT32) (anount));

/*
** |nteger Arithmetic Instructions
*/

#define ADD N | 16x8(dst, srcl, src2) \

dst = vec_add(srcl, src2);

#define ADD_N_| 32x4(dst, srcl, src2) \

dst = vec_add(srcl, src2);

#define SUB_N | 16x8(dst, srcl, src2) \

dst = vec_sub(srcl, src2);

#define SUB_N | 32x4(dst, srcl, src2) \

dst = vec_sub(srcl, src2);

#define MULT_H | 16x8(dst, srcl, src2) \

dst = vec_nmdds(srcl, vec_sra(src2

(0));

#define MULT_H ADD N | 16x8(dst, srcl

src2

138

src3) \

(vector UINT16) (1)),

(vector |NT16)

dst = vec_mmdds(srcl, vec_sra(src2, (vector U NT16) (1)), src3);

#define MULT_ADDPAI RS_| 16x8(dst, srcl, src2) \
dst = vec_nsun(srcl, src2, (vector INT32) (0));

#define MULT_ADDPAI RS_ADD N | 16x8(dst, srcl, src2, src3) \
dst = vec_nsun{srcl, src2, src3);

#defi ne AVG U8x16(dst, srcl, src2) \
dst = vec_avg(srcl, src2);

#defi ne SAD2_ADD M U8x16(dst, srcl, src2, src3) \
dst = (vector U NT32) vec_sun®s((vector |INT32) \
vec_sumids(vec_sub(vec_nmax(srcl, src2), vec_mn(srcl, src2)), \
(vector U NT32)(0)), (vector INT32) src3);

#defi ne SUM2_U32x4(dst, src) \
vec_ste((vector U NT32) vec_splat(vec_suns((vector INT32) src, \
(vector INT32)(0)), 3), 0, &dst);
/*
** M scel aneous
*/
#define MALLOC ALl GN16(si ze) nal |l oc(si ze)

#def i ne END_OPTI M ZED()

#endif /* MW ALTIVEC _ */

139

Appendix C

MMM EXAMPLE PROGRAMS

This appendix includes the source code of the portable example programs written in MMM.
Section C.1 is the 8x8 IDCT, C.2 is the 16x16 L,-Distance, and C.3 is the 16x16 L;-Distance

with interpolation.

C.18x8 IDCT
/***
* jdct_nmmmc
*
* This file includes an inplenmentation of 8x8 Inverse Discrete
* Cosi ne Transformusing Multi-Media Macro libraries.
*
* This file in intended to be conpiled for
* any of the follow ng target architectures:
* - Intel SSE2
* - Intel MW + SSE
* - Tri Media TML300
* - AltiVec
*
* This program and Milti-Media Macro |ibraries were devel oped
* by Juan Carlos Rojas as part of his PhD research at
* Nort heast ern Uni versity.
*
**/
#i f def SSE2

#i ncl ude "mm sse2. h"
#endi f
#i f def SSE

#i ncl ude "mm sse. h"
#endi f

#i fdef TR MEDI A

#i ncl ude "nmmtm h"
#endi f
#i fdef ALTI VEC

#i nclude "mm.al tivec. h"
#endi f

/* Coefficient constants for horizontal |DCT */
/* They using 15 bits of fractional precision */
#define CLCL 31521 /* Cos(1*pi/ 16)*Cos(1l*pi/16) << 15 */
#define CLC2 29692 /* Cos(1*pi/ 16)*Cos(2*pi/16) << 15 */
#define CLC3 26722 /* Cos(1*pi/ 16)*Cos(3*pi/1l6) << 15 */

140

#define CLC4 22725 /* Cos(1*pi/ 16)*Cos(4*pi/ 16) << 15 */
#define C1C5 17855 /* Cos(1*pi/ 16)*Cos(5*pi/16) << 15 */
#define CLC6 12299 /* Cos(1*pi/ 16)*Cos(6*pi/16) << 15 */
#define CLC7 6270 /* Cos(1*pi/16)*Cos(7*pi/16) << 15 */

#define C2C2 27969 /* Cos(2*pi/ 16)*Cos(2*pi/16) << 15 */
#define C2C3 25172 /* Cos(2*pi/ 16)*Cos(3*pi/16) << 15 */
#define C2C4 21407 /* Cos(2*pi/ 16)*Cos(4*pi/16) << 15 */
#define C2C5 16819 /* Cos(2*pi/ 16)*Cos(5*pi/16) << 15 */
#define C2C6 11585 /* Cos(2*pi/ 16)*Cos(6*pi/16) << 15 */
#define C2C7 5906 /* Cos(2*pi/16)*Cos(7*pi/16) << 15 */

#define C3C3 22654 /* Cos(3*pi/16)*Cos(3*pi/16) << 15 */
#define C3C4 19266 /* Cos(3*pi/16)*Cos(4*pi/16) << 15 */
#define C3C5 15137 /* Cos(3*pi/ 16)*Cos(5*pi/16) << 15 */
#define C3C6 10426 /* Cos(3*pi/16)*Cos(6*pi/16) << 15 */
#define C3C7 5315 /* Cos(3*pi/16)*Cos(7*pi/16) << 15 */

