Table of Experimental Studies on Load Transfer in CFT Systems


General Information

Reference Experiment Synopsis Number of Tests Loading Method Results Reported Main Parameters Comments
Kilpatrick and Rangan 1999

Bond tests of circular CFT columns and beams having various interface conditions including maximum bond, partial bond and minimum bond. HT tubes were also tested under axial load

  • 3 CFTs, 1 HTs (stub cols.)
  • 6 CFTs, 2 HTs (short and slender cols)
  • 4 CFTs, 1 HT (beam)


  • Axial load applied to the steel and concrete simultaneously
  • Column supported on the steel and concrete simultaneously at the bottom


  • P vs. εs
  • P vs. δ


  • nterface condition
  • L/D



Morishita and Tomii 1982

Cyclic push-out tests of square CFTs


24

  • Constant axial load applied with cyclic shear force at the top
  • Axial load applied either to the conc. and steel tube simult. or or only to the steel tube
  • Cols. supported on the steel tube and concrete simul


  • H vs. R
  • L vs. εs
  • P -fbs vs. ds


  • P
  • f'c
  • method of applying axial load at the top of the column (steel tube alone or steel tube and concrete simult.)



Mouli and Khelafi 2007

Push-out test of rectangular CFTs with normal weight and light weight concrete


4 Rectangular Hollow Section CFTs


Tested in Standard Compression machine


P vs. slip

  • Normal Weight concrete vs. Lightweight concrete
  • L


Bond strength and squash load tested


Parsley, Yura, and Jirsa 2000

Push-out test of rectangular CFTs with and without shear tab connections supporting the steel tube


8

  • Load applied through spherical crosshead at the top on the concrete alone
  • Steel tube was supported at the bottom either by bearing or a shear tab connection


  • P vs. slip
  • Psteel vs. L
  • fb vs. t/b2


  • D
  • support of steel section



Roeder, Cameron, and Brown 1999

Push-out tests of circular CFTs filled with concrete having moderate or little shrinkage potential


20

  • Concentric, eccentric and cyclic concentric load applied on the concrete alone
  • Columns supported on the steel tube at the bottom


  • fb vs. L
  • fb vs. D
  • fb vs. D/t
  • P vs. ds Pu,fb


  • D
  • t
  • shrinkage strain of concrete



Shakir-Khalil 1993

Push-out tests of square and circular CFTs with shear connectors


Push-out tests of rectangular, square and, circular CFTs with dry or oiled interface


56 (30 square, 26 circular)


40 (16 rectangular, 12 square, 12 circular)

  • Axial loading on to the concrete at the top
  • Axial loading through steel brackets or plates attached to the steel tube
  • Columns supported on the steel tube alone at the bottom


  • Monotonic or repeated axial load applied on the concrete concentrically
  • Columns supported on the steel tube alone at the bottom


  • P vs. ds
  • P vs. εs
  • Pu, fb
  • ds


  • P vs. ds
  • P vs. εs
  • Pu
  • fb
  • ds


  • Tube shape
  • type and number of shear connectors
  • type of loading


  • Tube shape
  • interface condition
  • interface length
  • loading type
  • number and location of shear connectors



Shakir-Khalil and Hassan 1994

Push-out test of rectangular CFTs


52

Monotonic axial loading of the concrete alone at the top while the column supported on the steel tube at the bottom

  • P vs ds
  • Pu
  • fb
  • ds


  • Shear connector type
  • Number and location of shear connectors
  • Concrete Strength (f'c)



Tomii, Yoshimura, and Morishita 1980

Push-out tests of circular CFTs

91


Axial load applied at the top on the concrete alone and the column supported on the steel tube at the bottom

  • fb
  • fbs vs. ds


  • Age of concrete
  • f'c
  • L
  • D
  • compaction of concrete
  • surface treatment



Virdi and Dowling 1980

Push-out tests of circular CFTs


91


Axial load applied at the top on the concrete alone and the column supported on the steel tube at the bottom

  • fb
  • fbs vs. ds


  • Age of concrete
  • f'c
  • L
  • D
  • compaction of concrete
  • surface treatment



Specimen Information

Reference Length (L) (in) Interface Length (in) Bond Strength (fb) (psi) Shear Connectors
Kilpatrick and Rangan 1999

13.78 (stub) 40.83 (short) 76.85 (slender) 82.68 (beam)


13.78 (stub) 40.83 (short) 76.85 (slender) 82.68 (beam)


1.5-114.0

  • Self-tapping screws (Double helix pattern with a pitch length of 3.15 in) (length = 1.18 in., diameter = 0.193 in.)


