Table of Experimental Studies on CFT Connection Tests


General Information

Reference Experiment Synopsis Number of Tests Loading Method Results Reported Main Parameters Comments
Cheng, Chan, and Chung 2007

Seismic performance of four steel beam to CFT column connection with floor slabs

  • 4 CFTs


Constant axial load on the columns and cyclic shear load at each beam tip

  • Load vs. Displacement
  • Load vs. Rotation


  • Connection Type



Cheng, Hwang, and Chung 2000

Cyclic loading of beam-to-column connections of circular CFTs

  • 3 CFTs
  • 3 HTs


Constant axial load on the columns and cyclic shear load at the girder ends

  • V vs. girder-end deflection
  • Contribution of girder, column, and panel zone to the total deformation


  • CFT vs. HT
  • D/t
  • Connection type



Dunberry, LeBlanc, and Redwood 1987

Axial loading of square stub columns through shear connections

18 CFTs

Axial load applied at the top and at the connection simultaneously

  • P vs. εs, εconcr
  • L vs. ds (slip)
  • L vs. Pc, Ps
  • θc vs. P
  • Connection detail
  • Connection load/total axial load
  • D/t
  • End conditions (capped, uncapped)



Elremaily and Azizinamini 2001

Loading of through beam connection specimens representing interior joints


CFTs

Constant axial load on the columns and equal and opposite vertical loads on the beam ends

  • Load vs. Drift
  • Load vs. Shear Strain
  • Load vs. Joint Distortion


  • Beam-to-column flexural capacity ratio
  • Type of weld
  • Connection type



France, Davison, and Kirby 1999

Cyclic and monotonic loading of beam-to-column flow-drill connections of square CFTs and HTs

  • 20 HTs
  • 6 CFTs


Monotonic or cyclic shear force applied at the girder tips with either constant or no axial load acting on the columns


M vs. θ, Mu, θu

  • CFT vs. HT
  • Connection type (simple or fully restrained)
  • Beam size
  • t
  • P
  • Bolt spacing
  • Endplate type
  • fy



Kamba, Kanatani, and Tabuchi 1991

Shear tests of through diaphragm connections to square CFT and HT columns

  • 5 CFTs
  • 5 HTs


Shear couples acting on the diaphragm plates

  • σ-ε relations for steel
  • Vu, Vy, Ko
  • Vcu, Vcy, Kco
  • V vs. γ
  • τc vs. γ


  • D/t (column and panel zone)
  • CFT vs. HT
  • Annealing of steel tube



Kawano and Matsui 1997

Simple tension tests on CFT and HT connections and cyclic tests on cruciform frames including both CFTs and HTs

  • 6 CFTs, 9 HTs (simple tension)
  • 9 CFTs, 11 HTs (cruciform frame)


  • Tensile loading until fracture through flanges (smpl. tension test)
  • Constant axial load on the columns and cyclic shear force at the girder ends (cruciform frames)


  • Pu, Pa, Pu/Pa
  • Vu/Vc
  • V vs. R


  • CFT vs. HT
  • Connection type
  • Size of diaphragm and vertical stiffener



Kawano and Matsui 1997 II

Simple tension tests on CFT and HT connections and cyclic tests on cruciform frames including both CFTs and HTs

  • 6 CFTs, 9 HTs (simple tension)
  • 9 CFTs, 11 HTs (cruciform frame)


  • Tensile loading until fracture through flanges (smpl. tension test)
  • Constant axial load on the columns and cyclic shear force at the girder ends (cruciform frames)


  • Pu, Pa, Pu/Pa
  • Vu/Vc
  • V vs. R


  • CFT vs. HT
  • Connection type
  • Size of diaphragm and vertical stiffener



Kingsley et al. 2005

Performance and constructability of embedded-type CFT column-concrete footing connection with slender tubes of high-performance vanadium-alloy steel

  • 3 CFTs


Constant axial load on the columns and cyclic lateral load at the top of the column

  • Drift Ratio vs. Horizontal Load
  • Drift Ratio vs. Column Base Moment


  • Embedment Depth
  • Vertical Reinforcement in Footing
  • f'c
  • Flange Dimensions



Lehman and Roeder 2012

Seismic performance of four steel beam to CFT column connection with floor slabs

  • 19 CFTs


Constant axial load on the columns and cyclic lateral load at the top of the column