#define CACA 16384 /* Cos(4*pi/ 16)*Cos(4*pi/1l6) << 15 */
#define CAC5 12873 /* Cos(4*pi/ 16)*Cos(5*pi/16) << 15 */
#define CAC6 8867 /* Cos(4*pi/16)*Cos(6*pi/16) << 15 */
#define CAC7 4520 /* Cos(4*pi/ 16)*Cos(7*pi/16) << 15 */

/* Coefficient constants for vertical |DCT */
/* They use 16 bits of fractional precision */
#define TANL (U NT16) 13036 /* Tan(1l*pi/16) << 16 */
#define TAN2 (Ul NT16) 27146 /* Tan(2*pi/16) << 16 */
#define TAN3 (U NT16) 43790 /* Tan(3*pi/16) << 16 */
#define COS4 (U NT16) 46341 /* Cos(4*pi/16) << 16 */

/* Arrays of constants */

/* Operator MB coefficients in 2x4 groups, scaled by C1 */
DECLARE_CONST_| 16x8x4(Const M_C1
Cl4, Cclcz, cic4, Ccics, C14, -C1cs, Ci4, -Ccie2
Cl4, Clcs, -C14, -Clcz, -4, Ccc2, cia4, -c1cs
Ccici, cics, cics, -ccr, cics, -cica, cicr, -Cics
Clcs, cicr, -cicl, -c1cs, ccr, cic3, cics, -cia)

/* Operator MB coefficients in 2x4 groups, scaled by C2 */
DECLARE_CONST_| 16x8x4(Const M_C2
¢, C2, ¢4, @08, @G, -0, A, -2
¢, 0, -¢, -2, -G, 22, ¢, -c20s6
Clc2, 2cs3, C2c3, -CQ2Ccr7, @G5, -C1e2, c2cr, -C26s
c2C5, C2Cr7, -Clc2, -0, 2C7, @C3, a3, -Ccle);

/* Qperator MB coefficients in 2x4 groups, scaled by C3 */
DECLARE_CONST_| 16x8x4(Const M_C3
c3¢4, C2C3, C3C4, C3Cs, C3¢4, -C3Cs, C3¢4, -C2C3
34, C3Cs, -C34, -2C3, -CG3¢4, C2C3, C34, -C3w
Clcs3, C3cs, C3c3, -C3cr7, C3Cs, -C1e3, csc7, -C3G6s
C3C5, C3C7, -C1C3, -(C3C5, (C3C7, C3c3, Cacs, -Cicy);

/* Operator MB coefficients in 2x4 groups, scaled by C4 */
DECLARE_CONST_| 16x8x4(Const M_C4
A4, QC4, CGAC4, CACB, 44, -A4CB, 4G4, -4
A4, 4GB, -4, -4, -G44G4, 2a, Ao, -cAcs
Cl4, C3¢4, C3C4, -C4C7, 4G5, -Cc14, c4cr, -CA4AGs
C4AC5, CAC7, -ClC4, -C4C5, (44Cr7, G344, c34, -c14);

141

/***

* ROVNIDCT - 1D IDCT of row
*
I nput s:
pSrc - Pointer to input array in menory
pConst - Pointer to array of constants

Cut put :
Y - Result vector

*
*
*
*
*
*
*
* Uses:

* X, XP, XB, MP, ME, MO Al, A2, Tenp, ConstRoundl2Bit
*

*

*

*

*

*

*

*

*

Descri ption:
Conmput es the 1D I nverse Discrete Cosine Transform
of an 8-element vector of 16-bit signed el ements.

The output is scaled by a factor of four, which is conpensated in the
colum idct. This hel ps preserve accuracy.

***/

#define RONIDCT(Y, pSrc, pConst);
{

/* Load input row */

LOAD A |16x8(X, pSrc);

/* Permute input to order 02134657*/
PERMUTE_| 16x8_02134657(XP, X);

/* Extract elenents 0 & 2, and repeat them4 tinmes */
BROADCAST_PAI R 0_| 16x8(XB, XP);

/* Multiply by coefficients in operator M8 and add results */
LOAD A |16x8(Tenp, &pConst[0]);
MULT_ADDPAI RS_| 16x8(MP, XB, Tenp);

/* Extract elenents 4 & 6, and repeat them4 tines */
BROADCAST_PAIR 2_116x8(XB, XP);

/* Multiply by coefficients in operator M8 and add results */
/* Sumtop 4 rows of MB */

LOAD A | 16x8(Tenp, &pConst[1]);

MULT_ADDPAI RS_ADD N | 16x8(ME, XB, Tenp, MP);

/* Extract elenents 1 & 3, and repeat them4 tinmes */
BROADCAST _PAIR 1 | 16x8(XB, XP);

/* Multiply by coefficients in operator M8 and add results */
LOAD A |16x8(Tenp, &pConst[2]);
MULT_ADDPAI RS_| 16x8(MP, XB, Tenp);

/* Extract elenents 5 & 7, and repeat them4 tines */
BROADCAST_PAI R 3_1 16x8(XE, XP);

/* Multiply by coefficients in operator M8 and add results */
/* Sum bottom 4 rows of M */

LOAD A |16x8(Tenp, &pConst[3]);

MULT_ADDPAI RS_ADD N | 16x8(MO, XB, Tenp, M);

