Table of Experimental Studies on Axially Loaded Column Tests


General Information

Reference Experiment Synopsis Number of Tests Loading Method Results Reported Main Parameters Comments
Bridge 1976

Square pin-ended eccentrically loaded CFTs (experiment theory)


8 CFTs (ecc.)

  • Incr. loading to failure
  • Ends offset equally (single curvature)
  • Biaxial bending (inclination of axis: 0°, 30°, 45°)


  • P vs. δ (exp., calc.)
  • M-φ-P curves
  • Py, Pu, Po, Pu/Po, Py/Po


  • λ
  • e
  • Inclination of loading axis


Excellent paper -- very clear and detailed

Gardner 1968

Short and long columns w/ spiral welded tubes

  • 17 CFTs
  • 2 HTs


Concentric loading to failure

  • Manufacturing ε, εcircum
  • P vs. ε, P vs. εcircum
  • ACI & NBC Pa, Pu, Po, Pcr


  • Type of tubing
  • D/t
  • L


Through examination of residual stresses

Gardner and Jacobson 1967

Short and long CFT columns (experimental vs. theoretical)


32 CFTs


Concentric loading to failure

  • Po, Pu several allowable calcs incl. ACI, NBC, Klöppel('57), & author's own
  • K (author's "lateral restraint factor") vs. P/Pu


  • End conditions
  • D/t


Discussion by Furlong and Knowles followed (1968)

Kawano and Matsui 1988

Cyclic axial loading of CFT braces

  • 10 CFTs
  • 10 HTs


  • Cyclically applied axial load at both ends
  • Displacement controlled loading with either large or small amplitude


  • P vs. λ
  • P vs. δaxial
  • Energy absorption (CFT, HT)
  • H vs. Δ (K-braced frames with HT and CFT braces)


  • HT vs. CFT
  • λ
  • axial load amplitude



Kitada, Yoshida, and Nakai 1987

Short CFT columns subjected to axial compression


14 CFTs


3 cases: load steel only, concrete only, & both mat'ls simultaneously

  • σsl/fy vs. σsc/fy for steel tubes
  • P vs. εcircum, P vs. δaxial
  • Pu (exp. vs. calc.)




Knowles and Park 1969

Short and long columns w/ spiral welded tubes

  • 17 CFTs
  • 2 HTs


Concentric loading to failure

  • Manufacturing ε, εcircum
  • P vs. ε, P vs. εcircum
  • ACI & NBC Pa, Pu, Po, Pcr


  • End conditions
  • D/t


Discussion by Furlong and Knowles followed (1968)

Knowles and Park 1970

Design eqns. developed and compared w/ tests by author and others


111 CFTs (previous tests)


N.A.


Po, Pu, Pu/Po for all tests


Parameters vary with author


Test of the authors' proposed formulas

Matsui and Kawano 1988

Monotonic and cyclic loading of trusses with CFT and HT chords

  • 1 CFT and 1 HT (monotonic)
  • 1 CFT and 1 HT (cyclic)


  • Monotonic uniform moment applied at the ends
  • Constant axial load and cyclically applied lateral load applied at the top


  • M vs. θ
  • P vs. δaxial
  • H vs. Δ


HT vs. CFT



Neogi, Sen, and Chapman 1969

Elasto-plastic behavior of pinned eccentrically and concentrically loaded CFTs (exp. vs. theor.)


18 CFTs (ecc.) C:cold-drawn(8) M:mild, hot-finish(10)

  • Eccentricity varied by moving top end of column laterally (single curvature)
  • Short duration, constant loading


  • P vs. ε (exp, calc)
  • P vs. δ, M vs. δ (exp, calc)
  • Selected load ratios using: Pu, Py, 'exact' calc. load, calc. cos method (Neogi & others)


  • Type of tubing
  • D/t
  • L/D
  • e



Salani and Sims 1964

Seamless mortar-filled columns

  • 17 Mortar-filled Tubes
  • 9 HTs


  • Concentric
  • Slow loading in equal increments


  • P vs. ε
  • P vs. v, P vs. Ec
  • Comparison: Pu, Pcr
  • D
  • CFT vs. HT

Mortar-filled

Zhong and Miao 1988

Short CFT columns subjected to axial compression


11 CFTs


Concentrically-applied load

  • σ vs. ε
  • P vs. ε


  • L/D ratio
  • Steel ratio
  • End conditions


Mostly theoretical

Zhong-qiu, Boi-Hai, Lei, Wen-Jie

Axial behavior of CFT columns to measure bucking load

33 CFTs

Axial Compression

*N (kN) vs. ε

*λ *f (concrete) *ultimate load (N) 

