A Multidimensional Undergraduate Experience

EXCELLENCE IN ACADEMICS, EXPERIENTIAL LEARNING, AND RESEARCH
Thank you for your interest in the College of Engineering at Northeastern University. We recognize that this is an exciting and important time for you and your family as you choose the college or university that is best for you. This brochure is designed to provide you with some insights about opportunities in engineering at Northeastern.

We live in a complex world, increasingly connected and with technical, political, and social challenges. No solution relies solely on an engineering perspective, but every solution benefits from the influence of engineering. More than ever, engineering is needed to advance society in harmony with other disciplinary perspectives.

Northeastern’s College of Engineering is an ideal environment to bridge engineering with society. For more than a century, interdisciplinary collaboration and engagement with the real world have been our guiding principles. The College is embedded in a university environment of nimble ambition, where you can work alongside faculty eagerly addressing global challenges that are problem-centered, not disciplinary-centered.

Our faculty are continually looking toward the future and creating new areas of study, such as our latest additions: PlusOne Curriculum (BS and MS) for all engineering majors; a variety of combined majors like Computer Engineering and Computer Science, and Bioengineering and Biochemistry; and several minors such as our newest in Aerospace Engineering. In research, our faculty look at critical issues in materials, processes, systems and infrastructure at every scale—nano to macro to global—grounded in a translational approach that integrates the values of fundamental and applied research to meet societal needs.

Our students develop as innovators and leaders through Northeastern’s distinctive model of experiential learning, anchored by our world-leading cooperative education program and extending to include service learning, entrepreneurship, national competitions, and global experiences. The combination of outstanding classroom study with industry experience, research, and personalized learning ensures that we are preparing the next generation of engineers to keep pace with fast-changing and exciting global demands.

We are very proud of our engineering alumni and their accomplishments, whether they are leading Fortune-500 companies, blazing new trails in start-up initiatives, or leading cutting-edge research programs in national laboratories. Today, our college has over 45,000 alumni in more than 100 countries. We hope you will consider joining this large community of accomplished engineers.

I invite you to learn more about our transformative engineering programs and the many opportunities that the college provides; and I wish you all the best as you seek the institution that is best for you.

Gregory D. Abowd
Dean, College of Engineering

Welcome

Table of Contents

Bioengineering 3
Chemical Engineering 4
Civil and Environmental Engineering 5
Electrical and Computer Engineering 6
Mechanical and Industrial Engineering 7
First-Year Program 8
Majors and Minors 9
Experiential Learning 10
Student Organizations 11
Global and Research Opportunities 11

Photos by: Brooks Canaday, Matthew Modoono, Alexandra Berleus, Adam Glanzman unless noted

Saad Mobarak, who studies mechanical engineering, works on a 3D printing project in The Michael J. and Ann Sherman Center for Engineering Entrepreneurship Education Lab.

Yajing Wang, a first-year computer engineering student, works on the Adaptive Guitar project in the Enabling Engineering Lab.

Students test their structures on an earthquake-simulating shake table during the annual gingerbread house competition.
Bioengineering

The Department of Bioengineering offers students a broad education built on fundamentals in science, mathematics, and engineering, with a focus on the biological applications of engineering. The program is designed to provide a rigorous engineering training along with a comprehensive understanding of the biological constraints intrinsic to designing artificial systems to interface with, augment, replace, repair, or monitor living systems. These constraints depend on the properties of the biological system involved and the functionality that is being created.

The living system may be the human body; an ecosystem; or, more broadly, a bioreactor, tissue culture system, or any system with living components. The presence of naturally occurring biological tissue places special constraints on the design and implementation of artificial constructs and their interface to living systems. Bioengineers are engineers with comprehensive understanding of the engineering requirements intrinsic to working within a biological context.

Bioengineering is a relatively new field driven by the recognition that engineering of biological systems or systems that interface with living systems requires a multidisciplinary approach that takes into account the mechanical, electrical, chemical, and materials properties of the biological system. With that in mind, the bioengineering program has been designed to provide a rigorous engineering education that endows a broad understanding of the quantitative analysis of biological systems and a deep expertise in one of four areas of bioengineering.