/* Add roundi ng amount */
ADD N | 32x4(ME, ME, ConstRoundl12Bit);

142

e e o o e e e o o e e e o e e e e e o e e e e e e e o o e m m — —m — — — — —

/* QOperator A8 */
ADD_N | 32x4(Al, Mg, MD);
SUB N | 32x4(A2, ME, MO;

/* Shift out the lower bits. */
SRA | _132x4(A1, Al, 12);
SRA | | 32x4(A2, A2, 12);

/* Pack as 16-bit */
PACK_N_I32x4(Y, Al, A2);

/* Correct order of last 4 values */
PERMUTE_| 16x8_01237654(Y, Y);

— o — m m —m — — — — — —

}
/***
* | dct 8x8

*

* | nputs

* pSrc - Pointer to input array in menory

*

* Qut put

* pDst - Pointer to output array in menory

*

* Description:

* Conmput es the 2D I nverse Discrete Cosine Transformof an 8x8 bl ock
* of 16-bit signed el enents.

*

*

***/

void Idct8x8 (INT16 *pSrc, INT16 *pDst)

{
/*
** | ntermedi ate variables for horizontal |DCT
*/
DECLARE_| 16x8(X) /* Input row */
DECLARE_| 16x8(XP) /* Input row permuted */
DECLARE_| 16x8(XB) /* Two columms of row repeated 4 tines */
DECLARE_| 32x4(MP) /* Partial results of operator M*/
DECLARE_| 32x4(MVE) /* Result of operator M even part */
DECLARE_| 32x4(MD) /* Result of operator M odd part */
DECLARE_| 32x4(Al) /* Partial results of operator A */
DECLARE_| 32x4(A2)

DECLARE_| 16x8(YO) /* Row | DCT outputs */
DECLARE_| 16x8(Y1)
DECLARE | 16x8(Y2)
DECLARE_| 16x8(Y3)
DECLARE | 16x8(Y4)
DECLARE_| 16x8(Y5)
DECLARE_| 16x8(Y6)
DECLARE_| 16x8(Y7)

DECLARE | 16x8(Tenp) /* Auxiliary */

/*

** | nternediate variables for vertical |DCT

*/

DECLARE_| 16x8(B0) /* Qutput of operator B8"-1 */
DECLARE | 16x8(B1)

143

DECLARE_| 16x8(B2)
DECLARE_| 16x8(B3)
DECLARE_| 16x8(B4)
DECLARE_| 16x8(B5)
DECLARE_| 16x8(B6)
DECLARE_| 16x8(B7)

DECLARE_| 16x8(EQ) /* Qutput of operator E8M-1 */
DECLARE | 16x8(E1)
DECLARE | 16x8(E2)
DECLARE_| 16x8(E3)
DECLARE_| 16x8(E4)
DECLARE_| 16x8(E5)
DECLARE_| 16x8(E6)
DECLARE | 16x8(E7)

DECLARE_| 16x8(F5) /* Qutput of operator F8M-1 */
DECLARE_| 16x8(F6)

/* Contant vectors */

DECLARE_| 16x8(Const Tanl)
DECLARE_| 16x8(Const Tan2)
DECLARE_| 16x8(Const Tan3)
DECLARE_| 16x8(Const Cos4)
DECLARE_| 16x8(Const Round5Bi t)
DECLARE_| 16x8(Const Round5Bi t Corr)
DECLARE_| 16x8(Const Corr)
DECLARE_| 32x4(Const Round12Bi t)

/* Set constant vectors */

SET1_I| 16x8(Const Tanl, TANL)

SET1_| 16x8(Const Tan2, TAN2)
SET1_116x8(Const Tan3, TAN3)

SET1_| 16x8(Const Cos4, CO4)
SET1_116x8(Const Round5Bit, 0x10)
SET1_116x8(Const Round5Bi t Corr, OxF)
SET1_116x8(Const Corr, 0x1)

SET1_| 32x4(Const Round12Bit, 0x800)

/*

** Horizontal |DCT

*/

ROWIDCT(Y3, (pSrc + 3 * 8), ConstM C3);
RON I DCT(Y5, (pSrc + 5 * 8), ConstMC3);
ROWIDCT(Y1, (pSrc + 1 * 8), ConstMCl);
ROW I DCT(Y7, (pSrc + 7 * 8), ConstMCl);
ROWIDCT(Y2, (pSrc + 2 * 8), ConstM C2);
RON I DCT(Y6, (pSrc + 6 * 8), ConstM C2);
ROWIDCT(YO, (pSrc + 0 * 8), ConstM C4);
RON I DCT(Y4, (pSrc + 4 * 8), ConstM C4);
/*

** Vertical |DCT

*/

/* Operator B8"-1 */

ADD N | 16x8(B0, YO, Y4)

SUB N | 16x8(B1, YO, Y4)

MJULT_H ADD N | 16x8(B2, Y6, ConstTan2, Y2)
MULT_H | 16x8(Tenp, Y2, Const Tan2)

SUB_N | 16x8(B3, Tenp, Y6)

MULT_H ADD N | 16x8(B4, Y7, ConstTanl, Y1)

144

MULT_H_ | 16x8(Tenp, Y1, ConstTanl)

