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Abstract: Today we are collecting a massive amount of data in forms of images and 
videos, that we want to learn from the data themselves to extract useful information and 
to make predictions. The data are high-dimensional, but often possess certain low-
dimensional structures (e.g., sparsity). However, learning these low-complexity models 
often results in highly nonconvex optimization problems, where in the past our 
understandings of solving them were very limited. In the worst case, optimizing a 
nonconvex problem is NP-hard. 
  
In this talk, we present global nonconvex optimization theory and guaranteed algorithms 
for efficient learning of low-complexity models from high-dimensional data. For several 
important problems in imaging science (i.e., sparse blind deconvolution) and 
representation learning (i.e., convolutional/overcomplete dictionary learning), we show 
that the underlying symmetry and low-complexity structures avoid the worst-case 
scenarios, leading to benign global geometric properties of the nonconvex optimization 
landscapes. In particular, for sparse blind deconvolution that aims to jointly learn the 
underlying physical model and sparse signals from convolutions, the geometric intuitions 
lead to efficient nonconvex algorithms, with linear convergence to target solutions. 
Moreover, we extended our geometric analysis to convolutional dictionary learning based 
on its similarity with overcomplete dictionary learning, providing the first global 
algorithmic guarantees for both problems. Finally, we demonstrate our methods on 
several important applications in scientific discovery and draw connections to learning 
deep neural networks. 
 
This talk is mainly based on one paper appeared in NeurIPS’19 (spotlight), and two papers 
accepted by ICLR’20 (one oral). 
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