Students joining the Bioengineering department will have unique opportunities in the classroom, research labs, and experiential learning. The projects that they may be able to contribute to include bio-bandages that monitor bacterial growth or that help damaged ligaments heal faster; sheets of cells folded like origami to form a working kidney; and new materials that—like a leaf in the sun—automatically sense and adapt to changes in the environment. This is truly an exciting time!
Faculty: Dr. Debra Auguste is collaborating with Boston Children's Hospital to develop new treatments to target and treat patients with triple-negative breast cancer. Her research is focused on designing a new way to simultaneously deliver a cancer-killing drug and interfere with the cancer’s ability to grow and spread.

Students: Chemical Engineering students come together with faculty for social events sponsored by NU’s chapter of the American Institute of Chemical Engineers. This student group participates in the Chem-E-Car competitions winning national and regional awards in the last 5 years; but more importantly forming community and having fun!

Alumni: Lauren Gianino enhanced her studies with 18 months of co-op, a Research Experience in Bioengineering at UC Berkeley, and a Dialogue of Civilization in Europe to study history and art. She also found time to tutor, be on the executive board of the engineering honor society, and participate in NU’s Dance Company. Her academic, co-op, research, and leadership accomplishments earned her multiple job offers prior to graduation and early admission to Harvard’s MBA program.

Sean Burns was selected for a Steamboat Foundation Summer Scholars Program which supports students who show potential for becoming leaders in their field. A co-op with Millennium Pharmaceuticals prepared Burns for the program where he worked in an oncology lab at the Dana-Farber Cancer Institute. He also volunteered at Brigham & Women’s Hospital and tutored high-school students in an urban youth program. After completing medical school, Sean will do his residency in emergency medicine.

Jordan Harris did research in the Advanced Drug Delivery Lab under Professor Rebecca Carrier. His three co-ops helped him realize a tremendous interest in medical research and immunology. As a result, he’s now at the University of Pennsylvania earning a dual MD/PhD degree, hoping to run his own lab where he can do research and practice medicine simultaneously as a physician-scientist.
The coming decades will represent a crucial time in human history as climate change, urbanization, and technological progress profoundly reshape the ways in which we live and work. From the opportunities of renewable energy and artificial intelligence to the threats of rising sea levels and overcrowded urban spaces, civil and environmental engineers work at the forefront of an ever-evolving and complex world.

Northeastern civil and environmental engineering students prepare for lifelong engagement with the world through a flexible curriculum and exciting co-ops across the U.S. and around the world. Our program offers leadership opportunities through award-winning student groups like our chapter of the American Society of Civil Engineers, which leads community service projects throughout the region, and Engineers Without Borders (EWB), which builds schools, water systems, and other projects for communities in Africa and Central and South America.

One favorite way for students to enhance their classroom experience is through Dialogue of Civilizations, six-week immersive faculty-led summer programs which pair cultural experience with technical learning. Recent Dialogues include trips to the Netherlands to learn about sustainable transportation, to India (pictured above) to learn about climate change, and to Italy to learn about resource recovery or structural engineering of historic buildings.

For students interested in research, our outstanding faculty (e.g., environmental engineering Professors Loretta Fernandez and Amy Mueller, pictured left to right above) have a variety of projects to engage with in the lab or in the field, such as developing passive sensing techniques for aquatic contaminants, and designing 3D-printed nutrient sensor networks for marine environments.

Students are mentored by faculty to reach their highest potential. We are very proud of our recent Civil Engineering grad, Logan Jackson, who received a Rhodes Scholarship upon completing her degree and subsequently received two master’s degrees from Oxford University.
The University’s leadership in both co-op and research provides unique opportunities for students to extend what they learn in the laboratory to the workplace and vice versa.

For example, Elizabeth Wig (pictured above), is a senior, majoring in Electrical Engineering with a minor in Mathematics. She credits her undergraduate research and co-op experiences for the skills that will be extremely valuable when she enters graduate school.

Elizabeth is fascinated by electromagnetics, a field with a wide range of applications. At NASA’s Armstrong Flight Research Center, she helped test and demonstrate the viability of a radar system for an autonomous vehicle. At ALERT, a security-focused research center based at Northeastern, she helped refine a model for detecting explosive materials in airport scanners. And while on co-op in the R&D labs at Draper, she worked on creating a proof-of-concept for a technology used in self-driving cars.

