Table of Experimental Studies on Beam, Beam Column, and Shear Tests


General Information

Reference Experiment Synopsis Number of Tests Loading Method Results Reported Main Parameters Comments
Cai 1988

7 test phases:

  • 2 col (short, long)
  • 5 bmcol (pure bending, applied ecc.-- single & double curvature, restrained cantilever)


  • Phases 1-2: 93 CFTs (col)
  • Phases 3-7: 80 CFTs (bmcol)


  • No details of end conds.
  • Phase 3: pure bending;
  • Phases 4,5: single-curv;
  • Phase 6: double-curv, ratio of eccs = -1/3, -1/2, -1;
  • Phase 7: comb axial & latl.
  • Deflection curves (along length of col) for phase 6
  • P vs ε (exp, theor.)
  • Global strength reduction vs. L/D, e/concr. radius
  • P-M interaction diagrams


  • L/D
  • e/(concr. radius)


  • Limited data --refers to previous Chinese articles
  • Primarily theoretical


Du, Chen, Liew and Xiong 2017

Rectangular CFT beam columns with high-strength steel


23 (bmcol)

  • Axial Load and bending moment


  • P vs. Δ
  • P vs. ε


  • In-fill concrete
  • eccentricity
  • D/t
  • Slenderness



El-Remaily et al. 1997

Cyclic loading of circular CFTs w/ high strength concrete


4 CFTs (cyclic)

  • Horizontally placed specimens
  • Constant axial load and cyclically applied lateral load at the mid-height
  • Displacement controlled loading


  • H vs. δ (lat. defl.)
  • H vs. δaxial
  • Mu


  • D/t
  • Axial load ratio P/Po
  • f'c



Elchalakani, Zhao, and Grzebieta 2001

Uniaxial flexural loading (pure bending) of circular CFT beams


12 CFTs

  • Pure bending through applied rotation at both ends
  • Bending was applied through coupling forces acting on the pinned points at each end


  • Mu, Rmax, Rcm, θpc
  • M vs. φ


  • D/t
  • L/D



Elchalakani, Zhao, and Grzebieta 2004

Constant amplitude cyclic flexural loading (pure bending) of circular CFT beams


23

  • Constant amplitude cyclic pure bending
  • Applied rotation at both ends
  • Bending was applied through coupling forces acting on the pinned points at each end


  • M vs. θ
  • Mmax,i/Mmax,1 vs. #cycles
  • Mu/MptH vs. slenderness


  • Amplitude of cyclic load
  • D/t



Elremaily and Azizinamini 2002

Non-proportional cyclic loading of circular CFT beam-columns


6

  • Axial load of 0.2 to 0.4 of the squash load applied
  • Lateral load applied to middle portion which was confined by a rigid stub


  • H vs. Δ
  • Displacement Amplitude vs. Shortening
  • EI vs. Ductility


  • t
  • P/Po
  • f′c



Fujimoto et al. 2004

Monotonic loading of short circular and square CFT beam columns


65

Three types:

  • Two types with constant axial, increasing moment
  • One type with constant eccentricity


  • M vs. φ
  • Mu vs. D/t


  • D
  • t
  • P/Po
  • Section shape
  • f′c
  • Fy



Furlong 1967

Ultimate strength of CFT bm-cols. (experimental vs. theoretical)

52 CFTs (13 col, 39 bmcol)

  • Axial load applied incrementally
  • Eccentric load applied via hydraulic ram and yokes attached to each end of col.
  • Single curvature
  • P vs. ε, P vs. εconcr (cols)
  • Po, Pu (cols)
  • Pu/Po vs. Mu/Mo (other test plotted also) (bm-cols)
  • Tube shape
  • D/t
  • fy
  • f'c
  • As
  • Variety of results
  • Detailed graphs
Furlong 1968

Design of CFT bmcols; previous exps. examined


28 CFTs (col) (tests by others tabulated); also includes 52 CFTs from Furlong, '67


N.A.

  • σ vs. ε, exp vs. calc stiffness
  • P vs. ε
  • M vs. φ (bonded, unb.)
  • Po, Pu
  • Analytical interaction diags.


  • Based on tests by other authors
  • Bond
  • Residual stress


Analytical formulas presented and discussed

Gajalakshmi and Helena 2012
  • 8 CFTs
  • 8 SCFTs


  • Cyclic lateral load
  • Constant axial load


  • Load vs. Displacement
  • Load vs. Drift Ratio


  • D/t
  • CFT and SCFT
  • Variable amplitude loading
  • Constant amplitude loading histories




Han and Yang 2005

Non-proportional cyclic loading of circular CFT beam columns

  • 8 CFTs
  • 2 HTs


  • Constant axial load
  • Cyclic load applied at midheight through rigid stub


H vs. Δ

  • Axial load level
  • D/t
  • f′c



Hardika and Gardner 2004

Non-proportional cyclic loading of square CFT beam-columns


24

  • Axial load applied
  • Lateral load applied to member top
  • Member in either square or diagonal orientation


