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Abstract— 
Data fusion is the process by which measurements 

collected by two or more sensors are combined to produce 
a better result than could have been produced by any of 
the sensors acting individually. X-ray transmission and 
Microwave Tomography (MWT) are good candidates for 
data fusion because of their complementary strengths. For 
example, X-Ray is known for high spatial resolution 
structural imaging and MWT provides higher contrast in 
the physical properties for certain applications. In this 
work, a simple image reconstruction algorithm is 
presented which utilizes data fusion between X-Ray and 
MWT measurements. One possible application in 
neuroimaging is then simulated in a numerical experiment. 
The final results show that data fusion has significant 
advantages over conventional approaches. 

I.   INTRODUCTION 
Imaging and reconstruction from indirect measurements is an 
important issue in science and engineering research with 
applications in non-destructive testing of materials, airport 
security, and medical imaging among others. Great 
technological strides have been made for individual imaging 
modalities; however, improvements are still possible through 
data fusion. The goal of the fused approach is to reconstruct an 
object using data gathered through two or more different 
physical processes. Data fusion is considered successful if the 
fused image provides more information than the images 
generated by the contributing modalities acting individually. 
Moving forward, there would be no requirement that novel 
imaging modalities are superior to existing methods; through 
data fusion, any new information can contribute to an 
improved image. Small changes in the quality of an image can 
often contain dramatically important new information.  
 
In this work, data fusion using X-ray Computed Tomography 
(CT) and Microwave Tomography (MWT) measurements for 
image reconstruction will be considered. X-ray is one of the 
earliest forms of imaging and remains to this day as the so-
called “gold-standard”, especially when it comes to interfaces 
between two different types of tissue. The absorption of X-
rays as they pass through biological tissue can be accurately 
modeled as a linear process, which makes image processing 
simple. CT involves the rotation of sensors around the object 
under test and the collection of X-ray projections at each of 
the angles, known as a view, to form a complete dataset 
known as a sinogram. The structure of the image is related to 

the sinogram through a mathematical process known as the 
Radon transform. It can therefore be extracted using the 
associated inverse process which is known as filtered back-
projection. However, X-ray imaging has certain drawbacks, 
including the relatively low radiological contrast between 
different types of tissues. Two completely different types of 
tissues which happen to have the same density can often be 
indistinguishable. In addition, CT scans deposit harmful 
radiation. Exposure to radiation can be reduced by decreasing 
the number of CT views or by reducing the intensity per view 
– both of which decrease the quality of the final image. A 
high-quality image may be possible using low-radiation X-ray 
measurements through data fusion with another modality. 
 
Microwave Tomography is an emerging medical imaging 
modality in which the tissue is probed by a microwave 
electromagnetic wave. The electromagnetic field which is 
scattered by the tissue is then measured and used to image the 
hidden structure. In certain applications, the contrast in the 
dielectric properties of different materials is higher than the 
radiological contrast of X-ray, and the radiation is generally 
considered benign because it is non-ionizing. However, MWT 
has poor spatial resolution; objects that are small relative to 
the wavelength of the interrogating electromagnetic wave are 
often difficult or impossible to resolve. Additionally, the 
inverse problem, which is to reconstruct the object given the 
measured scattered electromagnetic field, is known to be ill-
posed. To address this issue, there is a science and an art to the 
optimal arrangement of antennas and the constraint of possible 
solutions; however, imaging and reconstruction using MWT is 
usually very difficult. 
 
Data fusion between these two modalities aims to combine the 
high resolution of X-ray and the high contrast of MWT in a 
single reconstruction algorithm. In certain applications, fusion 
can lead to a higher tolerance to noise. In other cases, it can 
actually extract information which was previously unavailable 
to either of the sensors acting individually. For these reasons, 
there has recently been much attention paid to hybrid CT-
MWT imaging [1-2].  
 
In the opening sections of this work, the physical and 
mathematical justifications are derived for a maximum 
likelihood data fusion algorithm. The algorithm is then 
described in full for a general case such that it can be applied 
to many situations and configurations. In the final section, a 
specific example is explored in depth in a numerical 
experiment. The chosen application is Neuroimaging for 
detection of carcinoma.  
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II.   SENSOR DESCRIPTIONS 

A.   X-Ray Computed Tomography 
In order to simulate the measurements collected by a CT 
scanner, a computational model is designed based on an 
understanding of X-ray physics. A parallel beam 
configuration, as shown in Fig. 1 will be considered. 

 
Fig. 1.  Configuration for parallel beam X-ray CT. X-ray sources and 
detectors are shown in violet. View angle and ray position are annotated. 
 