These research experiences have allowed Elizabeth to apply her knowledge of electromagnetics to problems as diverse as threat detection, LIDAR optimization, cellular phone technology, the Mars Rover, and radar for drones. Elizabeth earned the 2018 Goldwater Scholarship in recognition of her outstanding achievements and potential as a researcher. She has also been the recipient of a SWE scholarship and has been the President of the NU student chapter of IEEE. She plans to earn a Ph.D. in electrical engineering and conduct research in either an academic or industrial setting.

In addition to co-op, Northeastern engineering students get valuable hands-on experience through a required capstone design experience in their senior year. The capstone experience requires students to utilize knowledge and experience they have acquired in the classroom, in the lab, and on co-op to address a unique design challenge and implement a solution—into a working prototype if plausible. See this website for some of the exciting projects: ece.northeastern.edu/academics/undergraduate-studies/ece-capstone/
Mechanical and Industrial engineering students have many exciting opportunities both inside and outside of the classroom. It is truly rewarding when both come together. Carly Parlato’s time at Northeastern has taken her to the NASA Jet Propulsion Laboratory in California and Taiwan during a Google co-op. Her ambition is to travel much, much farther. “I’d love to go to Mars,” said Parlato, who gave the student Commencement address in May and received her degree in mechanical engineering.

Parlato, who is from Hillsborough, NJ, has already done plenty of cool things. On co-op at NASA, she worked on the Mars 2020 rover. She also had the opportunity one day to “play in the MarsYard”—NASA’s simulated Martian landscape used to test different robotic prototypes. There, she encountered a replica of the Mars rover Curiosity, and the actual BB-8 droid from the Star Wars movies.

She was also a member of the student team that participated in the Hyperloop Pod Competition, which challenges college students to design and build the best prototype as part of SpaceX founder Elon Musk’s vision to make his Hyperloop concept a reality.

Following graduation, Parlato began a job at SpaceX as an associate engineer, where she will work on the environmental control and life support systems of the Dragon spacecraft. Her job will involve ensuring the temperature and pressure in the spacecraft’s capsule is such that it can support life.

Parlato said her vision goes beyond working on exciting projects that take others into space. She said she’s “hell-bent” on getting up there too one day. In her Commencement address, she encouraged her peers to “embrace change” and reminded them of what a unique experience they’ve had at Northeastern. "We’ve been given an edge on life," she said, referring to the extensive real-world work experience gained through co-op.

By Greg St. Martin
News@Northeastern
Common First-Year Curriculum

Engineering students do not need to commit to an engineering major until the end of their freshman year. They typically take a common first-year curriculum as shown below and complete 34 credits (17 per semester).

Math
- Calculus 1 (4 credits)
- Calculus 2 (4 credits)

Engineering
- Introduction to the Study of Engineering (1 credit)
- Cornerstone of Engineering 1 (4 credits)
- Cornerstone of Engineering 2 (4 credits)

Science
- Chemistry (4 credits)
- Physics 1 + Lab (5 credits)

Humanities
- College Writing (4 credits)
- Elective (4 credits)

Advanced Placement and Transfer Credit
Credit for courses may be awarded for AP exam scores of 4 or greater and transfer courses appearing on an official college transcript with a grade of C or better. Also course credit may be awarded for scores of at least 5 on an IB higher-level exam. An academic adviser will work with students during summer orientation to determine the specific courses in the engineering curriculum for which credit can be awarded, to discuss the value of that credit in a specific program of study, and to make any necessary course schedule adjustments for the first semester.

SUPPORT FOR ENGINEERING STUDENTS

Undergraduate Academic Advising
Academic advisors are available for support, advice, and referral services for all student issues and concerns. Engineering students are urged to talk to an advisor about any concern or issue before academic success is impeded. On the Boston campus, the College of Engineering Academic Advising Office is located in the Snell Engineering Center, Room 147 office suites.

GE1000: Introduction to the Study of Engineering
This 1 credit course, required for all new engineering students, focuses on decision-making and tools for success in studying engineering. Designed to facilitate the transition to the College of Engineering, this course is taught by academic advisors and often with assistance from upper-class engineering students. A student’s GE1000 instructor typically serves as the student’s advisor for their 1st year.

Engineering Faculty
The Cornerstone of Engineering courses are taught by professors who specialize in teaching first year engineering courses to help new students meet the challenges of the transition to the College of Engineering.

University Honors Program
Honors sections of courses taken by first-year engineering students are available for those accepted into the Honors Program. For more information about the Honors program, see: undergraduate.northeastern.edu/honors/.