SUB_N_| 16x8(B5, Tenp, Y7)

MULT_H ADD N | 16x8(Tenp, Y5, ConstTan3, Y5)
ADD_| 16x8(B6, Tenp, Y3)

MULT_H ADD N | 16x8(Tenp, Y3, ConstTan3, Y3)
SUB_N_ | 16x8(B7, Y5, Tenp)

/* Operator E8"-1 */

ADD N | 16x8(EO, BO, B2)

ADD N | 16x8(EO, EO, Const Round5Bit)
SUB_N_| 16x8(E3, B0, B2)

ADD N | 16x8(E3, E3, Const Round5Bit Corr)
ADD N | 16x8(E1, Bl1, B3)

ADD N | 16x8(E1, E1, Const Round5Bit)
SUB_N | 16x8(E2, Bl1l, B3)

ADD N | 16x8(E2, E2, Const Round5Bit Corr)
ADD N | 16x8(E4, B4, B6)

ADD N | 16x8(E4, E4, ConstCorr)

SUB_N | 16x8(E5, B4, B6)
SUB N | 16x8(E6, B5, B7)
ADD N | 16x8(E6, E6, ConstCorr)
ADD N | 16x8(E7, B5, B7)
* Qperator F8"-1 */
ADD_N | 16x8(Tenp, E5, E6)

MULT_H ADD N | 16x8(F5, Tenp, Const Cos4, Tenp)
ADD N | 16x8(F5, F5, ConstCorr)

SUB N | 16x8(Tenp, E5, EB6)

MULT_H ADD N | 16x8(F6, Tenp, Const Cos4, Tenp)
ADD N | 16x8(F6, F6, ConstCorr)

/* Qperator A8"-1 */

/* YO */

ADD N | 16x8(Tenmp, EO, E4)

SRA | _116x8(Tenp, Tenp, 5);
STORE_A | 16x8((pDst + 0*8), Tenp);
[* Y7 *]

SUB_N_| 16x8(Tenp, EO, E4)

SRA | _116x8(Tenp, Tenp, 5);
STORE_A | 16x8((pDst + 7*8), Tenp);
/* Y1 */

ADD N | 16x8(Tenp, E1, F5)

SRA | _| 16x8(Tenp, Tenp, 5);
STORE_A |16x8((pDst + 1*8), Tenp);
/* Y6 */

SUB_N | 16x8(Tenp, E1, F5)

SRA | _| 16x8(Tenp, Tenp, 5);
STORE_A | 16x8((pDst + 6*8), Tenp);
[* Y2 *]

ADD _N_| 16x8(Tenmp, E2, F6)

SRA | _| 16x8(Tenp, Tenp, 5);
STORE_A | 16x8((pDst + 2*8), Tenp);
/* Y5 */]

SUB_N_| 16x8(Tenp, E2, F6)

SRA | _| 16x8(Tenp, Tenp, 5);
STORE_A | 16x8((pDst + 5*8), Tenp);
/* Y3 */

ADD N | 16x8(Tenmp, E3, E7)

SRA | _116x8(Tenp, Tenp, 5);
STORE_A | 16x8((pDst + 3*8), Tenp);
[* Y4 *]

SUB_N | 16x8(Tenp, E3, E7)

145

SRA | _116x8(Tenp, Tenp, 5);
STORE_A | 16x8((pDst + 4*8), Tenp);

END_CPTI M ZEIX) ;

146

C.2 16x16 L-Distance

Shortcut paths are supported when SHORTCUT_PATH is defined.

/***

* 11 dist_mmec

*

| npl emrent ati on of L1-Di stance of 16x16 bl ocks,

with and without interpolation, using Miulti-Media Macro libraries.

This file is intended to be conpiled for any of the follow ng
target architectures:

- Intel MW and SSE

- Tri Medi a TML300

- AltiVec

This program and Multi-Media Macro |ibraries were devel oped
by Juan Carlos Rojas as part of his PhD research at
Nort heastern Uni versity.

*
*
*
*
*
*
*
*
*
*
*
*
*
*

***/

#i f def SSE2

#i ncl ude "mm sse2. h"
#endi f
#i fdef SSE

#i ncl ude "nmmm sse. h"
#endi f

#i fdef TR MEDI A

#include "mm_tmh"
#endi f
#i fdef ALTI VEC

#include "nmmm al ti vec. h"
#endi f

/* Use the follow ng define to support shortcut paths. */
[*#defi ne SHORTCUT _PATH */

/***

L1D st 16x16

| nput s:
pRef, pln - Addresses of input blocks
RowPi t ch - Distance (in bytes) of vertically adjacent pixels
Limt - Stop if sum exceeds this value
Sum - Accumul ated SAD for this block

Descri ption:
Conmput es the L1-Di stance (sum of absolute differences) between two 16*16
bl ocks of 8-bit unsigned integers. Block pln is assuned to
be aligned to 16-byte boundaries, pRef may not be.