  • H vs. Δ
  • P/Po vs. M/Mo
  • Strength capacity, ductility, flexural stiffness


  • t
  • P
  • f′c
  • Orientation



Hsu and Yu 2003

Non-proportional cyclic loading of square CFT beam-columns with tie-rods


18

  • Axial load of 0.1 to 0.3 of the squash load applied
  • Lateral load applied to member top


  • H vs. Δ
  • H vs. drift ratio
  • Strength deterioration vs. # tie layers
  • EI vs. drift ratio
  • H vs. cumulative energy
  • Energy dissipation vs. b/t


  • t
  • P/Po
  1. tie layers
  • rod diameter



Huang, Huang, and Zhong 1991

Cyclic, lateral loading of CFTs


46 CFTs (bmcol)


Lateral load applied via a frame fixed to top of beam

  • H vs. δ
  • Hysteretic loops (H vs. δ)
  • Ductility ratio (2 spcms.)
  • Absorbed energy (2 spcms.)


  • λ
  • As/Ac
  • P/Po



Ichinohe et al. 1991

Monotonic & cyclic loading of CFTs w/ high-strength steel & concrete

  • 20 CFTs (bmcol)
  • 11 moment-curvature tests (M-φ plotted)
  • 9 shear bending tests (M-R plotted)


  • Both tests axially loaded
  • M-φ test: loaded at 35.4 in. from each end, s-s beam
  • Shear bending test: loaded at midpt; bmcol at load pt. considered fixed


  • σ vs. ε (exp. & calc.)
  • Biaxial stresses in tubes
  • M vs. φ, M vs. R (monotonic, cyclic, exp. vs. theoretical)


  • P/Po for given cyclical loading
  • D/t



Inai et al. 2004

Cyclic load-deformation and ultimate strength of CFT beam-columns with variable axial load

  • 13 Circular CFT
  • 20 Square CFT


  • Both constant and variable axial load on columns
  • Lateral load applied on top CFT stub by hydraulic jack


  • M vs. R (per conc. type)
  • R vs. ε (per conc. type)
  • Interaction diagrams (per conc. type) All graphs for both variable and constant axial load


  • Tube shape
  • fu
  • f'c
  • D/t
  • P/Po
  • loading angle (biaxial bending)



Inai, Mukai, Kai, Tokinya, Fukumoto and Mori 2004

Circular and square CFT beam columns with varying dimensions were tested under constant axial load and varying lateral load to determine the effects on the ductility of CFT beam columns.

34 (bmcol)


  • Constant axial load
  • Cyclically varying lateral load


  • Moment-curvature
  • Axial strain-curvature


  • fy
  • f'c
  • D/t



Kawaguchi et al. 1993

Cyclic loading of cantilever CFT beam-columns

  • 14 CFTs (bmcol)
  • 12 HTs (bmcol)


N.A.

  • σ vs. ε (stub col.'s)
  • P vs. ε (HTs, conc., CFTs)
  • M vs. φ (exp. vs. theory)
  • M vs. slip
  • N.A. movement vs. M


  • D/t
  • L/d
  • a/D


  • Slip measured and reported
  • Discussion of slip
  • Pure bending behavior and discussion of rigidity


Konno, Kai, and Nagashima 1990

Cyclic loading of square CFT bmcols


19 CFTs (bmcol)

  • Transverse load applied at midpt. of bmcol
  • Const. axial load applied at member ends


  • Mu
  • V vs. R


  • D/t
  • f'c
  • fy
  • P/Po


Compared w/ proposed design equations.

Lu and Kennedy 1994

Monotonic uniaxial loading (pure bending, simple supports) of rectangular CFTs

  • 12 CFTs (bm)
  • 5 HTs (bm)
  • 5 HT stub col.
  • 5 CFT stub col.


  • Constant axial load, monotically increasing end moments


  • M vs. φ
  • Mu vs. Pu (interaction diagrams)
  • P/Po, Mu
  • Mu/Mpc vs. D/t


  • D/t
  • fy
  • axial load ratio P/Po
  • f’c



Matsui and Tsuda 1987

Axial load & bending (cyclic & monotonic)

  • 14 CFT (8 monotonic, 6 cyclic)
  • 12 HT (mono.)