Freshman Engineering Residence Hall
First-year engineering students in Boston may be able to elect to reside with other first year engineering students in the Engineering/Connections Living Learning Communities (dedicated floors in a freshman residence hall). Incoming students indicate this preference when registering for housing.

Course Scheduling
First-year courses, whenever possible, are scheduled to facilitate the formation of study groups and new friendships.

Tutoring for Engineering Students
Upper-class students are available to provide free drop-in tutoring for first-year engineering students in calculus, physics, chemistry, and engineering courses. In Boston, tutoring services are also provided by the Physics department, Math department, Chemistry Central, the Writing Workshop, student groups, and honor societies.

Women in Engineering
Special programs (e.g., mentoring and tutoring) designed to support women students in engineering are coordinated by the Director of the Women in Engineering Program, Rachelle Reisberg (r.reisberg@northeastern.edu).

Multicultural Engineering Program
Special programs (e.g., mentoring and tutoring) designed to support under-represented students in engineering are coordinated by the Director of the Multicultural Engineering Program, Richard Harris (r.harris@northeastern.edu).
Majors and Minors

Engineering students follow a common curriculum during their first year and do not need to commit to a major until the end of their freshman year. Introductions to the various majors are accomplished within the freshman engineering courses, as well as in conversations with individual engineering faculty.

The College of Engineering offers the following undergraduate majors and combined majors:

- Bioengineering
- Chemical Engineering
- Civil Engineering
- Computer Engineering
- Electrical Engineering
- Environmental Engineering
- Industrial Engineering
- Mechanical Engineering
- Bioengineering & Biochemistry
- Chemical Engineering & Biochemistry
- Chemical Engineering & Bioengineering
- Chemical Engineering & Computer Science
- Chemical Engineering & Environmental Engineering
- Chemical Engineering & Physics
- Civil Engineering & Architectural Studies
- Civil Engineering & Computer Science
- Computer Engineering & Computer Science
- Computer Engineering & Physics
- Electrical & Computer Engineering
- Electrical Engineering & Music Technology
- Electrical Engineering & Physics
- Environmental Engineering & Health Science
- Environmental Engineering & Landscape Architecture
- Mechanical Engineering & Design
- Mechanical Engineering & History
- Mechanical Engineering & Physics

Additional information about each major can be found on the COE website at: coe.northeastern.edu

MINORS

In many cases, a student can earn a minor without course overloading. There are over 70 minors across 7 colleges. Some of the popular minor choices for engineering students include:

- Aerospace Engineering
- Architectural Engineering
- Biochemical Engineering
- Biology
- Biomedical Engineering
- Business Administration
- Chemistry
- Civil Engineering
- Entrepreneurship
- Environmental Science
- Computer Engineering
- Computer Science
- Data Analytics
- Electrical Engineering
- Entrepreneurial Engineering
- Industrial Engineering
- Mechanical Engineering
- Materials Science & Engr
- Mathematics
- Music
- Physics
- Psychology
- Robotics
- Sustainable Energy Systems

Dr. Sandra Shefelbine, Professor, jointly appointed in the departments of Mechanical Engineering and Bioengineering, researches mechanics of the skeletal system.
Experiential Learning

Co-op has been the centerpiece of a Northeastern College of Engineering education since 1909.

After their freshman year, students typically alternate periods of classes with relevant, paid employment. Students graduate with 12 to 18 months of relevant work experience and a strong set of technical and professional skills, as well as a clear understanding of the career they have chosen.

There are over 1100 undergraduate co-op employers in 38 states and 37 countries. Students can work in Boston (and live on campus), set up a co-op in their hometown, or work elsewhere in the US or around the world. More than twenty engineering co-op coordinators work closely with our students.

Students do not typically take classes or pay tuition while on co-op. The median hourly co-op salary ranges from $17 (first co-op) to $29 (last co-op). Nearly 60% of our students receive a job offer from their co-op employer. 93% of our graduates are employed full time or enrolled in graduate school within 9 months of graduation.

There are several co-op schedule choices for completing a Bachelor of Science (BS) degree as well as an option to complete a PlusOne Accelerated Master’s degree.