*
*
*
*
*
*
*
* Qutput:
*
*
*
*
*
*
*
*

***/

#defi ne SAD RONdst, pRef, pln, index) \

147

U NT32 L1Di st 16x16(U NT8 *pRef,

{

/* Load next

/* Accumul ate SAD of this row */
SAD2_ADD M UBx16(dst,

row of each input array */
LOAD U UBx16(Rl, pRef,
LOAD A UBx16(I,

DECLARE_UBx16(R1)
DECLARE_UBx16(1)

DECLARE_U32x4(Sad)

U NT32 Sum

CLEAR U32x4(Sad)

PREPARE_LOAD ALI GNVENT(1, pRef)

SAD_ROW Sad,
SAD_ROW Sad,
SAD_ROW Sad,
SAD_ROW Sad,

SAD_ROW Sad,

SAD_ROW Sad,
SAD_ROW Sad,

pRef
pRef
pRef
pRef
pRef
pRef
pRef
pRef

#i f def SHORTCUT _PATH
SUMR_U32x4(Sum Sad)

if (Sum> Limit) {

i ndex)

pl)

RL, I,

/* Hol ds one row of
/* Hol ds one row of

/* Vector with two parti al

dst)

Ul NT8 *pl n,

—— - - - —

i nt

/* Integer result */

0* RowPi t ch,
1*RowPi t ch,
2*RowPi t ch,
3*RowPi t ch,
4* RowPi t ch,
5* RowPi t ch,
6* RowPi t ch,
7* RowPi t ch,

+ 4+ + 4+ +++ o+

END_OPTI M ZEIX)
return Sum

}
#endi f

SAD_ROW Sad,
SAD_ROW Sad,
SAD_ROW Sad,
SAD_ROW Sad,
SAD_ROW Sad,
SAD_ROW Sad,

SAD_ROW Sad,

SAD_RON Sad,

/* Add parti al

pRef
pRef
pRef
pRef
pRef
pRef
pRef
pRef

+ 8*RowPi t ch,
+ 9*RowPi t ch,
+10* RowPi t ch,
+11* RowPi t ch,
+12* RowPi t ch,
+13* RowPi t ch,
+14* RowPi t ch,
+15* RowPi t ch,

suns*/

SUMR_U32x4(Sum Sad)

END_CPTI M ZEDX)

return Sum

pln
pln
pln
pln
pln
pln
pln
pln

pln
pln
pln
pln
pln
pln
pln
pln

0* RowPi t ch,
1*RowPi t ch,
2* RowPi t ch,
3*RowPi t ch,
4* RowPi t ch,
5* RowPi t ch,
6* RowPi t ch,
7* RowPi t ch,

+ 4+ + 4+ +++ o+

+ 8*RowPi t ch,
+ 9*RowPi t ch,
+10* RowPi t ch,
+11* RowPi t ch,
+12* RowPi t ch,
+13* RowPi t ch,
+14* RowPi t ch,
+15* RowPi t ch,

148

RowPi t ch,

suns

int

reference bl ock */
i nput bl ock */

Limt)

C.3 16x16 L;-Distance with Interpolation

/***

* L1Di st 16x16_I nt er pXY

*

| nput s:
pRef, pln - Addresses of input blocks
RowPi t ch - Distance (in bytes) of vertically adjacent pixels
Limt - Stop if sum exceeds this val ue
Cut put :
Sum - Accumul ated SAD for this block
Descri ption:

*
*
*
*
*
*
*
*
*
* Perforns hal f-pixel horizontal and vertical interpolation of pRef,

* a 16x16 bl ock of 8-bit unsigned integers, and conputes the L1-Di stance
* (sum of absolute differences) between it and pln,

* anot her bl ock of the sanme size.

* Bl ock pln is assunmed to be word-aligned, pRef may not be.

*

*

***/

#define SAD | NTERP_ROWN dst, pRef, pln, indexl, index2) \
COPY_U8x16(R1, R2) \
LOAD ADJ_U8x16(R2, R3, pRef, indexl, index2) \
AVG U8x16(R2, R2, R3) /* Interpolate horizontally */ \
AVG U8x16(R1, R1, R2) /* Interpolate vertically */ \
LOAD A WBx16(1, pln) \
SAD2_ADD M USx16(dst, R1, |, dst)

int L1Di st16x16_I nterpXY(U NT8 *pRef, U NT8 *pln, int RowPitch, int Linit)
DECLARE_U8x16(R1) /* Hol ds one row of reference bl ock */
DECLARE_UBx16(R2)
DECLARE_U8x16(R3)
DECLARE_UBx16(B) /* Hol ds one row of input block */

DECLARE_U32x4(Sad) /* Vector with two partial suns */
Ul NT32 Sum /* Integer result */

CLEAR U32x4(Sad)

PREPARE_LOAD ALI GNVENT(1, pRef)
PREPARE_LOAD ALI GNVENT(2, pRef +1)

/* Load first row */
LOAD ADJ_U8x16(R2, R3, pRef, 1, 2)

/* Interpolate horizontally */
AVG U8x16(R2, R2, R3)

SAD | NTERP_RON Sad, pRef + 1*RowPitch, pln + O*RowPitch, 1, 2)
SAD | NTERP_RON Sad, pRef + 2*RowPitch, pln + 1*RowPitch, 1, 2)
SAD | NTERP_RON Sad, pRef + 3*RowPitch, pln + 2*RowPitch, 1, 2)
SAD | NTERP_RON Sad, pRef + 4*RowPitch, pln + 3*RowPitch, 1, 2)
SAD | NTERP_RON Sad, pRef + 5*RowPitch, pln + 4*RowPitch, 1, 2)
SAD | NTERP_ROW Sad, pRef + 6*RowPitch, pln + 5*RowPitch, 1, 2)
SAD | NTERP_RON Sad, pRef + 7*RowPitch, pln + 6*RowPitch, 1, 2)