  • Non-proportional
  • Axial load applied, then lateral load at column top


  • H vs. Δ (monotonic and cyclic)
  • M/Mpc vs. θ/θpc


  • D/t
  • CFT vs. HT


Excellent load-defl. curves

Nakahara and Sakino 1998

Monotonic loading of square hollow tubes and square CFTs w/ high strength concrete and steel

  • 4 HT stub col.
  • 4 CFT stub col.
  • 10 CFTs (bmcol)


  • Cols: Concentric loading
  • Bmcols: Constant axial load, monotonically increasing end moments, curvature controlled loading


  • P vs. εaxial
  • M vs. φ
  • Mu vs. Pu (interaction diagrams)
  • Pu, Mu


  • D/t
  • fy
  • axial load ratio P/Po



Nakahara and Sakino 2000a

Monotonic and cyclic loading of square CFT bmcols

  • 6 CFTs (bmcol) (monotonic)
  • 5 CFTs (bmcol) (cyclic)


  • Bmcols(m): Constant axial load, displacement controlled bending moment applied at the ends
  • Bmcols(c): Constant axial load, curvature controlled bending moment applied at the ends


  • σ-ε relations for steel & concr. (analytical)
  • M vs. φ (experimental & analytical)
  • φ vs. εaxial


  • D/t
  • axial load ratio P/Po
  • deformation histories(m, c)



Nakahara and Sakino 2000b

Monotonic and cyclic loading of square CFT bmcols

  • 6 CFTs (bmcol) (monotonic)
  • 5 CFTs (bmcol) (cyclic)


  • Bmcols(m): Constant axial load, displacement controlled bending moment applied at the ends
  • Bmcols(c): Constant axial load, curvature controlled bending moment applied at the ends


  • σ-ε relations for steel & concr. (analytical)
  • M vs. φ (experimental & analytical)
  • φ vs. εaxial


  • D/t
  • axial load ratio P/Po
  • deformation histories(m, c)



Perea et al. 2013

Full Scale Slender CFT Beam-Columns


18 CFT (10 circular and 8 rectangular)

  • Concentric axial compression
  • Axial compression plus uniaxial cyclic bending
  • Axial compression plus biaxial cyclic bending


  • Load
  • Displacement
  • Curvatures


  • Section shape and size
  • Concrete strength
  • Slenderness
  • Axial load



Prion and Boehme 1989
  • Axial, pure bending, & combination (cyclic & monotonic)
  • Thin-walled CFTs w/ high-strength concr.


  • 10 CFT (col)
  • 5 CFT (bm)(1 cyclic)
  • 11 CFT (bmcol)(9 monotonic, 2 cyclic)


  • Cols: load conc(6), both(4)
  • Bms: load applied at 2 pts.
  • Bmcols: load at 2 pts (6 mono, 2 cycl), apply eccen. (3) through spherical bearings


  • Pu/Po vs. avg. ε
  • M vs. φ, Mu/Mo vs. φ
  • Pu/Po vs. Mu/Mo
  • Load ratios (exp., theor.)


  • L
  • Loading type


  • Emphasis on level of ductility achieved
  • Compared w/ design codes


Zhang and Shahrooz 1997

Monotonic loading of square CFT beam-columns at a horizontal position


2 CFTs (bmcol)


Constant axial load, monotically increasing point loads applied at two points along the specimen length

  • σ-ε relation for steel
  • M vs. φ
  • P vs. δ (vert. defl.at midspan)
  • M vs. θ
  • Strain distribution over depth


Axial load ratio P/Po



Varma et al. 2000, 2001, 2002, 2004

Monotonic and cyclic loading of square CFTs w/ high-strength steel & concrete

  • 4 CFTs stub col.
  • 8 CFTs (bmcol) (monotonic)
  • 8 CFTs (bmcol) (cyclic)


  • Cols: Concentric loading, force controlled until failure, displacement controlled after failure
  • Bmcols (m): Constant axial load, monotically increasing end rotations
  • Bmcols (c): Constant axial load, cyclically applied lateral load at the top


  • σ-ε relations for stl. & conc.
  • P vs. δaxial
  • Pu, Mu
  • M vs. φ & M vs. θ
  • H vs. δ (lat. defl.)
  • μ vs. D/t, fy , P/ Pu
  • W vs. D/t, fy , P/ Pu
  • EI / EIs vs δaxial / δy
  • δaxial vs. δ ( lat. defl. )
  • Mu vs. Pu (interaction diagrams)


  • Axial load ratio P/Po
  • D/t
  • Type of steel



Sakino 1995

Monotonic loading of circular CFT beam-columns


28 CFTs (bmcol)

  • Rigid rectangular frame
  • Reversed cyclic loading applied to rigid stub welded to column at mid-height from frame


  • σ vs. ε for varying ecc. dist.
  • P vs. δ
  • Eccentric distance (as calc. in paper) vs. δ
  • V vs. R, P vs. R


P/Po for given cyclic loading



Sakino and Ishibashi 1985

Monotonic and hysteretic behavior of beam-columns failing in shear


21 CFTs (bmcol) (12 monotonic, 9 cyclic)

  • Axial load
  • Transverse shear force applied at ends (cyclic: 3 cycles at increments of R=0.5%)