As X-rays propagate, their energy is absorbed based on the 
characteristic properties of the object under test. This 
attenuation of intensity is described by 
 
 𝐼 𝜌, 𝜃 = 	
   𝐼'𝑒)*(,,-) (1) 

 
where 𝐼 𝜌, 𝜃  is the intensity of an X-ray after it passes 
through the object under test, 𝐼' is the initial intensity, and  
𝑔(𝜌, 𝜃) is the distribution of accumulated attenuation which is 
sometimes referred to as a sinogram, and is given by 
 
 𝑔 𝜌, 𝜃 = 	
   𝜇 𝑥, 𝑦 ∙ 𝑑𝑙

	
  

67,8
 (2) 

 
where 𝐿,,- is the linear path followed by the X-ray, and 𝜇 is 
the distribution of mass attenuation coefficients for the object 
under test. Equation (1) requires that 𝑔 be a unitless quantity, 
so 𝜇 is given in units of cm-1. This transformation from 𝑥, 𝑦  
space to 𝜌, 𝜃  is called the Radon transform. A discrete 
version of this integral transformation is easily found by 
replacing the integral with a summation, and estimating 
𝜇 𝑥, 𝑦  by interpolation from sampled distribution 

The measured quantity in X-ray imaging is the intensity, 𝐼. 
Measurement noise is often normally distributed and referred 
to as additive Gaussian white noise (AWGN). It is typically 
identically distributed with respect to intensity. However, the 
initial transmitted intensity 𝐼' can be adjusted so that pseudo-
measurements of 𝑔 have identically distributed AWGN, which 
is much more convenient for most imaging algorithms. The 
effective measurement array is therefore given by 
 
 𝑦:; = 𝑔 +	
  𝑧:; (3) 

 
where  𝑦:; contains the CT measurements, and 𝑧:; contains 
independent identically distributed zero-mean AWGN with 
known variance, 𝜎:;? . The arrays are equal in length and have 
one element for each X-ray detector. 

B.   Microwave Tomography 
In MWT, electromagnetic waves cannot be accurately 
modeled as rays passing through the object under test. Instead, 
one must consider an interdependent network of scattered and 
re-scattered electromagnetic fields. The amplitude and phase 
of the total field is measured by the receiving antennas. A 
typical configuration for MWT is shown in Fig. 2. 

 
Fig. 2.  Configuration for MWT. Transmitter shown in gold, receivers shown 
in blue. Amplitude and phase are annotated in the red break-out box. 
 
A 2D case with the magnetic field oriented in the transverse 
direction will be considered. In this configuration, the electric 
field integral equation can be written as 
 
 𝐸 𝑥, 𝑦 = 𝐸' 𝑥, 𝑦 + 𝐺 𝑥, 𝑦, 𝑥B, 𝑦B 𝐽 𝑥B, 𝑦B 𝑑𝑥′𝑑𝑦′

	
  

	
  
 (4) 

 
where 𝐸 is the total electric field, 𝐸' is the incident electric 
field which depends on the transmitting antennas, and 𝐺 is the 
Green’s function which describes the response for all positions 
to a small change in the current density 𝐽, which is defined as 
 
 𝐽 𝑥, 𝑦 = 𝜒 𝑥, 𝑦 𝐸(𝑥, 𝑦) (5) 

 
where 𝜒 is the dielectric contrast. The ultimate goal of MWT 
is to reconstruct 𝜒 by measuring 𝐸. Notice that equation (4) 
defines 𝐸 in terms of 𝐽 and equation (5) defines 𝐽 in terms of 
𝐸. This structure is characteristic of a non-linear inverse 
problem – that is, 𝐸 cannot be written as a linear 
transformation of 𝜒, and there is therefore no inverse linear 
system which would allow for the direct reconstruction of  𝜒 
from measurements in 𝐸 collected by receiving antennas. 
However, computational models such as Finite Difference 
Frequency Domain (FDFD) are able to find an accurate 
solution for 𝐸 given 𝜒 and 𝐸'. 
 
The receiving antennas which collect the electric field 
introduce AWGN. The measurement array can therefore be 
written as by 
 
 𝑦FG; = 𝐸 +	
  𝑧FG; (6) 

 
where 𝑦FG; contains the MWT measurements, and 𝑧FG; 
contains independent identically distributed zero-mean 
AWGN with known variance, 𝜎FG;? . The arrays are equal in 
length and have one element for each receiving antenna. 
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III.   ALGORITHM DESCRIPTION 

A.   Maximum Likelihood Detection in AWGN 
In general, measurements collected in the presence of AWGN 
can be described by the following formula: 
 
 𝑦 = 𝑥 +	
  𝑧 (7) 

 
where 𝑦 is an array which contains the measurements, 𝑥 is the 
signal of interest, and z contains independent identically 
distributed AWGN with known variance of σJ?. 
 