Morishita and Tomii 1982

35

29

21.3-49.8


none

Mouli and Khelafi 2007

21.65

Fy = 49.3-52.65 ksi


117.48-121.83 (NWC), 60.92-62.37 (LWC)


none

Parsley, Yura, and Jirsa 2000

48-60


47-59


27.0-71.0


none

Roeder, Cameron, and Brown 1999

46

41.5

N.A.


none

Shakir-Khalil 1993

17.7


9.8, 17.7, 25.6


15.8


7.9, 15.7, 23.6


63.8, 120.4


29.0-580.2

  • Hilti nails (2.44 in long, 0.146 in. diameter)
  • Grade 4.6 M12 Black Bolts (1.97 in long)


  • Grade 4.6 M12 Black Bolts (1.97 in long)


Shakir-Khalil and Hassan 1994

17.72


15.74


28.4-77.3

  • Grade 4.6 Black bolts
  • Grade 8.8 Black bolts
  • threaded bars


Tomii, Yoshimura, and Morishita 1980

28.94


29.53


28.5-56.9 (circular) 21.3-42.7 (square and octagonal)

none

Virdi and Dowling 1980

5.88-18.25


4.38-16.75


48.1-433.8 (avg. values)


none

Cross Section Information

Reference Tube Dimensions Steel Properties Concrete Properties
Kilpatrick and Rangan 1999
  • ◌: diam. (D) □: depth (D) x width: 4
  • Wall Thickness (t) (in): 0.094
  • Diameter/thickness (D/t): 42.3


Cold-formed

Fy = 50.8 ksi

f'c = 15.30 ksi

Morishita and Tomii 1982
  • ◌: diam. (D) □: depth (D) x width: 5.88 x 5.88
  • Wall Thickness (t) (in): 0.166-0.170
  • Diameter/thickness (D/t): 35


Cold-formed mild steel

Fy = 49.2-50.9 ksi

f'c = 3.32, 3.86, 5.08 ksi

Mouli and Khelafi 2007
  • ◌: diam. (D) □: depth (D) x width: 4.72 x 3.15, 3.94 x 5.91
  • Wall Thickness (t) (in): 0.2
  • Diameter/thickness (D/t): 15.75, 29.55


Fy = 49.3-52.65 ksi


f'c = 6.5 (NWC) , 5.32 (LWC) ksi


Parsley, Yura, and Jirsa 2000
  • ◌: diam. (D) □: depth (D) x width: 8 x 8, 10 x 10
  • Wall Thickness (t) (in): 0.25
  • Diameter/thickness (D/t): 32.0-40.0


Fy = 48.0 ksi


f'c = 5.86-6.55 ksi

Roeder, Cameron, and Brown 1999
  • ◌: diam. (D) □: depth (D) x width: 10.3-23.8 (circular)
  • Wall Thickness (t) (in): 0.28-0.53
  • Diameter/thickness (D/t): 19.4-108.0


N.A.


f'c = 4.05-6.86 ksi

Shakir-Khalil 1993
  • ◌: diam. (D) □: depth (D) x width: 5.91 x 5.91, 7.87 x 7.87 (square) 6.63, 8.63 (circular)
  • Wall Thickness (t) (in): 0.19, 0.0248
  • Diameter/thickness (D/t): 30.0, 31.7 (square) 33.6, 34.8 (circular)


  • ◌: diam. (D) □: depth (D) x width: 4.72 x 3.15 (rectangular) 5.91 (square) 6.63 (circular)
  • Wall Thickness (t) (in): 0.197
  • Diameter/thickness (D/t): 24 (rectangular) 30 (square) 33.7 (circular)


Mild steel Grade 43


f'c = 5.22-6.16 ksi


f'c = 5.50-6.43 ksi

Shakir-Khalil and Hassan 1994
  • ◌: diam. (D) □: depth (D) x width: 5.91 x 3.94
  • Wall Thickness (t) (in): 0.197
  • Diameter/thickness (D/t): 30


N.A.


f'c = 3.19-12.18 ksi

Tomii, Yoshimura, and Morishita 1980
  • ◌: diam. (D) □: depth (D) x width: 5.91 (circular) 5.91 x 5.91 (square and octagonal)
  • Wall Thickness (t) (in): 0.126
  • Diameter/thickness (D/t): 46.9


Cold-formed mild steel

Fy = 36.6 ksi (smooth) 36.3 ksi (checkered)

f'c = 2.42-6.69 ksi (expansive) 2.89-4.92 ksi (ordinary)

Virdi and Dowling 1980
  • ◌: diam. (D) □: depth (D) x width: 5.84-12.05
  • Wall Thickness (t) (in): 0.22-0.40
  • Diameter/thickness (D/t): 14.8-32.3


Mild steel


f'c = 3.19-6.72