  • V vs. R (P/Po, a/D, D/t varied)
  • V vs. R hysteresis loops (P/Po, a/D, D/t varied)
  • V/Vmax vs. R (P/Po varied)
  • P/Po vs. V/Vmax (exp & calc)


  • P/Po
  • D/t
  • a/D
  • fy
  • f'c


  • Very detailed V-R curves and hysteresis loops
  • Expansive cement


Sakino and Tomii 1981

Hysteretic behavior of beam-columns failing in flexure


15 CFTs (bmcol)

  • Axial load
  • Transverse cyclic shear force applied at ends (3 cycles at increments of R=0.5%)


  • V vs. R hysteresis loops (P/Po/sub>, a/D, D/t varied)
  • V/Vmax vs. R (P/Po varied)
  • P vs. Mu


  • P/Po
  • D/t
  • a/D
  • fy
  • f'c


  • Very detailed V-R hysteresis loops
  • Expansive cement used


Sato, Saito, and Suzuki 1991

Reversed cyclic shear loading of circular CFTs


3 CFTs

  • Axial load applied concentrically
  • Lateral load applied transversely at bmcol midpt.


  • R (max) vs. P/Po
  • Hysteresis loops: V vs. R (1 circular and 1 square test)
  • Pu vs. Mu


  • P/Po
  • D/t
  • fy
  • f'c


  • Very detailed plots, but only for selected sections


Sugano, Nagashima, and Kei 1992

Cyclic loading of square and circular beam-columns

  • 19 circular CFTs
  • 20 square CFTs


  • L-shaped load frame
  • Lateral load applied to column top from frame


  • σ vs. ε, -H vs. ε
  • Hysteresis loops (H vs. δ) (deflection at column top)
  • Pu deterioration (Pu vs. cyc.)
  • Energy dissipation (hysteresis loop area vs. loading cycle


  • Hollow vs. filled
  • P


  • Alternately repeated lateral load w/ constant axial load
  • Failure: local buckling at base


Wheeler and Bridge 2004

Monotonic four point bending of circular CFT beams

  • 4 CFTs
  • 2 HTs


  • Four point bending
  • 51 in. between support and loading point on either end


  • M vs. Δmidspan
  • M vs. concrete slip


D/t f′c




Tomii and Sakino 1979 c

Shear behavior of square CFTs


40 CFTs (bmcol)

  • Axial load
  • Transverse shear force applied at ends


  • V vs. R (P/Po, a/D, D/t varied)
  • Po, Mu, Vmax
  • P/Po vs. Mu/Mo
  • φ, γ along length


  • P/Po
  • D/t
  • a/D
  • fy
  • f'c


  • Very detailed V-R curves
  • Expansive cement used


Tsuda, Matsui, and Mino 1996

Series II - Slender Cantilever CFT’s subjected to cyclic horizontal load while under constant axial load

  • 10 Circular CFT’s
  • 10 Square CFT’s


  • Axial load: Applied by a testing machine and kept constant throughout
  • Horiz. Load: A hydraulic jack kept the top of the col. fixed while the frame on which it was mounted moved side-to-side


  • V vs. δ
  • Mu vs. Pu (interaction diagrams)


  • Axial load ratio P/Po
  • Buckling length section depth ratio (Lk/D)



Elchalakani and Zhao 2008

Variable amplitude cyclic flexural loading (pure bending) of circular CFT beams


10 CFTs

  • Variable amplitude cyclic pure bending
  • Applied rotation at both ends
  • Bending was applied through coupling forces acting on the pinned points at each end


  • M vs. θ (also envelope compared to monotonic test)
  • Mmax,i/MptH vs. #cycles


  • D/t
  1. of repeat cycles



Hernandez-Figueirido, Romero, Bonet, Montalvá

Rectangular & Square CFT under axial compressive loading 

49 CFTs

Axial compression, Bending Moment

N(kN) vs mm, N(kN) vs. M(kN m)

L, Aspect ratio, t

Design loads from Eurocode 4 and AISC 360-10 are applicable to HSC

Specimen Information

Reference Length (L)(in) L/D Eccentricity(in) Residual Stresses(ksi) End Conditions
Cai 1988

see L/D

1) <= 4.0 2) 3-50 3) ? 4) 4-22 5) 5-13 6) 9-19 7) 4-8


e / (concrete radius) = 0-1.28


N.A.

  • Phases 1-6: pinned-pinned
  • Phase 7: fixed cantilever


Du, Chen, Liew and Xiong 2017

N.A.


N.A.


.41-2.96


N.A.


Pinned-pinned


El-Remaily et al. 1997

110.83


7.16


N.A.


N.A.


Pinned ends, rigid stub at the midheight

Elchalakani, Zhao, and Grzebieta 2001

23.62, 31.49


5.41-23.68


N.A.


N.A.


Attached to rotational fixtures at each end

Elchalakani, Zhao, and Grzebieta 2004

31.5 (length of pure bending)


7.3-13.1


Pure bending


N.A.


