Table of Experimental Studies on CFT Frame Tests


General Information

Reference Experiment Synopsis Number of Tests Loading Method Results Reported Main Parameters Comments
Han, Wang, and Zhao 2008

Behavior of the composite frame with concrete-filled square hollow section (SHS) columns to steel beam


6 concrete filled SHS columns to steel composite frame specimens


6 concrete filled SHS columns to steel composite frame specimens


  • Cyclic Load vs. Lateral Deformation
  • Lateral Load vs. Displacement


  • Level of axial load
  • k



Herrera, Ricles, and Sause 2008

Hybrid pseudo-dynamic test of a three-fifths scale MRF


1 CFT frame 2 bay, 4 story


Ground motions from the 1979 Imperial Valley and 1994 Northridge earthquakes scaled to different intensities factors, four motions total

  • Floor disp vs. time
  • Story drift and shear vs. story



Analytically modeled leaner column to represent interior gravity frame

Kawaguchi et al. 2002

Cyclic loading of portal frames made up of CFT columns


4 CFT frames


Constant axial load on both columns and cyclic lateral load applied to the base-beam of the columns

  • H vs. R
  • H vs. εd


Failure mode, axial load ratio (P/Po)


Matsui 1985, 1986

Monotonic and cyclic loading of portal frames having CFT and HT columns

2 HT frames, 10 CFT frames


Constant axial load on both columns and monotonic or cyclic lateral load at one beam-to-column connection

  • H vs. Δ
  • Hmax,Hu,Mpc
  • Type of connection, D/t
  • Cyclic vs. monotonic loading


Morino et al. 1993

Non-proportional cyclic loading of 3D CFT/steel cruciform subassemblies


10 subassemblies 6 w/ sym out-of-plane loads, 4 asym) 5--connection failure 5--column failure

  • Constant axial load on col.
  • Sym or asym. const loads on 2 out-of-plane bms.
  • Anty-symmetric cyclic loading on 2 in-plane bms


  • V vs. ε
  • V vs. R
  • V vs. lat'l displ. of connection
  • Conn. design, out-of-plane loading
  • Biaxial bending
  • Failure: typ. instability due to lat'l displ. of connection


Tsai et al. 2008

Pseudo-dynamic test of a full scale CFT/BRB frame


1 CFT/BRB frame 3 bay, 3 story


Ground motions from the 1999 ChiChi and 1989 Loma Prieta earthquakes scaled to different intensities,eight motions total

  • oof displacement vs. time
  • Base shear vs. time
  • Story shear vs. story drift
  • BRB force
  • Energy dissipation



Three different types of BRBs, beams had concrete floor slab

Specimen Information

Reference Beam Information Column Information Connection Information End Conditions
Han, Wang, and Zhao 2008
  • 6.3x3.15x0.14x0.14
  • 5.51x2.76x0.14x0.14
  • 7.09x3.15x0.17x0.17
  • Length: 98.42 in


  • 4.72x0.14
  • 5.51x0.16
  • Length: 57.09 in


Welded

  • Col: Fixed base
  • Beam to col: Rigid


Herrera, Ricles, and Sause 2008
  • W18x46
  • W16x40
  • W16x31
  • W12x22
  • Length: 216 in


  • Length (L): 90, 108 in
  • Length/Diameter (L/D): 7.5, 9


Split tee


Pinned bases with basement level

Kawaguchi et al. 2002
  • BH125 x 150 x 16 x 25
  • Length: 59.1 in


  • Length (L): 39.4 in
  • Length/Diameter (L/D): 8


Through stiffener

  • Col: Fixed base
  • Beam to col: Rigid


Matsui 1985, 1986
  • BH200 x 200 x 6 x 6
  • Length: 59.1 in


  • Length (L): 39.4 in
  • Length/Diameter (L/D): 6.67


Outside stiffener, through stiffener

  • Col: Fixed base
  • Beam to col: Rigid


Morino et al. 1993
  • H250 x 250 x 6 x 9
  • Length: in-plane: 70.87, out-of-plane 49.21 in


  • Length (L): 39.67 in
  • Length/Diameter (L/D): 8.1


Through stiffener


Fixed base, pinned top (roller)

Tsai et al. 2008
  • H456 x 201 x 10 x 17
  • H450 x 200 x 9 x 14
  • H400 x 200 x 8 13
  • Length: 275.6 in


  • Length (L): 157.5 in
  • Length/Diameter (L/D): 10


  • Through beam (1st floor)
  • External diaphragm (2nd floor)
  • Bolted end plate (3rd floor)


Concrete footing

Cross Section Information

Reference Tube Dimensions Steel Properties Concrete Properties
Han, Wang, and Zhao 2008
  • ◌: (D) □: (D) x (B): 4.72 x 4.72, 5.51 x 5.51 (square)
  • Wall Thickness (t)(in): 0.14, 0.16
  • Diameter/thickness (D/t): 33.7, 34.4


Fy= 44, 52 ksi


f'c= 7.63


Herrera, Ricles, and Sause 2008
  • ◌: (D) □: (D) x (B): 12 x 12 (square)
  • Wall Thickness (t)(in): 0.393
  • Diameter/thickness (D/t): 30.5


A992

Fyb= 50 ksi

f'c= 9.8

Kawaguchi et al. 2002
  • ◌: (D) □: (D) x (B): 4.92x 4.92 (square)
  • Wall Thickness (t)(in): 0.236
  • Diameter/thickness (D/t): 20.83


SS400

Fyb= 49.68 ksi

'c= 2.7

Matsui 1985, 1986
  • ◌: (D) □: (D) x (B): 5.91 x 5.91 (square)
  • Wall Thickness (t)(in): 0.177, 0.126, 0.091
  • Diameter/thickness (D/t): 33, 47, 68


Fyb= 38.7, 51.8 ksi


f'c= 5.2-5.8

Morino et al. 1993
  • ◌: (D) □: (D) x (B): 4.92 x 4.92 (square)
  • Wall Thickness (t)(in): 0.23
  • Diameter/thickness (D/t): 22.0


N.A.


f'c= 2.8-3.0

Tsai et al. 2008
  • ◌: (D) □: (D) x (B): 15.75 (circular) 15.75 x 15.75 (square)
  • Wall Thickness (t)(in): 0.354
  • Diameter/thickness (D/t): 44.5


Fyb= 54-70 ksi


f'c= 5.1