149

#i f def SHORTCUT PATH
SUMVR_U32x4(Sum Sad)
if (Sum> Limt) {

END_OPTI M ZEIX)
return Sum

}
#endi f

SAD_| NTERP_ROW(Sad,
SAD_| NTERP_ROW Sad,
SAD_| NTERP_ROW(Sad,
SAD_| NTERP_ROW Sad,
SAD_| NTERP_ROW Sad,
SAD_| NTERP_ROW(Sad,
SAD_| NTERP_ROW Sad,
SAD_| NTERP_ROW(Sad,
SAD_| NTERP_ROW Sad,

pRef
pRef
pRef
pRef
pRef
pRef
pRef
pRef
pRef

/* Add partial suns*/

SUMR_U32x4(Sum Sad)
END_CPTI M ZEDX)

return Sum

+ 8*RowPi t ch,
+ 9*RowPi t ch,
+10* RowPi t ch,
+11* RowPi t ch,
+12* RowPi t ch,
+13* RowPi t ch,
+14* RowPi t ch,
+15* RowPi t ch,
+16* RowPi t ch,

150

pln
pln
pln
pln
pln
pln
pln
pln
pln

+ 7*RowPi t ch,
+ 8*RowPi t ch,
+ 9*RowPi t ch,
+10* RowPi t ch,
+11* RowPi t ch,
+12* RowPi t ch,
+13* RowPi t ch,
+14* RowPi t ch,
+15* RowPi t ch,

PRPPRPPRPRPPRPPPR

GLOSSARY

3DNow! Multimedia extensions for the AMD K6 2 and later processors.

3DNow! Professional. Multimedia extensions for the AMD Athlon XP and later processors.
It 1s a combination of Enhanced 3DNow! and SSE extensions.

AltiVec. Multimedia extensions for the Motorola PowerPC G4 processor.

Enhanced 3DNow! Multimedia extensions for the AMD Athlon and later processors.
H.263. Video compression standard by the International Telecommunications Union.
IDCT. Inverse Discrete Cosine Transform.

Intrinsics. Extensions to the C language that serve to indicate specific machine instructions to
the compiler.

FIR. Finite-impulse response filter.

FFT. Fast Foutier transform.

GPP. General-purpose processor.

MMX. Multimedia extensions to the Intel Pentium, AMD K6 and later processors.
MPEG(2). Video compression standard by the Moving Pictures Experts Group.

Multimedia instruction set. Includes instructions that operate in parallel on parts of the
registers and complex instructions designed for multimedia applications.

Multimedia programs. Programs that process video and/or audio information. For
example, video compression.

SAD. Sum of absolute differences.
Scalar processor. A processor whose registers represent a single value at a time.
SIMD. Single instruction, multiple data paradigm of parallel processing.

Speedup. Ratio of optimized execution speed to the unoptimized one. Speedup =
unoptimized execution time / optimized execution time.

SSE. Streaming SIMD extensions for the Intel Pentium III, Itanium, AMD Athlon XP and
later processors. Itis a complement to MMX extensions.

SSE2. Streaming SIMD extensions 2 for the Intel Penttum 4 processors.

VIS. Visual Instruction Set. Multimedia extensions for Sun UltraSparc processors.

151

BIBLIOGRAPHY

[1] William Chen, et al. “Native Signal Processing on the UltraSparc in the Ptolemy
Environment,” Conference Record of the Thirtieth Astlomar Conference on Signals, Systems &
Computers, Pacific Grove, Calif., 1996, pp. 1368-72.

[2] Parthasarathy Ranaganathan, Sarita Adve and Norman P. Jouppi. “Performance of Image
and Video Processing with General-Purpose Processors and Media ISA Extensions,”
Proceedings of the 26" International Symposinm on Computer Architecture, Atlanta, 1999, pp. 124-35.

[3] Yi-Shin Tung, Chia-Chiang Ho and Ja-Ling Wu. “MMX-based DCT and MC Algorithms
for Real-Time Pure Software MPEG Decoding,” Proceedings: IEEE International Conference on
Multimedia Computing and Systems, Florence, 1999, pp. 357-62.

[4] Ville Lappalanien. “Performance Analysis of Intel MMX Technology for an H.263 Video
Encodet,” Proceedings: ACNM Multimedia 98, Bristol, England, 1998, pp. 309-14.

[5] Ravi Bhargava, et al. “Evaluating MMX Technology Using DSP and Multimedia
Applications,” Proceedings of the IEEE Symposium on Microarchitecture (MICRO-31), Dallas,
1998, pp. 37-40.

[6] Berna Erol, Faouzi Kossentini and Hussein Alnuweiti. “Implementation of a Fast H.263+
Encoder/Decodet,” Conference Record of the Thirty-Second Asilomar Conference on Singals, Systems
& Computers, Pacific Grove, Calif., 1998, pp. 462-6.