Attached to rotational fixtures at each end

Elremaily and Azizinamini 2002

86

6.7


N.A.


N.A.


  • Pinned-Pinned
  • Both ends capped with rigid steel caps


Fujimoto et al. 2004

12.75-53.1


3.0

  • N.A.: all circular, some square
  • 1.77-11.8: some square


N.A.


Either pinned-pinned or fixed-free

Furlong 1967

Approx. 36.0

5.5-12.0

Constant for all tests

N.A.

  • Pinned-pinned
  • Spherical bearings
Furlong 1968

33.9-102


8.7-40.0


N.A.


Extensive stresses noted in plain tube tests


N.A.

Gajalakshmi and Helena 2012

39.37


8.77


N.A.


N.A.


Column fixed at base

Han and Yang 2005

59

  • 13.9
  • 13.1


N.A.


N.A.


Pinned-pinned, cylindrical bearings

Hardika and Gardner 2004

75

9.4


0.5 in between horizontal load and section centroid

N.A.


Fixed-free

Hsu and Yu 2003

118 (72.4 effective length)


10.7


N.A.


N.A.


  • Fixed-free
  • Bottom was rigidly clamped a stiffened base


Huang, Huang, and Zhong 1991

35.4-65.4


5.45-17.5 (λ = 22-75)


N.A.


N.A.


  • Base fixed, top fixed to movable frame
  • Details sketchy


Ichinohe et al. 1991

35.4, 90.6

  • 2.0 (M-φ)
  • 3.0 (M-R)


N.A.


Annealed specimens noted


Both pinned-pinned

Inai et al. 2004

37.8-56.7


6

N.A.


N.A.


Fixed CFT columns attached to CFT stubs at ends to guarantee sufficient stiffness

Inai, Mukai, Kai, Tokinya, Fukumoto and Mori 2004

37.56-56.93



6


N.A.


N.A.

Pinned-pinned

Kawaguchi et al. 1993

39.3 (1 m)


10

N.A.


N.A.


Fixed base, pinned top (roller)


Konno, Kai, and Nagashima 1990

66.9


6.8


N.A.


N.A.


Pinned-pinned

Lu and Kennedy 1994

77.75-167.72


8.78-20


Pure bending


N.A.


Simply supported beam with load applied symmetrically at two points. Stiffeners under loads

Matsui and Tsuda 1987

29.5

5.0

N.A.


N.A.


Vertical cantilever:

fixed base, free end


Nakahara and Sakino 1998

23.62


3


N.A.



N.A.

Nakahara and Sakino 2000a

23.62



3

Annealed


Two loading plates welded to the ends

Nakahara and Sakino 2000b

23.62


3

Annealed


Two loading plates welded to the ends

Perea et al. 2013

216-312


10.8-56.1


N.A.


Not Measured


Column fixed at base

Prion and Boehme 1989
  • Cols: 19.7-35.4
  • Bms: 43.3,83.5
  • Bmcols: 83.5


  • Cols: 3.3-6
  • Bms: 7.25, 14
  • Bmcols: 14


3 bmcol tests:

0.43-0.59

N.A.

  • Cols: fixed-fixed
  • Bms, bmcols: pinned-pinned


Zhang and Shahrooz 1997

143.98


14.4

N.A.


N.A.


Pinned ends through cylindrical bearings

Varma et al. 2000, 2001, 2002, 2004

48.03, 58.50, 60.00


4.00, 5.00, 4.87


N.A.


N.A.


  • Col: Fixed
  • Bmcol (m): Pinned ends through cylindrical bearings
  • Bmcol (c): Fixed at base, not specified at top


Sakino 1995

12.75-53.15


3

N.A.


N.A.


Two loading plates welded to the ends

Sakino and Ishibashi 1985

7.9-11.8


2.0-3.0 (a/D = 1.0-1.5)


N.A.


Tubes annealed

  • Fixed-fixed (embedded in cross-beams)
  • Load applied through spherical seats


Sakino and Tomii 1981

15.7-23.6


4.0-6.0 (a/D = 2.0-3.0)


N.A.


Tubes annealed

  • Fixed-fixed (embedded in cross-beams)
  • Load applied through spherical seats


Sato, Saito, and Suzuki 1991

43.3

7.33

N.A.


Annealed

  • Pinned-pinned (pin & roller)
  • Axial load applied thruplates welded to ends of specimen


Sugano, Nagashima, and Kei 1992
  • 78.7 (circular)
  • 66.9 (square)


  • 6.67 (circular)
  • 6.8 (square)


N.A.


N.A.


Pinned transverse supports

Wheeler and Bridge 2004

149.6


9.4, 8.3


N.A.


N.A.


Pinned-pinned

Tomii and Sakino 1979 c

6.5-23.6


1.66-6.0 (a/D = 0.83-3.0)


N.A.