The options include:

- 4-year BS program with 2 six month co-ops (Figure 1)
- 5-year BS program with 3 six month co-ops (Figure 2)
- PlusOne Accelerated Master’s degree (4-year BS plus additional 2 semesters of classes as a graduate student)

More info at: coe.northeastern.edu/undergradcoop

The Co-op program helps students:

- Connect and apply classroom theory
- Grow personally and professionally
- Find careers that suit their interests and abilities
- Build an impressive resume
- Meet potential employers
- Develop valuable job search and interviewing skills
- Gain self-confidence
- Prepare to be lifelong learners

Shuntaro Okuzawa (pictured), a recent Industrial Engineering graduate, took his last co-op with IBM in the Philippines. After graduating, Okuzawa accepted a job with Amazon’s supply-chain team, and has rotated through assignments in Japan and now India.
Student Organizations

Students have an opportunity to develop their leadership skills through participation in any of our student professional societies. These include:

- AerospaceNU
- American Institute of Chemical Engineers
- American Society of Civil Engineers
- American Society of Mechanical Engineers
- BioMedical Engineering Society
- Black Engineering Student Society
- Enabling Engineers
- Engineers Without Borders
- FIRST Robotics - NUTRONS
- Generate
- Institute of Electrical & Electronics Engineers
- Institute of Industrial & Systems Engineers
- International Society for Pharmaceutical Engineers
- NU Baja SAE All-Terrain Vehicle
- Northeastern Electric Racing
- NU Institute of Transportation Engineers
- NU Embark
- NU Robotics
- NUSound
- oSTEM
- Paradigm Hyperloop
- SEDS
- Society of Asian Scientists & Engineers
- Society of Automotive Engineers
- Society of Hispanic Professional Engineers
- Society of Women Engineers
- Solar Boat
- STEMout
- Wireless Club

Global Opportunities

The College of Engineering supports the opportunity to have students go global by participating in one of many programs at Northeastern. These include Study Abroad programs, such as semester study abroad and Dialogue of Civilizations. Global Co-ops provide additional opportunities for students. Locations have included: Switzerland, Singapore, Germany, Tanzania, Costa Rica, Italy, Netherlands, Chile, Ireland, Turkey, Madagascar, and China. Additionally, the engineering student organization, Engineers Without Borders (EWB), applied their engineering skills, traveling to Honduras where they designed and constructed a system which will supply clean drinking water to the town of Los Planes.

Research

Northeastern’s College of Engineering is engaged in a wide array of exciting and highly innovative research areas. These include 18 state-of-the-art multidisciplinary Research Centers and institutes with funding by eight federal agencies. When combined with numerous other research efforts at Northeastern, engineering research-related awards exceed $80 million annually. See: coe.northeastern.edu/coe-research/. This creates a vibrant research community of faculty, graduate and undergraduate students, and collaborative partners at other universities, hospitals, and industry.

First-year students may become involved in research programs as UPLIFT Scholars. These select groups of students attend faculty research presentations during their first year and then are matched up with faculty to begin research projects. Additionally, first-year students with a GPA above 3.0 are encouraged to apply for summer REUs (Research Experience for Undergraduates) which enable them to conduct original research during a 10 week on-campus paid internship. As an upper class student, there are additional opportunities to perform independent research work both in a university setting and/or with industry partners during their six month co-op period.

These undergraduate research opportunities provide a unique window into graduate research for students wishing to continue their education in graduate school at Northeastern or other excellent graduate programs from MIT to Stanford.

Kristina Bennett, a chemical engineering student, became involved in research during her first year. She participated in two Research Experiences for Undergraduates (REUs) funded by the National Science Foundation: one during the summer after her first year at Princeton, and, one after her third year at the University of Connecticut.

Engineers Without Borders on-site in Honduras

Dialogue of Civilization to study renewable energy in Brazil
CONTACT INFO:

Rachelle Reisberg
Assistant Dean, Engineering Enrollment
Management & Retention
Director, WIE
230 Snell Engineering Center
Northeastern University
360 Huntington Avenue
Boston, MA 02115
Phone: 617.373.3402
Email: r.reisberg@northeastern.edu

Richard R. Harris
Associate Dean for Diversity,
Equity, and Inclusion
Director, NUPRIME
230 Snell Engineering Center
Northeastern University
360 Huntington Avenue
Boston, MA 02115
Phone: 617.373.5904
Email: ri.harris@northeastern.edu

For more information, please see: coe.northeastern.edu