Greater slenderness ratio will result in a lower bearing capacity and increasingly higher plastic deformation rate

Han, Zheng, He, Tao

Curved & Traditional CFT under axial compressive load

18 CFTs

Axial Compression

*N (kN) vs. ε 

*λ *u0 *Shape

None

Liu and Geol 1988

Cyclic load behavior of CFT bracing

  • 6 CFTs (brace)
  • 3 HTs (brace)


Rectangular, pinned frame loaded laterally w/ diagonal brace put in alternate compression & tension

  • P/Py vs. δaxial
  • P/Py vs. # of cycles (vary D/t)
  • 1st buckling load (exp, theor)
  • Load histories
  • Energy absor. (CFT, HT)


  • HT vs CFT
  • f'c
  • D/t
  • λ


  • Good failure descr.
  • Steel fibers used in 3 of the concr. mixes to vary f'c


Wei, Luo, Lai, Varma

Circular high strength CFST short columns under axial loading.

87 previous tests, 20 new tests, 107 total tests.

Axial Compression

Pexp

Diameter to thickness ratio, Fy, f'c

After comparing results from the old and new tests, it was found that the Japanese Code provided the most accurate estimation for cross-sectional strength.

Specimen Information

Reference Length (L)(in) L/D Eccentricity(in) Residual Stresses(ksi) Initial Out-Of-Straightness(in) End Conditions
Bridge 1976

83.9, 120.1


10.65, 15.25, 20.33


0, 1.50, 2.52


N.A


0.011-0.055

  • Pinned-pinned (rocker bearings)
  • Expansive mortar endcap (for equal load distribution)


Gardner 1968
  • CFT: 12.0, 72.0, 84.0
  • HT: 68.0
  • Leff = L + 6.0


1.8-12.8


N.A.


Incorporated into fy



N.A.

  • Pinned-pinned (long cols)
  • Pinned-fixed (short)


Gardner and Jacobson 1967

6, 8, 9.5, 12, 24, 41.34, 60, 66


2, 8, 8.7, 11, 15, 20


N.A.


N.A.


N.A.


  • Pinned-pinned (long cols.)
  • Pinned-fixed (short)


Kawano and Matsui 1988
  • L = 16.2-97.4
  • λ = 19.9-119.5


6.81-40.88


N.A.


N.A.


N.A.


Pinned-pinned

Kitada, Yoshida, and Nakai 1987

9.94

2.21


N.A.


N.A.


N.A.


  • Fixed-fixed
  • Loading through bearing plates


Knowles and Park 1969
  • CFT: 12.0, 72.0, 84.0
  • HT: 68.0
  • Leff = L + 6.0


1.8-12.8


N.A.


Incorporated into fy



N.A.

  • Pinned-pinned (long cols)
  • Pinned-fixed (short)


Knowles and Park 1970

Leff = 10.0-91.0


N.A.


N.A.


N.A.


N.A.


  • Pinned-pinned (knife edge)
  • Uniaxial bending
  • Ends capped such that both mat'ls were loaded


Matsui and Kawano 1988







Neogi, Sen, and Chapman 1969
  • C: 55.5, 67.5, 80.0;
  • M: 131.0


11.1-23.7

  • C: 0.25-0.88;
  • M: 1.25-1.88


N.A.


0.022-0.224



Salani and Sims 1964
  • Leff = 33.86-90.95
  • λ = 36.9-114.1

8.68-20.80

N.A.

N.A.

N.A.

Pinned-pinned

Zhong and Miao 1988

see L/D


2, 2.5, 3, 3.5, 4, 4.5, 5


N.A.


N.A.


N.A.


  • Pinned-pinned: (2 knife hinges; 1 knife, 1 plate hinge; 1 spherical, 1 pl hinge; or 2 pl. hinges)


Zhong-qiu, Boi-Hai, Lei, Wen-Jie

19.5-64.96

None

None


None

None


Han, Zheng, He, Tao

22.8-67.7

15.1

.3-1.2

None

None

Welded (square cross-section), Cold Formed (Circle)

Liu and Geol 1988

λ = 58-100


N.A.


N.A.


N.A.


N.A.


Welded gusset plates, weld and plate strength 33% > steel tube

Wei, Luo, Lai, Varma

7.9-53.15

1.2-31.7

N/A

N/A

N/A

Stiffened end plates welded to the bottom end of the short columns

Cross Section Information

Reference Tube Dimensions Steel Properties Concrete Properties
Bridge 1976
  • ◌: diam. (D) □: depth (D) x width: 5.91 × 5.91, 7.87 × 7.87 (square)
  • Wall Thickness (t) (in): 0.256, 0.394
  • Diameter/thickness (D/t): 20.0, 23.1


N.A.