  • Drift Ratio vs. Cycle
  • Load vs. Displacement
  • Load vs. Rotation


  • Connection Type
  • Load
  • Embedment Depth
  • Load History
  • Fy



Nie, Bai, and Cai 2008

Cyclic loading connections between CFT columns and reinforced concrete beam

  • 3 cyclic interior column connection tests
  • 3 cyclic corner column connection tests


Constant axial load on the columns and cyclic shear load at the girder ends


Load displacement plots for all 6 specimens


Confinement in the connection region



Nie, Qin, and Cai 2008

CFT column to reinforced concrete flat plate connections subjected to gravity loading


Seismic behavior of connections composed of concrete-filled square steel tubular columns and steel-concrete composite beams

14 Cruciform Connection Specimens

Axial load on top of column and 4 actuators supplying cyclic load

  • Strength
  • Deformation
  • Energy Dissipation
  • P vs. &delta


  • Interior Diaphragms
  • Exterior Diaphragms
  • Anchor Studs



Prion and McLellan 1992

Through-bolt connections between steel wide-flange girders and CFTs


8 CFTs


Tension pull-out and compression pull-in tests

  • Concrete and steel stress-strain relationships
  • Bolt slip-load and load-strain relationships


Post-tensioning of the bolts in the connection



Schneider and Alostaz 1998

Cyclic testing of 2/3 scale beam-to-column connections of circular CFTs


6 CFTs


Constant axial load on to the column and cyclic shear load at the girder end


Constant axial load on to the column and cyclic shear load at the girder end


Connection details



Shakir-Khalil and Al-Rawdan 1995, 1996

Full-scale simple interior beam-to-column connections of circular and square CFTs


Monotonic tests for full-scale simple exterior beam-to-column connections of square CFTs


Monotonic test for full-scale simple interior beam-to-column connections of square CFTs


28 CFTs

4 CFTs

4 CFTs

  • Symm. loading of the beams and axial loading of the column, simult.
  • Beam-to-column load ratios were 1:8 or 1:5


  • Eccentric loading of the beam and axial loading of the column, simult.
  • Beam-to-column load ratios were 1:8 or 1:5
  • Symm. loading of the beams and axial loading of the column, simult.
  • Beam-to-column ratios were 1:3, 1:5 or 1:8


  • M vs. θc
  • Ko, Pu
  • P vs. εs


  • M vs. θc
  • Ko, Pu
  • Longitudinal strain distribution along the column length
  • M vs. θc
  • Ko, Pu
  • P vs. in-plane displacement along the column length



  • Fin-plate vs. tee cleat
  • D
  • t
  • Shear connector
  • Beam load to column load ratio
  • Eccentricity of beam load


  • Beam load to column ratio
  • Eccentricity of beam load


  • Beam load-to-column load ratio
  • Eccentricity of beam load



Specimen Information

Reference Beam Information Connection Information (Plate and Stiffener) End Conditions
Cheng, Chan, and Chung 2007
  • 350 x 350 x 9 mm CFT Columns
  • H450 x 200 x 9 x 14 mm Composite beams


  • Web-through design of a continuous shear tab passing through the panel zone of the connection and applied shear studs on the inner tube wall with two shear-tabs on the outer tube wall to sandwich the beam web were compared


  • 2 Cruciform Shape
  • 2 Tee Shape
  • Pinned-pinned (column)


Cheng, Hwang, and Chung 2000
  • H-600 x 200 x 11 x 17
  • Fy=44.67 (flange), 47.57 (web)


  • Through diaphragm plates with 3.94 in. opening at the middle
  • External diaphragms


Pinned-pinned (column)

Dunberry, LeBlanc, and Redwood 1987

N.A

  • Standard tee: 14.2 x (0.31 or 0.47) gusset plate
  • Extended tee: 22.83 x 0.31 gusset plate
  • Shortened tee: 8.66 x 0.31 gusset plate
  • Single plate had only web without gusset plate

N.A

Elremaily and Azizinamini 2001
  • 12 in. Diam. CFT Columns
  • 16 in. Diam. CFT Columns


  • Fillet welds with hollow panel zone
  • Full penetration and fillet welds with rebar with joint
  • Web plate in joint zone


Pinned-pinned (column)