[7] Huy Nguyen, and Lizzy Kurian John. “Exploiting SIMD Parallelism in DSP and
Multimedia Algorithms Using the AltiVec Technology,” Proceedings of the International
Conference on Supercomputing (1CS), 1999, pp. 11-20.

[8] Sebot Julien, and Nathalie Drach-Temam. “Memory Bandwidth: the True Bottleneck for
SIMD Multimedia Performance on a Superscalar Processor,” Eurgpean Conference on Parallel
Computing (EUROPAR) 2001, Manchester, England, 2001.

[9] N. Steraman, and R. Govindarajan. “A Vectorizing Compiler for Multimedia Extensions,”
International Journal of Parallel Programming, no. 4, vol. 28, 2000, pp. 363-400.

[10] Markus Lorenz, Lars Wehmeyer and Thorsten Driger. “Energy Aware Compilation for
DSPs with SIMD Instructions,” Languages, Compilers, and Tools for Embedded Systems
(LCTES02) and Software and Compilers for Embedded Systems (SCOPES 02), Betlin, 2002.

[11] Samuel Larsen, and Saman Amarasinghe. “Exploiting Superword Level Parallelism with
Multimedia Instruction Sets,” Proceedings of the SIGPLAN00 Conference on Programming
Language Design and Implementation, Vancouver, 2000.

[12] Rainer Leupers. “Code Selection for Media Processors with SIMD Instructions,” Design
Automation and Test in Enrope (DATE) Conference Proceedings, 2000, pp. 4-8.

152

[13] Aart Bik, et al. “Experiments with Automatic Vectorization for the Pentium 4 Processor,”
9 Workshop on Compilers for Paralle! Computers, Edinburgh, Scottland, 2001.

[14] Aart Bik, et al. “Efficient Exploitation of Parallelism on Pentium IIT and Pentium IV
Processor-Based Systems,” Intel Technology Journal, Q1 2001 Issue,
http://intel.com/technology/itj/q12001/articles/art_6.htm (current May 2003).

[15] Codeplay. VectorC {PC} Overview, http:/ /www.codeplay.com/vectorc/index_pc.html
(current May 2003).

[16] Andreas Krall, and Sylvain Lelait. “Compilation Techniques for Multimedia Processors,”
International Journal of Paralle! Programming, no. 4, vol. 28, 2000, pp. 347-61.

[17] Gerald Cheong, and Monica Lam. “An Optimizer for Multimedia Instruction Sets,”
Proceedings of the Second SUIE Compiler Workshop, Stanford, 1997.

[18] Michael Metcalf, and John Reid. Fortran 90 Explained. Oxford: Oxford University Press,
1990.

[19] Vipin Kumar, et al. Introduction to Parallel Computing: Design and Analysis of Algorithm,
Benjamin/Cummins, Redwood City, Calif., 1994.

[20] Paul Cockshott. Vector Pascal, an Array Language. Jan. 2002,
http://www.dcs.gla.ac.uk/~wpc/reports/compilers/compiletindex /vp-ver2.pdf (current
May 2003).

[21] Randall J. Fisher, and Henry G. Dietz. “Compiling for SIMD Within a Register,” Lecture
Notes in Computer Science, vol. 1656, Springer, Berlin, 1998, pp. 292-304.

[22] Randall]. Fisher, and Henry G. Dietz. “The Scc Compiler: SWARing at MMX and
3DNowl!,” Lecture Notes in Computer Science, vol. 1863, Springer, pp. 399.

[23] ISO/IEC WD'IR 18037. Extensions for the Programming Langnage C to Support Embedded
Processors, http:/ /std.dkuug.dk/JTC1/SC22/WG14/www/docs/n972.pdf (cutrent May
2003).

[24] Franz Franchetti, and Markus Pischel. “A SIMD Vectorizing Compiler for Digital Signal

Processing Algorithms,” Proceedings International Parallel and Distributed Processing Symposinm
(IPDPS), 2002.

[25] Franz Franchetti, and Markus Pischel. “Short Vector Code Generation and Adaptation
tor DSP Algorithms,” Proceedings International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), 2003.

[26] Intel Corporation. Intel C++ Compiler User’s Guide,
http:/ /www.intel.com/software/products/compilers/ techtopics/c_ug_lnx.pdf (current
May 2003).

[27] Jack Dongarra, et al. “A Set of Level 3 Basic Linear Algebra Subprograms,” ACM
Transactions on Mathematical Software, no. 16, vol. 1, 1990, pp.1-17.

153

[28] Intel Corporation. Intel Integrated Performance Primitives for Intel Pentinm Processors and Intel
Itaninm Architectures, http:/ /www.intel.com/softwate /products/ipp/ipp30/ (current May
2003).

[29] David Shwattz, et al. I’SIPL 1.07 API http:/ /www.vsipl.otg/CD /vsiplv1p01_finall.pdf
(current May 2003).

[30] Guy Blelloch, et al. CV'L: A C Vector Library: Manunal: V ersion 2.1,
http:/ /www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/code /nesl/doc/cvl.ps
(current May 2003).

[31] Matteo Frigo, and Steven G. Johnson. “FFTW: An Adaptive Software Architecture for
the FF1,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
vol. 3, 1998, pp. 1381-4.

