Related News for Mohammad E. Taslim

Advancing Wire-Arc Direct Energy Deposition for Large-Format Metal Additive Manufacturing

Sinan Müftü, COE Distinguished Professor, MIE, and Ozan Özdemir, assistant professor, MIE, are leading a team that was awarded a $4.38 million grant from the Army Research Laboratory to advance wire-arc direct energy deposition for large-format metal additive manufacturing.

Weighing Airline Passengers for Precise Estimates

MIE Professor Mohammad Taslim explains the benefits of weighing airline passengers in addition to their luggage before a flight.

ARL Grant to Improve Cybersecurity and Robustness in Additive Manufacturing

MIE Professor Sinan Müftü and Assistant Professor Ozan Özdemir were awarded a $1.5 million research grant by the Army Research Laboratories (ARL) to spearhead innovative initiatives in cybersecurity and enhancement of mechanical robustness in parts and coatings produced through Cold Spray Additive Manufacturing.

Northeastern in Top 100 Universities with U.S. Utility Patents

For the seventh consecutive year, Northeastern University has appeared in the National Academy of Inventors (NAI) list of Top 100 Universities that were granted U.S. utility patents in 2021, cementing it as a world leader in academia and research.

Faculty and Staff Awards 2022

Congratulations to all the winners of the faculty and staff awards, and to everyone for their hard work and dedication during the 2021-2022 academic school year.

Mo Taslim

Determining the Lengths of a Collection of Carbon Nanotubes

MIE Professor Mohammad Taslim was awarded a patent for “Length-based carbon nanotube ladders.”

Anti-nodes of resonant waveform of typical glycerol droplets with arrows indicating the waveform amplitudes. In seesaw mode (m = 1), h = 0.923 mm, dp = 3.71 mm, and f * = 63 Hz. Pictures show t = 0, ¼ and ½ of the oscillating period. In saddleback mode (m = 2), h = 0.91 mm, dp = 3.48 mm, f * = 78 Hz, and D ≈ 1.17 × 10−7 N·m. Views from the side and an oblique meridional angle are shown. The dashed lines show the two orthogonal axes of C4 symmetry. In monkey saddle mode (m = 3), h = 0.63 mm, dp = 4.36 mm, f * = 105 Hz, and D ≈ 6.46 × 10−8 N·m with a C6 symmetry. Arrows show the alternating crests and valleys. The finite element simulation using ABAQUS is shown on the right, by which flexural rigidity is deduced. The color code shows out-of-plane displacement from the equatorial neutral plane.

MIE Research Selected as Editor’s Choice of Physics of Fluids

A research paper, titled “Flexural Bending Resonance of Acoustically Levitated Glycerol Droplet” by Zilong Fang, PhD’22, mechanical engineering, and MIE Professors Kai-Tak Wan and Mohammad Taslim was selected as the Editor’s Choice and published in the journal of Physics of Fluids.

Taslim Receives Patent for Non-Rotating Wind Energy Generator

MIE Professor Mohammad Taslim was awarded a patent for his "Non-rotating Wind Energy Generator". Abstract Source: USPTO In an embodiment of the invention, a non-rotating wind energy generator uses the fluid flow principles of vortex shedding and transverse galloping to generate oscillatory motion of a beam, and alternators, optionally located near both ends of the […]

Fluid Flow Electrical Power

MIE Professor Mohammad Taslim has received a patent for creating a “Non-Rotating Wind Energy Generator”.

MIE Capstone Team Builds Solar Desali­na­tion System

Supervised by MIE Professor Mohammad Taslim, a team of capstone students constructed a solar powered desalination system to help solve the global water shortage.

Little blade, big role

When­ever I fly, I almost always get seated near the engine. In the past this has made me  grumpy. Not only are those big cylin­ders ridicu­lously loud, they also obstruct my view of the beau­tiful clouds and the earth below. But after meeting with mechan­ical and indus­trial engi­neering pro­fessor Mo Taslim last week I think I’ll be taking a […]

Making Clean Water For All

Under the supervision of professor Mohammad Taslim, a team of MIE capstone students have developed a solar-​​ powered desali­na­tion system to help the world’s water crisis.

Sensor Shirt is Real-World Solution

MIE students designed a shirt to monitor the movements of a pitcher. By studying the mechanics of the pitch, they can determine if a player’s technique starts to worsen which might result in an elbow injury.