France, Davison, and Kirby 1999
  • 457 x 152 x 52 UB
  • 356 x 171 x 45 UB
  • 254 x 146 x 31 UB
  • Grade 43


  • Partial depth end plate (smaller than the beam sections)
  • Flush end plate (same size with the girder section)
  • Extended end plate (larger size than the girder section)


Pinned-pinned with fully-restraint or simple beam-to-column connections at the middle

Kamba, Kanatani, and Tabuchi 1991

N.A


Through diaphragm plates manufactured from PL25


Pinned-pinned (column)

Kawano and Matsui 1997
  • 0.177 in. flange (smpl. tension)
  • Fy=44.9 (smpl. tension)
  • H200x100x3.2x4.5, H250x1000x6.0x6.0 (cruciform frame)
  • Fy=43.11-55.35 (cruciform frame)


0.177 in. thick external diaphragms and vertical stiffeners manufactured from SS400 plates


Pinned-pinned (columns in cruciform frames)

Kawano and Matsui 1997 II
  • 0.177 in. flange (smpl. tension)
  • Fy=44.9 (smpl. tension)
  • H200x100x3.2x4.5, H250x1000x6.0x6.0 (cruciform frame)
  • Fy=43.11-55.35 (cruciform frame)


0.177 in. thick external diaphragms and vertical stiffeners manufactured from SS400 plates


Pinned-pinned (columns in cruciform frames)

Kingsley et al. 2005
  • 20 in. Diam. CFT Columns


  • Embedded Annular Ring


  • Cantilever Column


Lehman and Roeder 2012
  • 20 in. Diam. CFT Columns
  • 30 in. Diam. CFT Columns


  • Embedded Monolithic
  • Embedded Recessed


  • Cantilever Column


Nie, Bai, and Cai 2008

Reinforced Concrete


Through-beam connection


Cruciform, pinned-pinned (column)

Nie, Qin, and Cai 2008

H-Shape built-up sections


Vertical Stiffeners



Prion and McLellan 1992

N.A


N.A


N.A


Schneider and Alostaz 1998
  • W14 x 38
  • Girder Fy=44.3 (flange), 52.0 (web)
  • Connection Stub Fy=48.2 (flange), 39.4 (web)


  • Connection stub with flared flange
  • Connection stub web and/or flange continued into the column
  • External diaphragm plate
  • Deformed bars welded to the connection stub flange


Roller at the top and pinned at the bottom (column)

Shakir-Khalil and Al-Rawdan 1995, 1996

406 x 178 x 67 UB



  • 10.24 or 14.17 in. long and 3.94 x 0.39 in. fin-plates
  • 14.17 in. long tee cleats manufactured from 305 x 127 x 48 UB type beam
  • 0.146 in. diameter 2.44 in. long Hilti nails


14.17 in. long tee cleats manufactured from 305 x 127 x 48 UB type beam


Pinned-pinned (column)

Cross Section Information

Reference Tube Dimensions Steel Properties Concrete Properties
Cheng, Chan, and Chung 2007
  • ◌: diam. (D) □: depth (D) x width: 13.8 (square)
  • Wall Thickness (t) (in): 0.354
  • Diameter/thickness (D/t): 39


Fy = 67 ksi


f'c = 3.55 (columns), 2.2 (floor) ksi

Cheng, Hwang, and Chung 2000
  • ◌: diam. (D) □: depth (D) x width: 15.75 (square)
  • Wall Thickness (t) (in): 0.236, 0.394
  • Diameter/thickness (D/t): 40, 66.7


Cold-formed

Fy = 45.5, 56.9 ksi

f'c = 3.77, 3.92 ksi

Dunberry, LeBlanc, and Redwood 1987
  • ◌: diam. (D) □: depth (D) x width: 4.0-8.0 (square)
  • Wall Thickness (t) (in): 0.187-0.249
  • Diameter/thickness (D/t): 20.8-37.1

Class H Grade 50W

Fy = 51.3-64.3 ksi

f'c = 2.25-4.29 ksi

Elremaily and Azizinamini 2001
  • ◌: diam. (D) □: depth (D) x width: 12, 16 (circular)
  • Wall Thickness (t) (in): 0.252, 0.374
  • Diameter/thickness (D/t): 32, 47, 63