Fy= 36.8-46.3 ksi


f'c= 4.38-5.48 ksi

Gardner 1968
  • ◌: diam. (D) □: depth (D) x width: 6.62-6.66 (circular)
  • Wall Thickness (t) (in): 0.104, 0.142, 0.197
  • Diameter/thickness (D/t): 34-64


Spiral welded

Fy= 28.6-48.3 ksi

No cylinder test done (avg. max stress = 5.925)

Gardner and Jacobson 1967
  • ◌: diam. (D) □: depth (D) x width: 3, 4, 4.75, 6 (circular)
  • Wall Thickness (t) (in): 0.067-0.194
  • Diameter/thickness (D/t): 30-48


Cold-drawn seamless finish- annealed

Fy= 52.7-91.9 ksi

f'c= 3.0-6.3 ksi

Kawano and Matsui 1988
  • ◌: diam. (D) □: depth (D) x width: 2.38 (circular)
  • Wall Thickness (t) (in): 0.091
  • Diameter/thickness (D/t): 26.3


Cold-formed, mild steel

Fy= 48.5 ksi

f'c= 4.75, 4.98, 5.08 ksi

Kitada, Yoshida, and Nakai 1987
  • ◌: diam. (D) □: depth (D) x width: 4.5 (circular)
  • Wall Thickness (t) (in): 0.118, 0.177, 0.197
  • Diameter/thickness (D/t): 22.9, 25.4, 38.1


Welded seam & seamless

Fy= 40.5-52.6 ksi

f'c= 2.50, 4.96 ksi

Knowles and Park 1969
  • ◌: diam. (D) □: depth (D) x width: 6.62-6.66 (circular)
  • Wall Thickness (t) (in): 0.104, 0.142, 0.197
  • Diameter/thickness (D/t): 34-64


Spiral welded

Fy= 28.6-48.3 ksi

f'c= 2.6-5.3 ksi

Knowles and Park 1970
  • ◌: diam. (D) □: depth (D) x width: 1.0-14.0 (circular) 4 × 4, 5 × 5 (square)
  • Wall Thickness (t) (in): 0.035-0.502
  • Diameter/thickness (D/t): N.A.


N. A.

Fy= 36.9-87.8 ksi

f'c= 2.94-9.60 ksi

Matsui and Kawano 1988




Neogi, Sen, and Chapman 1969
  • ◌: diam. (D) □: depth (D) x width: C: 5.0; (circular), M: 5.5, 6.625 (circular)
  • Wall Thickness (t) (in): 0.064-0.384
  • Diameter/thickness (D/t): 14.4-78.1


Seamless M: mild, hot-finish, gr.16; C: cold-drawn

Fy= 25.0-40.4 ksi

fcu= 4.64-12.10 ksi

Salani and Sims 1964
  • ◌: diam. (D) □: depth (D) x width: 3.75, 4.75, 8.5 (circular)
  • Wall Thickness (t) (in): 0.079-0.472
  • Diameter/thickness (D/t): 7.9-60.5

Fy= 38.3-57.3 ksi

f'c= 2.94-4.32 ksi

Zhong and Miao 1988
  • ◌: diam. (D) □: depth (D) x width: 4.27 (circular)
  • Wall Thickness (t) (in): N.A.
  • Diameter/thickness (D/t): N.A.


N.A. Stress determined analytically


f'c= 4.35, 5.80

Zhong-qiu, Boi-Hai, Lei, Wen-Jie

Diameter: 4.5-6.4

(Depth)*(Width): .09-.13

D/t: 33-66

43.3 ksi

4.9 ksi

Han, Zheng, He, Tao

Diameter: 2.5

Thickness: .09

D/t: 26.6

Fy: 39.1-46.1 ksi

8.7 ksi

Liu and Geol 1988
  • ◌: diam. (D) □: depth (D) x width: 6 × 3, 4 × 2 (rectangular)
  • Wall Thickness (t) (in): 0.188, 0.125, 0.25
  • Diameter/thickness (D/t): 14, 30


A500 gr. B, coldformed

Fy= 54, 60 ksi

f'c= 4, 6, 8 ksi

Wei, Luo, Lai, Varma

D: 3.93 (in)-21.6 (in), t: .003 (in)-.66 (in), D/t: 8.4-220.9

26.7 (ksi)-167.2 (ksi)

3.7 (ksi)-26.8 (ksi)