[32] Matteo Frigo, and Steven G. Johnson. FFTW: for 1V ersion 3.0-betaZ,
http:/ /www.fftw.org/ fftw3.pdf (current May 2003).

[33] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. “Automated Empitical
Optimization of Software and the ATLAS Project,” Paralle!/ Computing, no. 27, vols. 1-2,
2000, pp. 3-35.

[34] Daniel Zucker, and Ruby Lee. “Achieving Subword Parallelism by Software Reuse of the
Floating-Point Data Path,” SPIE Proceedings 3021: Multimedia Hardware Architectures, San
Jose, Calif., 1997, pp. 51-64.

[35] Philips Semiconductors. TriMedia TM1300 Data Book. In Philips TriMedia Documentation
Set: SDE Version 2.1, CD-ROM, Oct. 1999.

[36] Motorola, Inc. AV ec Technology: Programming Interface Mannal. Rev. 0, Jun. 1999,
http://e-www.mototrola.com/brdata/PDFDB/docs/ ALTIVECPIM.pdf (current May
2003).

[37] Intel Corporation. LA-32 Intel Architecture Software Developer’s Mannal. NV ol. 2, Instruction Set
Reference, 2003, ftp:/ /download.intel.com/design/Pentium4/manuals/24547111.pdf
(current May 2003).

[38] AMD. AMD Extensions to the 3DNow! and MMX Instruction Sets Manual, Mar. 2000,
http://www.amd.com/us-en/assets/content_type/
white_papers_and_tech_docs/22466.pdf (cutrent May 2003).

[39] Sun Microsystems. VIS Instruction Set User’s Manual, May 2001,
http://www.sun.com/processots/vis/download/vsdk/visuserg.pdf (current May 2003).

[40] Chris Basoglu, Woobin Lee, and John O’Donnell. “The Equator MAP-CA DSP: An End-
To-End Broadband Signal Processor VLIW,” IEEE Transactions on Circuits and S)ysterms for
Viideo Technology, no. 12, vol. 8, 2000.

[41] IEEE Standard 1180-1990. IEEE Standard Specifications for the Implementations of
8X8 Inverse Discrete Cosine Transform.

154

[42] MPEG Software Simulation Group (MSSG). MPEG-2 Encoder | Decoder, 1 ersion 1.2,
http:/ /www.mpeg.otg/MSSG/ (curtent May 2003).

[43] Intel Corporation. Using Streaming SIMD Extensions 2 (SSE2) to Implement an Inverse Discrete
Cosine Transform, Version 2.0, Application Note AP-945, July 2000,
http://cedat.intel.com/media/pdf/appnotes/sse2/w_idct.pdf. Soutce code:
http://cedat.intel.com/media/pdf/appnotes/sse2/w_idct.zip (current May 2003).

[44] Intel Corporation. A Fast Precise 8x8 DCT A Fast Precise Implementation of 8x8 Discrete Cosine
Transform Using the Streaming SIMD Extensions and MNMX Instructions, 1 ersion 1.0, Application
Note AP-922, Apt. 1999, http://cedar.intel.com/media/pdf/appnotes/ap922/ap922.pdf
(current May 2003).

[45] Motorola, Inc. 2D Inverse Discrete Cosine Transform, http:/ /e-www.mototola.com/
collateral/AVEC_2DICOSTRANS.zip (cuttrent May 2003).

[46] Philips Semiconductors. Case Studzes. Book 2, Part D, Chapter 12 of Philips TriMedzia
Documentation Set: SDE 1Version 2.1, 1999, CD-ROM.

[47] Intel Corporation. Using Streaming SIMD Extensions in a Motion Estimation Algorithm for
MPEG Encoding, Version 1.2, Application Note AP-818, Jan. 1999,
http://cedat.intel.com/media/pdf/appnotes/ap818/motion_e.pdf. Source code:
http://cedat.intel.com/media/pdf/appnotes/ap818/samples.zip (current May 2003).

[48] Intel Corporation. Block-Matching in Motion Estimation Algorithms Using Streaming SIMD
Extensions 2 (SSE2): Version 2.0, Application Note AP-940, July 2000,
http://cedat.intel.com/media/pdf/appnotes/sse2/w_me_alg.pdf. Source code:
http://cedatr.intel.com/media/pdf/appnotes/sse2/w_motion_est.zip (cutrent May 2003).

[49] Motorola, Inc. Sum of Absolute Differences, http:/ /e-www.motorola.com/
collateral /AVEC_SAD.zip (cutrent May 2003).

[50] Apple Computer Corp. Project Builder Programming Exanmples,
http://developet.apple.com/hardware/ve/downloads/altivecPBExample.sit.hqx (cutrent
May 2003).

[51] Wen-Hstung Chen, Harrison Smith and S.C.Fralick. “A Fast Computational Algorithm for
the Discrete Cosine Transform,” IEEE Transactions on Communications, no. 9, vol. 25, 1977,
pp- 1004-9.

[52] Christoph Loeffler, Adriaan Ligtenberg and George S. Moschytz. “Practical Fast 1-D
DCT Algorithms with 11 Multiplications,” International Conference on Acoustics, Speech, and
Signal Processing, Glasgow, Scotland, 1989, pp. 988-91.

155

