Top of the Magnetic Class

The article written by ChE PhD graduate Brian Plouffe, Associate Professor Shashi Murthy & Professor Laura Lewis on “Thermomagnetic determination of Fe3O4 magnetic nanoparticle diameters for biomedical applications” was one of the top 25 articles of 2011!



The utility and promise of magnetic nanoparticles (MagNPs) for biomedicine rely heavily on accurate determination of the particle diameter attributes. While the average functional size and size distribution of the magnetic nanoparticles directly impact the implementation and optimization of nanobiotechnology applications in which they are employed, the determination of these attributes using electron microscopy techniques can be time-consuming and misrepresentative of the full nanoparticle population. In this work the average particle diameter and distribution of an ensemble of Fe3O4 ferrimagnetic nanoparticles are determined solely from temperature-dependent magnetization measurements; the results compare favorably to those obtained from extensive electron microscopy observations. The attributes of a population of biocompatible Fe3O4 nanoparticles synthesized by a thermal decomposition method are obtained from quantitative evaluation of a model that incorporates the distribution of superparamagnetic blocking temperatures represented through thermomagnetization data. The average size and size distributions are determined from magnetization data via temperature-dependent zero-field-cooled magnetization. The current work is unique from existing approaches based on magnetic measurement for the characterization of a nanoparticle ensemble as it provides both the average particle size as well as the particle size distribution.


Learn more here

Related Faculty: Laura H. Lewis

Related Departments:Chemical Engineering