In Maximum Likelihood detection, there must be some finite 
number 𝑀 of possible signals. After the measurements are 
collected, the goal is to simply find the signal xMwhich is most 
likely to produce the measured data. The optimization problem 
can be formally written as 
 
 max

P
	
  𝑃 𝑥 = 𝑥P	
  |	
  𝑦 = 	
  max

P
	
  𝑃(𝑧 = 𝑦 − 𝑥P	
  ) (8) 

 
Here, notation is borrowed from probability theory. For 
example, 𝑃(𝐴|𝐵) is the probability that event 𝐴 will occur 
given that event 𝐵 has occurred, and max

M
	
   CM evaluates to the 

index 𝑚 for which CM of the finite set C is maximum. 
 
If y, x, and z each have K elements, then the joint event inside 
the probability operator in equation (8) can be rewritten in 
terms of a union between events for each individual sensor as 
follows:  
 
 

max
P

𝑃 𝑧Z = 𝑦Z − 𝑥P,Z

[

Z\]

 (9) 

 
Here, capital “U” notation is used to indicate a repeated union 
of events (event D] AND event D? AND … event D_). The 
noise for any given sensor is independent of the noise for any 
other sensor, so by the definition of independence, the 
optimization problem can be rewritten as 
 
 

max
P

𝑃 𝑧Z = 𝑦Z − 𝑥P,Z

[

Z\]

 (10) 

 
Here, capital pi notation is used to represent a repeated 
product. The random variable 𝑧Z has a Gaussian distribution 
with zero-mean and variance σJ?. Substituting the general form 
for a Gaussian distribution leads to  
 
 

max
P

𝐶'𝑒
) ]
?abc

de)fg,e
c[

Z\]

 

 

(11) 

 
max
P

𝐶'𝑒
]
?hic

[

𝑒) de)fg,e
c

[

Z\]

 (12) 

 

where 𝐶' is simply a normalizing constant so that the sum of 
the probabilities of all possibilities is equal to 1.  
 
The next few steps in the derivation require the utilization of 
special properties of the maximization operator. The relevant 
identities are listed below: 
 
 max

P
𝑥P = max

P
	
  𝛼𝑥P	
   (13) 

 
 max

P
𝑥P = max

P
	
  ln 𝑥P 

 
(14) 

 max
P

𝑥P = min
P

−𝑥P (15) 

 
The first identity shows that maximization of a quantity is 
equivalent to the maximization of a quantity times any 
constant 𝛼. The second shows that the maximization of a 
quantity is the same as the maximization of a logarithm of the 
same quantity, since the logarithm is a monotonically 
increasing function. Lastly, finding a maximum of a quantity 
is the same as finding the minimum of its opposite. 
 
Using the identity in (13), the constant outside the repeated 
product in (11) can be eliminated.  
 
 

max
P

𝑒) de)fg,e
c

[

Z\]

 (16) 

Taking the logarithm of the maximization operand as 
described in (14) and simplifying leads to 
 
 

max
P

	
   ln 𝑒) de)fg,e
c

[

Z\]

	
    

 

(17) 

 
max
P

	
   ln
[

Z\]

𝑒) de)fg,e
c

 

 

(18) 

 
max
P

− 𝑦Z − 𝑥P,Z
?

[

Z\]

 

 
Finally, using the identity in (15) gives 
 

(19) 

 
min
P

𝑦Z − 𝑥P,Z
?

[

Z\]

 

 
 

(20) 

This is the end of the derivation and the final form of the 
optimization problem. The solution is chosen as the signal 𝑥P 
which leads to the lowest sum of squared residuals with 
respect to the measurements. This process is commonly 
referred to as minimizing the least-squared cost function. 
 
 

𝒥P = 𝑦Z − 𝑥P,Z
?

[

Z\]

 (21) 
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B.   Data Fusion Algorithm 
Applying Maximum Likelihood detection to CT and MWT is 
straight-forward. A finite set of 𝑀 possible solutions is 
generated, each corresponding to certain distributions of mass 
attenuation coefficients  𝜇P(𝑥, 𝑦) and dielectric contrasts 
𝜒P(𝑥, 𝑦). Next, the signal 𝑔P(𝜌, 𝜃) is generated via the Radon 
transform, and the signal 𝐸P(𝑥, 𝑦) is generated via FDFD. 
These hypothesized signals are compared to the measurements 
𝑦:; and  𝑦FG;  using a pair of least-squared cost functions. 
 
 

𝒥:;,P = 𝑦:;,Z − 𝑔P,Z
?

[op

Z\]

 (22) 

 
 

𝒥FG;,P = 𝑦FG;,Z − 𝐸P,Z
?