Tubes annealed

  • Fixed-fixed (embed-ded in cross-beams)
  • Load applied through spherical seats


Tsuda, Matsui, and Mino 1996

All noted are kL;

  • 39.10-156.28
  • 35.6-142.3


  • 6, 9, 12, 18, 24
  • 6, 9, 12, 18, 24


N.A.


N.A.


Col: Fixed base, unspecified connection at top (poss. free or pin)

Elchalakani and Zhao 2008

31.5


7.3-13.1


Pure bending


N.A.


Attached to rotational fixtures at each end

Hernandez-Figueirido, Romero, Bonet, Montalvá

84-162.8

21.5-27.6

0, 0.5, 1, -0.5

N/A

Welded for both square and rectangular specimens.

Cross Section Information

Reference Tube Dimensions Steel Properties Concrete Properties
Cai 1988
  • ◌: diam. (D) □: depth (D) x width: see L/D
  • Wall Thickness (t) (in): N.A.
  • Diameter/thickness (D/t): N.A.


N.A.


N.A.


Du, Chen, Liew and Xiong 2017
  • *◌: diam. (D) □: depth (D) x width: 4.72x3.94, 7.09x4.72, 9.57x5.31
  • Wall Thickness (t) (in): .224
  • Diameter/thickness (D/t): 21.05, 31.58, 42.63


High Strength Steel

Fy = 74.62 ksi

C40 and C50 grade

f'c = 8.02, 6.27 ksi

El-Remaily et al. 1997
  • ◌: diam. (D) □: depth (D) x width: 12.01 (circular)
  • Wall Thickness (t) (in): 0.252, 0.374
  • Diameter/thickness (D/t): 32, 48


Fy= 54


f'c= 10, 15 ksi

Elchalakani, Zhao, and Grzebieta 2001
  • ◌: diam. (D) □: depth (D) x width: 1.33-4.37 (circular)
  • Wall Thickness (t) (in): 0.039- 0.132
  • Diameter/thickness (D/t): 12.8-109.9


Cold-formed

Fy= 52.9-66.7 ksi

f'c= 3.39 ksi

Elchalakani, Zhao, and Grzebieta 2004
  • ◌: diam. (D) □: depth (D) x width: 2.4 – 4.3 (circular)
  • Wall Thickness (t) (in): 0.027-0.123
  • Diameter/thickness (D/t): 20-162


Cold formed, electric resistance welded

Fy= 60.6 ksi

f'c= 3.35 ksi

Elremaily and Azizinamini 2002
  • ◌: diam. (D) □: depth (D) x width: 12.75
  • Wall Thickness (t) (in): 0.25, 0.375
  • Diameter/thickness (D/t): 34, 51


Fy= 54 ksi


f'c= 5.8-15.1 ksi

Fujimoto et al. 2004
  • ◌: diam. (D) □: depth (D) x width: 4.25 – 14.2 (circular) 4.76 × 4.76 – 12.7 × 17.7 (square)
  • Wall Thickness (t) (in): 0.116-0.255
  • Diameter/thickness (D/t): 16.7-152


Cold formed plate

Circular: cold form and seam weld Square: welding two channels Fy= 38-121 ksi

f'c= 3.7-12.3 ksi

Furlong 1967
  • ◌: diam. (D) □: depth (D) x width: 4.5, 5.0, 6.0 (circular) 4 × 4, 5 × 5 (square)
  • Wall Thickness (t) (in): 0.061-0.189
  • Diameter/thickness (D/t): 26.3-98.4

Seam-weld cold-rolled

Fy= 42.0-60.0 ksi (circular) 48.0-70.3 ksi (rect.)

f'c= 3.05-5.10 ksi (circular) 3.40-6.50 ksi (rect.)

Furlong 1968
  • ◌: diam. (D) □: depth (D) x width: 1.0-4.74 (circular)
  • Wall Thickness (t) (in): 0.064-0.465
  • Diameter/thickness (D/t): 5.6-74.4


Seam-welded cold-rolled

Fy= 39.6-76.0 ksi

f'c= 2-5 ksi

Gajalakshmi and Helena 2012
  • ◌: diam. (D) □: depth (D) x width: 4.49 (circular)
  • Wall Thickness (t) (in): 0.079, 0.118
  • Diameter/thickness (D/t): 38, 57


Fy= 42.5 ksi


f'c= 4.70 (CFT), 8.38 (SCFT) ksi

Han and Yang 2005
  • ◌: diam. (D) □: depth (D) x width: 4.25, 4.49
  • Wall Thickness (t) (in): 0.157, 0.118
  • Diameter/thickness (D/t): 27, 38


Fy= 51.6, 44.7 ksi


f'c= 3.2, 5.6 ksi

Hardika and Gardner 2004
  • ◌: diam. (D) □: depth (D) x width: 8 × 8
  • Wall Thickness (t) (in): 0.1875, 0.375
  • Diameter/thickness (D/t): 21.3, 42.6


