Inheritance diagram for ns3::ParetoVariableImpl:Public Member Functions | |
| ParetoVariableImpl () | |
| ParetoVariableImpl (double m) | |
| Constructs a pareto random variable with specified mean and shape parameter of 1.5. More... | |
| ParetoVariableImpl (double m, double s) | |
| Constructs a pareto random variable with the specified mean value and shape parameter. Beware, s must be strictly greater than 1. More... | |
| ParetoVariableImpl (double m, double s, double b) | |
| Constructs a pareto random variable with the specified mean value, shape (alpha), and upper bound. Beware, s must be strictly greater than 1. More... | |
| ParetoVariableImpl (std::pair< double, double > params) | |
| Constructs a pareto random variable with the specified scale and shape parameters. More... | |
| ParetoVariableImpl (std::pair< double, double > params, double b) | |
| Constructs a pareto random variable with the specified scale, shape (alpha), and upper bound. More... | |
| ParetoVariableImpl (const ParetoVariableImpl &c) | |
| virtual RandomVariableBase * | Copy () const |
| virtual double | GetValue () |
Public Member Functions inherited from ns3::RandomVariableBase | |
| RandomVariableBase (const RandomVariableBase &o) | |
| virtual uint32_t | GetInteger () |
| RngStream * | GetStream (void) |
Private Attributes | |
| double | m_bound |
| double | m_scale |
| double | m_shape |
Definition at line 627 of file random-variable.cc.
| ns3::ParetoVariableImpl::ParetoVariableImpl | ( | ) |
Constructs a pareto random variable with a mean of 1 and a shape parameter of 1.5
Definition at line 703 of file random-variable.cc.
References NS_LOG_FUNCTION.
|
explicit |
Constructs a pareto random variable with specified mean and shape parameter of 1.5.
| m | Mean value of the distribution |
Definition at line 711 of file random-variable.cc.
References NS_LOG_FUNCTION.
| ns3::ParetoVariableImpl::ParetoVariableImpl | ( | double | m, |
| double | s | ||
| ) |
Constructs a pareto random variable with the specified mean value and shape parameter. Beware, s must be strictly greater than 1.
| m | Mean value of the distribution |
| s | Shape parameter for the distribution |
Definition at line 719 of file random-variable.cc.
References NS_LOG_FUNCTION.
| ns3::ParetoVariableImpl::ParetoVariableImpl | ( | double | m, |
| double | s, | ||
| double | b | ||
| ) |
Constructs a pareto random variable with the specified mean value, shape (alpha), and upper bound. Beware, s must be strictly greater than 1.
Since pareto distributions can theoretically return unbounded values, it is sometimes useful to specify a fixed upper limit. Note however when the upper limit is specified, the true mean of the distribution is slightly smaller than the mean value specified.
| m | Mean value |
| s | Shape parameter |
| b | Upper limit on returned values |
Definition at line 727 of file random-variable.cc.
References NS_LOG_FUNCTION.
| ns3::ParetoVariableImpl::ParetoVariableImpl | ( | std::pair< double, double > | params | ) |
Constructs a pareto random variable with the specified scale and shape parameters.
| params | the two parameters, respectively scale and shape, of the distribution |
Definition at line 735 of file random-variable.cc.
References NS_LOG_FUNCTION.
| ns3::ParetoVariableImpl::ParetoVariableImpl | ( | std::pair< double, double > | params, |
| double | b | ||
| ) |
Constructs a pareto random variable with the specified scale, shape (alpha), and upper bound.
Since pareto distributions can theoretically return unbounded values, it is sometimes useful to specify a fixed upper limit. Note however when the upper limit is specified, the true mean of the distribution is slightly smaller than the mean value specified.
| params | the two parameters, respectively scale and shape, of the distribution |
| b | Upper limit on returned values |
Definition at line 743 of file random-variable.cc.
References NS_LOG_FUNCTION.
|
virtual |
Implements ns3::RandomVariableBase.
Definition at line 760 of file random-variable.cc.
References NS_LOG_FUNCTION, and ns3::RngStream::RandU01().