[qrp

Z\]

 (23) 

 
In this framework, data fusion is simple – the fused cost 
function for the algorithm is defined as 
 
 𝒥P = 𝒥:;,P + 𝛽𝒥FG;,P (24) 

 
where 𝛽 is a heuristically chosen constant which weights the 
relative impacts of CT and MWT. The optimal solution is 
chosen as the one which results in the lowest fused cost. A 
flowchart representation of the full algorithm is shown below. 
 

 
 

Fig. 3. Flow chart for complete maximum likelihood data fusion algorithm  

IV.   APPLICATION: NEUROIMAGING 
In this numerical experiment, a neuroimaging configuration 
will be considered. A tumor with a known center but unknown 
radius and material 
 
A simplified two-dimensional lossless configuration is 
considered based on an axial scan where the region of interest 
is composed of homogeneous sub-regions made up of either 
bone, carcinoma, cerebral spinal fluid (CSF), white matter, 
gray matter, or air. A single view at 0 degrees is used for CT 
and a single operating frequency of 1GHz is used for MWT. 
 
A six-month check-up on a previously detected presence of 
brain carcinoma will be considered. For a certain fictitious 
clinical subject, a healthy baseline scan was collected 3 years 
ago, as well as a scan from six months ago which shows a 
circular brain carcinoma with a radius of 50mm. In the past six 
months, treatment has led to a decrease in the size of the tumor 
and it is now 25mm in radius. Measurements are simulated 
using the Radon transform and FDFD forward models and 
adding AWGN such that the signal to noise ratio is 30dB for 
each sensor. It is the task of the data fusion algorithm to 
reconstruct this tissue type and radius of a circular region 
which has the same center as the carcinoma in the six month 
old scan using the CT and MWT measurements. 
 

 
 

Fig. 4.Final results from previous scans. These are treated as prior knowledge. 
 
Each material has characteristic mass attenuation coefficients 
and dielectric constants. Data from [3] are used for mass 
attenuation coefficients and data from [4] and [5] are used to 
define dielectric properties. The material properties of each 
material are shown in the figure below. 
 

 
Fig. 5.  Relevant mass attenuation coefficients and dielectric constants 
 
The finite set of 𝑀 possible solutions is generated by inserting 
a circular region at a given center point into the healthy image 
from the three year old scan. Radii between 0 and 50 mm, 
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mass attenuation coefficients between 0.07 and 0.12 cm-1 , and 
dielectric constants between 50 and 80 are considered. This 
solution set corresponds to a 3 dimensional parameter space. 
The CT-based cost function will depend on the radius and the 
mass attenuation coefficient of the circular region, the MWT-
based cost function will depend on the radius and dielectric 
constant, and the fused cost function will depend on all three 
parameters. For each possible case, the signals 𝑔P and 𝐸P are 
computed using the Radon transform and FDFD, respectively. 
The resulting CT-based and MWT-based cost functions are 
shown in the contour plot below. 

 
Fig. 6.  CT-based and MWT-based cost function contour plots. The region 
inside the innermost blue contour corresponds to the most likely cases. 
 
The CT-based cost function is lowest for brain carcinoma and 
white matter, and the MWT-based cost function is lowest for 
brain carcinoma and CSF. It is already clear that brain 
carcinoma is the only overlap between possible solutions 
yielded by the two sensors. 
 
The fused cost function is then evaluated for all possible 
solutions.  The weighting parameter 𝛽 is chosen such that the 
each sensor type has the same impact on the solution – that is, 
the lowest occurrence in each cost function is normalized to 
the same value. The final results are shown in the figures 
below 
 

  
 
Fig. 7.  CT-based, MWT-based and Fused cost functions plotted vs. radius. 
 
Figure 7 shows that the CT-based and MWT-based cost 
functions are insufficient on their own. However, the fused 
cost function has a clear minimum for brain carcinoma with a 
radius of 25mm – the correct solution. 

 
Fig. 8.  Reconstructed image showing the carcinoma with a radius of 25mm 

V.   CONCLUSION 
Figure 6 shows that neither modality is able to completely 
isolate the correct solution acting individually. However, the 
two methods contain complimentary information which is 
exploited by the data fusion algorithm. In the end, the correct 
image is reconstructed as shown in Figures 7 and 8. The 
numerical experiment serves as an example of the advantages 
offered by data fusion. In this case, information was extracted 
through data fusion which would not have been available 
using either modality individually. 

VI.   PERSPECTIVE APPLICATION: AIRPORT SECURITY 
The same process may also have applications in airport 
security screening if microwave radar and x-ray CT 
measurements are both collected. Currently airport security 
CT scanners rely on image processing algorithms applied to 
the final imaging result to detect threats. If however, MWT 
sensors could be incorporated, threats could be detected 
automatically based on their material properties. 
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