Fy = 53.8, 54.2, 64.3 ksi


f'c = 4.7-6.03 ksi

France, Davison, and Kirby 1999
  • ◌: diam. (D) □: depth (D) x width: 29 x 29 (square)
  • Wall Thickness (t) (in): 0.248-0.492
  • Diameter/thickness (D/t): 31.8-9.7


Hot-rolled Grade 43

Fy = 44.5-61.9 ksi

f'c = 6.29-7.32 ksi

Kamba, Kanatani, and Tabuchi 1991
  • ◌: diam. (D) □: depth (D) x width: 8.52 x 8.52 (square)
  • Wall Thickness (t) (in): 0.177-0.315 (panel zone-web & flange) 0.315, 0.500 (column-web & flange)
  • Diameter/thickness (D/t): 27, 36, 48 (panel zone) 17, 27 (column)


STK400

Fy = 48.4, 52.6 ksi (annealed) 54.07-56.92 ksi (cold-formed)

f'c = 3.37, 3.56 ksi

Kawano and Matsui 1997
  • ◌: diam. (D) □: depth (D) x width: 5.91 x 5.91 (square)
  • Wall Thickness (t) (in): 0.177 (simple tension) 0.166, 0.171 (cruciform frame)
  • Diameter/thickness (D/t): 33.3 (simple tension) 34.5, 35.5 (cruciform frame)


Cold formed STKR400

Fy = 62.8 ksi

f'c = 4.97, 5.19 ksi

Kawano and Matsui 1997 II
  • ◌: diam. (D) □: depth (D) x width: 5.91 x 5.91 (square)
  • Wall Thickness (t) (in): 0.177 (simple tension) 0.166, 0.171 (cruciform frame)
  • Diameter/thickness (D/t): 33.3 (simple tension) 34.5, 35.5 (cruciform frame)


Cold formed STKR400

Fy = 62.8 ksi

f'c = 4.97, 5.19 ksi

Kingsley et al. 2005
  • ◌: diam. (D) □: depth (D) x width: 20 (circular)
  • Wall Thickness (t) (in): 0.25
  • Diameter/thickness (D/t): 80


Fy = 76.3 ksi


f'c = 10-11 ksi

Lehman and Roeder 2012
  • ◌: diam. (D) □: depth (D) x width: 20, 30 (circular)
  • Wall Thickness (t) (in): 0.25, 0.252
  • Diameter/thickness (D/t): 80, 119


Fy = 49-75 ksi


f'c = 7.83-11.89 ksi


Nie, Bai, and Cai 2008

Square cross section with embedded circular concrete filled steel tube


Fy = 45, 49 ksi


f'c = 4.3-6.2 ksi

Nie, Qin, and Cai 2008
  • ◌: diam. (D) □: depth (D) x width: 9.84 (square)
  • Wall Thickness (t) (in): 0.31
  • Diameter/thickness (D/t): 31.74


Fy = 57.0-76.3 ksi


f'c = 4.73-8.64 ksi

Prion and McLellan 1992
  • ◌: diam. (D) □: depth (D) x width: 12 x 12, 8 x 8 (square)
  • Wall Thickness (t) (in): 0.472
  • Diameter/thickness (D/t): 25


Fy = 50.8 ksi


f'c = 6.53 ksi

Schneider and Alostaz 1998
  • ◌: diam. (D) □: depth (D) x width: 14 (circular)
  • Wall Thickness (t) (in): 0.269
  • Diameter/thickness (D/t): 52.0


Fy = 57.5 ksi


f'c = 7.8-8.2 ksi

Shakir-Khalil and Al-Rawdan 1995, 1996
  • ◌: diam. (D) □: depth (D) x width: 6.63, 8.63 (circular) 5.91 x 5.91, 7.87 x 7.87 (square)
  • Wall Thickness (t) (in): 0.197, 0.248
  • Diameter/thickness (D/t): 30.0-34.8


  • ◌: diam. (D) □: depth (D) x width: 5.91 x 5.91 (square)
  • Wall Thickness (t) (in): 0.197
  • Diameter/thickness (D/t): 30


Fy = 44.0-60.2 ksi


Fy = 47.9, 48.2 ksi


Fy = 49.3, 49.8 ksi



f'c = 4.25-5.90 ksi


f'c = 4.54-4.90 ksi


f'c = 4.29-4.84 ksi