ASTM A 500 Grade C

Fy= 56-59 ksi

f'c= 5.8-14.9 ksi

Hsu and Yu 2003
  • ◌: diam. (D) □: depth (D) x width: 11 × 11
  • Wall Thickness (t) (in): 0.236, 0.177, 0.126
  • Diameter/thickness (D/t): 46.7, 62.2, 87.5


Cold bent JIS SS-400 plates

Fy= 46.5 ksi

f'c= 4.93 ksi

Huang, Huang, and Zhong 1991
  • ◌: diam. (D) □: depth (D) x width: 3.75-6.50 (circular)
  • Wall Thickness (t) (in): 0.079-0.197
  • Diameter/thickness (D/t): 25.2-54.0 (As/Ac =0.074- 0.134)


Fy= 34.2-44.1 ksi


f'c= 3.96-5.32 ksi

Ichinohe et al. 1991
  • ◌: diam. (D) □: depth (D) x width: 6.5, 11.8 (circular)
  • Wall Thickness (t) (in): 0.167-0.461
  • Diameter/thickness (D/t): 25.6-70.6


Some specimens annealed

Fy= 50.8-85.3 ksi

f'c= 9.0-9.6 ksi

Inai et al. 2004
  • ◌: diam. (D) □: depth (D) x width: 9.45, 6.3 (circular) 8.27 × 8.27, 7.09 × 7.09 (square)
  • Wall Thickness (t) (in): 0.177, 0.235, 0.354
  • Diameter/thickness (D/t): Circular 17.8-53.3 Square 20.0-53.3


Cold-formed

Fy= 58.0, 85.6, 113.1 ksi

f'c= 5.80, 13.05 ksi

Inai, Mukai, Kai, Tokinya, Fukumoto and Mori 2004
  • ◌: diam. (D) □: depth (D) x width: 6.30, 9.45 (Circle), 7.09x7.09, 8.27x8.27 (square)
  • Wall Thickness (t) (in): 0.178-.354
  • Diameter/thickness (D/t): 17.80-53.09


Fy= 58.02-113.13 ksi


f'c= 5.08, 13.05 ksi

Kawaguchi et al. 1993
  • ◌: diam. (D) □: depth (D) x width: 3.94 × 3.94 (square)
  • Wall Thickness (t) (in): 0.118, 0.177
  • Diameter/thickness (D/t): 22.2, 33.3


Cold-formed

Fy= 49.2 ksi

f'c= 3.1-3.6 ksi

Konno, Kai, and Nagashima 1990
  • ◌: diam. (D) □: depth (D) x width: 9.84 × 9.84 (square)
  • Wall Thickness (t) (in): 0.178- 0.469
  • Diameter/thickness (D/t): 21.0-55.0


Fy= 45.9-69.3


f'c= 4.38- 12.31 ksi

Lu and Kennedy 1994
  • ◌: diam. (D) □: depth (D) x width: 6.0 × 6.0 (square) 10.0 × 6.0 (rectangular)
  • Wall Thickness (t) (in): 0.189, 0.252, 0.347
  • Diameter/thickness (D/t): 16, 23.8, 26.7, 31.6, 39.6


Cold-formed

Fy= 50 ksi

f'c= 5.87-6.83 ksi

Matsui and Tsuda 1987
  • ◌: diam. (D) □: depth (D) x width: 5.9 × 5.9 (square)
  • Wall Thickness (t) (in): 0.063-0.125
  • Diameter/thickness (D/t): 47-94


Mild-steel plates

Fy= 51.4-71.5 ksi

f'c= 4.6-6.0 ksi

Nakahara and Sakino 1998
  • ◌: diam. (D) □: depth (D) x width: 7.87 × 7.87 (square)
  • Wall Thickness (t) (in): 0.122-0.252
  • Diameter/thickness (D/t): 30, 60


Cold-formed channel sections

Fy= 45.0, 113.3 ksi

f'c= 17.26 ksi

Nakahara and Sakino 2000a
  • ◌: diam. (D) □: depth (D) x width: 7.87 × 7.87 (square)
  • Wall Thickness (t) (in): 0.080, 0.167, 0.233
  • Diameter/thickness (D/t): 33.7, 47.1, 98.0


Fy= 30.6, 36.7, 46.4 ksi


f'c= 6.90 ksi

Nakahara and Sakino 2000b
  • ◌: diam. (D) □: depth (D) x width: 7.87 × 7.87 (square)
  • Wall Thickness (t) (in): 0.080, 0.167, 0.233
  • Diameter/thickness (D/t): 33.7, 47.1, 98.0


Fy= 30.6, 36.7, 46.4 ksi


f'c= 6.90 ksi

Perea et al. 2013
  • HSS5.563X0.134
  • HSS12.750X0.250
  • HSS20.000X0.250
  • HSS20X12X5/16


Fy = 42 ksi-55 ksi


f'c = 5.5 ksi-13.3 ksi

Prion and Boehme 1989
  • ◌: diam. (D) □: depth (D) x width: 6.0 (circular)
  • Wall Thickness (t) (in): 0.065
  • Diameter/thickness (D/t): 92.0


Electrically welded long. seam

Fy= 36-48 ksi

f'c= 10.6-13.3 ksi

Zhang and Shahrooz 1997
  • ◌: diam. (D) □: depth (D) x width: 10 × 10 (square)
  • Wall Thickness (t) (in): 0.313
  • Diameter/thickness (D/t): 32.0


Cold- formed

Fy= 53.7 ksi

f'c= 6.05 ksi

Varma et al. 2000, 2001, 2002, 2004
  • ◌: diam. (D) □: depth (D) x width: 12.01 × 12.01 (square)
  • Wall Thickness (t) (in): 0.230- 0.350
  • Diameter/thickness (D/t): 34.3-52.2


A500

A500 Fy= Grade B: 37.6, 68.3 ksi, Grade 80: 81.2, 95.7 ksi

f'c= 4.33 ksi

Sakino 1995
  • ◌: diam. (D) □: depth (D) x width: 4.25-17.72 (circular)
  • Wall Thickness (t) (in): 0.117, 0.179, 0.255
  • Diameter/thickness (D/t): 26.9-152.0


Fy= 59.2, 93.7, 127.5 ksi


f'c=

Sakino and Ishibashi 1985
  • ◌: diam. (D) □: depth (D) x width: 3.94 × 3.94 (square)
  • Wall Thickness (t) (in): 0.087, 0.117, 0.167
  • Diameter/thickness (D/t): 24, 34, 45


Mild, cold-worked, welded, annealed

Fy= 41.8-45.8 ksi

f'c= 2.4-3.7 ksi

Sakino and Tomii 1981
  • ◌: diam. (D) □: depth (D) x width: 3.94 × 3.94 (square)
  • Wall Thickness (t) (in): 0.085, 0.088, 0.117, 0.166
  • Diameter/thickness (D/t): 24, 34, 45, 46


Mild, cold-worked, welded, annealed

Fy= 42.1-44.9 ksi

f'c= 2.9-3.7 ksi

Sato, Saito, and Suzuki 1991
  • ◌: diam. (D) □: depth (D) x width: 5.91 (circular)
  • Wall Thickness (t) (in): 0.315
  • Diameter/thickness (D/t): 18.75


Annealed

Fy= 55.8 ksi

f'c= 5.15 ksi

Sugano, Nagashima, and Kei 1992
  • ◌: diam. (D) □: depth (D) x width: 11.8 (circular) 9.84 × 9.84 (square)
  • Wall Thickness (t) (in): 0.157-0.472
  • Diameter/thickness (D/t): 25-75 (circular) 20.8-62.5 (square)


Fy= 47.9-72.1 ksi


f'c= 4.5-12.8 ksi

Wheeler and Bridge 2004
  • ◌: diam. (D) □: depth (D) x width: 15.98, 17.95
  • Wall Thickness (t) (in): 0.25
  • Diameter/thickness (D/t): 63.4, 71.3


Cold rolled with continuous seamless welds

Fy= 50.9 ksi

f'c= 5.8-8.1 ksi

Tomii and Sakino 1979 c
  • ◌: diam. (D) □: depth (D) x width: 3.94 × 3.94 (square)
  • Wall Thickness (t) (in): 0.164, 0.119, 0.089
  • Diameter/thickness (D/t): 24, 33, 44


Mild, cold-worked, welded, annealed

Fy= 28.2-44.9 ksi

f'c= 3.3-6.6 ksi

Tsuda, Matsui, and Mino 1996
  • ◌: diam. (D) □: depth (D) x width: 6.51 (circular) 5.93 × 5.93 (square)
  • Wall Thickness (t) (in): 0.165 (circular) 0.172 (square)
  • Diameter/thickness (D/t): 39.6 (circular) 34.5 (square)


Mild steel;

Fy= STK 400: 51.5 ksi, STKR 400: 57.5 ksi

f'c= 5.04 ksi

Elchalakani and Zhao 2008
  • ◌: diam. (D) □: depth (D) x width: 2.4 – 4.3 (circular)
  • Wall Thickness (t) (in): 0.035 – 0.121
  • Diameter/thickness (D/t): 20-120


Cold formed (in some cases machined to achieve D/t)

Fy= 61.4 ksi

f'c= 3.35 ksi

Hernandez-Figueirido, Romero, Bonet, Montalvá

D; 3.9x3.9 (square), 5.9x3.9 (rectangle), t: 0.15,

Welded Plates, Fy: 47.86 ksi

f'c: 10.7-13.5 ksi